ThreadViewer: Visualizing Thread Behavior in a Program Execution

Augustine Wong
Project Background

• Goal of my research group: create software performance debugging tools

• Prior Work:
 - FlowViz Visualization Tool
 - TimeSquared Visualization Tool
 - Dinamite Instrumentation Tool
 - Dinamite Output
What is ThreadViewer?

- FlowViz and TimeSquared should be used together but were designed separately.
- ThreadViewer is a visualization tool which integrates FlowViz and TimeSquared together.
Data Abstraction of a Dinamite Trace

- Whenever a thread calls a function, Dinamite generates two records: function entry and function exit

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>Categorical</td>
<td>Name of the function</td>
</tr>
<tr>
<td>Direction</td>
<td>Categorical</td>
<td>Indicates if record is function entry or exit</td>
</tr>
<tr>
<td>Thread ID</td>
<td>Categorical</td>
<td>Identifies the thread</td>
</tr>
<tr>
<td>Time</td>
<td>Ordered, quantitative</td>
<td>Time when the record was made</td>
</tr>
</tbody>
</table>
FlowViz and TimeSquared

FlowViz

State diagram of a thread’s behavior, where a state is a function entry or exit

TimeSquared

Displays each function call in a horizontal timeline
Dataset Cardinality

• Project dataset is a Dinamite output capturing 22 seconds of one thread’s activity in WiredTiger:
 - ~11 million function entry and exit records
 - 20 function attribute levels
 - Time attribute has ns resolution

• Challenge: Reduce data cardinality while keeping time attribute
Summarize Dataset With Execution Patterns

• Threads tend to execute same sequences of functions repeatedly:
 - Thread repeatedly trying to acquire a lock
 - Thread repeatedly evicting memory pages

• Reduce dataset cardinality by finding execution patterns – sequences of function entries and exits which occur repeatedly throughout a Dinamite trace
Finding Execution Patterns with Sequitur

- Walkinshaw et al proposed finding execution patterns using Sequitur algorithm
 - Treat Dinamite output as a string input to Sequitur
 - Found ~7K patterns
 - Wrote Python script to parse through original dataset to find the time intervals that the patterns occurred (add back time attribute)

Showing Patterns on a Timeline

- Vertical bar graph to show % thread runtime for each pattern
- Each pattern’s timeline aligned with its bar in the bar graph
- Navigate timeline via link navigation

- Where’s FlowViz?
- How do we see the contents of the patterns?
FlowViz in ThreadViewer

- ThreadViewer divided into two panels:
 - Left panel shows FlowViz state diagram
 - Right panel contains bar graph and timeline
- Still can’t see contents of the patterns...
Patterns as FlowViz Subgraphs

- Link highlighting reveals pattern as subset of the state diagram on the left panel
- Colored FlowViz nodes represent states in pattern
- Transitions between states in pattern shown in red

Click here to reveal “pattern 2031”
Discovery with ThreadViewer: Low % Execution Times

- Discovered that the vast majority of patterns take up < 1% of a thread’s runtime (between ~0.001% and 10%)
Discovery with Thread Viewer: Confusing Execution Patterns

• Some patterns do not have complete pairs of function entries and exits
 - Pattern below shows thread exiting function __evict_walk but not entering it
Future Work

• Address the pattern detection problems discovered by ThreadViewer
 - Update Sequitur?
 - Create new algorithm?

• Good news: we now have a visualization tool to evaluate the quality of our pattern detection strategies
THANK YOU!
What is a Function?

- Software is comprised of functions:
 - Functions are a list of instructions which make up a specific task

```c
function makeDessert {
    - add sugar
    - add chocolate
    ....................
}
```

```c
int main {
    makeAppetizer();
    makeMainCourse();
    makeDessert();
}
```
What is a Thread?

• Multi-threading boosts software performance by executing sequences of functions in parallel.

Thread 1
makeAppetizer();

Thread 2
makeDinner();

Thread 3
makeDessert();

ThreadViewer only looks at one thread at a time.
Sequitur Output

Entire Dinamite Output

Pattern 1

Pattern 2

Pattern N

Pattern 3

Pattern 1

Pattern 100

Enter foo

Exit foo

Enter bar

Enter bar