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Required Readings

Chapter 6: Multiple View Methods

The Visual Design and Control of Trellis Display R. A. Becker, W.
S. Cleveland, and M. J. Shyu (1996). Journal of Computational
and Statistical Graphics, 5:123-155.
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Further Reading

Cerebral: Visualizing Multiple Experimental Conditions on a Graph
with Biological Context. Aaron Barsky, Tamara Munzner, Jennifer
L. Gardy, and Robert Kincaid. IEEE Transactions on Visualization
and Computer Graphics (Proc. InfoVis 2008) 14(6):1253-1260,
2008.

Building Highly-Coordinated Visualizations In Improvise. Chris
Weaver. Proc. InfoVis 2004. p 159-166.

Exploring High-D Spaces with Multiform Matrices and Small
Multiples. Alan MacEachren, Xiping Dai, Frank Hardisty,
Diansheng Guo, and Gene Lengerich. Proc InfoVis 2003. p 31-38.

Configuring Hierarchical Layouts to Address Research Questions.
Adrian Slingsby, Jason Dykes, and Jo Wood. IEEE TVCG 15(6),
Nov-Dec 2009 (Proc. InfoVis 2009).
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Multiple View Methods

linking/coordination choices
linked highlighting

is contiguous in one view distributed in another?

linked navigation

view choices

encoding: same or multiform
dataset: same or small multiple
data: all or subset (overview/detail)

spatial ordering of views

many combinations possible
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Small Multiples vs Animation

[Barsky et al. Cerebral: Visualizing Multiple Experimental Conditions on a Graph with
Biological Context. Proc. InfoVis 2008. p 1253-1260.]
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CMV Example: Visual Search Engine

[VSE from Boukhelfia, Roberts, and Rodgers, Figure 3 of State of the
Art: Coordinated & Multiple Views in Exploratory Visualization. Roberts,
Proc. CMV 2007]
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CMV Example: cdv

[cdv from Dykes, Figure 2 of State of the Art: Coordinated & Multiple
Views in Exploratory Visualization. Roberts, Proc. CMV 2007] 7 / 33

CMV Example: CommonGIS

[CommonGIS from Andrienko and Andrienko, Figure 4 of State of the
Art: Coordinated & Multiple Views in Exploratory Visualization. Roberts,
Proc. CMV 2007]
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Replace, Replicate, Overlay

when to do which

design tradeoffs

always replace: too much reliance on memory
always replicate: too many windows
always overlay: too much clutter in single window
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Architectural Issues

must play nicely with other views

rendering, preprocessing, responding to commands

most issues also true for scalability of single view

guaranteed response time independent of dataset size

loose confederation

multithreaded, each component can work in background

tighter confederation: return control to master regularly
(TJ,H3)

divide work into pieces, enqueue
continue serving queue when control is returned
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Improvise

tightly integrated coordination approach

components with many external control capabilities

live properties

value slots, ports
change in response to user action
naive approaches fall into cycles

[ Fig 1. Weaver. Building Highly-Coordinated Visualizations In Improvise.
Proc. InfoVis 2004, p. 159-166]
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Coordinating Axes

scatterplot from components

[ Fig 5. Weaver. Building Highly-Coordinated Visualizations In Improvise.
Proc. InfoVis 2004, p. 159-166]
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Coordinating Multiple Scatterplots

sync horizontal but not vertical scrolling

[ Fig 6. Weaver. Building Highly-Coordinated Visualizations In Improvise.
Proc. InfoVis 2004, p. 159-166]
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Example: Complex Application

[ Fig 4. Weaver. Building Highly-Coordinated Visualizations In Improvise.
Proc. InfoVis 2004, p. 159-166] 14 / 33

Video

building up coordination

encoding: same or multiform
dataset: same or small multiple
data: all or subset (overview/detail)

background updating of views (upper left dot)

list views for search coupled with other multiform views

coordination analysis (controls/variables)

selection decoupled from data

[ http://www.cs.ou.edu/ weaver/academic/publications/weaver-2004a-
movie.zip
]
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Critique

strengths

sophisticated and powerful approach to coordination

weaknesses

large learning curve to build new apps

[ Fig 2. Weaver. Building Highly-Coordinated Visualizations In Improvise.
Proc. InfoVis 2004, p. 159-166]
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Multiform Matrices and Small Multiples

univariate exploration: small multiples

bivariate exploration: matrices (SPLOM and other)

encoding: same or multiform

dataset: same or small multiple

techniques

juxtaposition
sorting/ordering
manipulation
linking multiple bivariate views

[ MacEachren et al. Exploring High-D Spaces with Multiform Matrices and Small
Multiples. Proc InfoVis 2003, p 31-38.]
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Multiform Bivariate Small Multiple

common variable: per capita income
per-column variables: type of cancer mortality
per-row forms: scatterplot, choropleth/thematic map

left bright green: high income, low cervical cancer
hypoth: not screened

right dark green: low income, high breast cancer
hypoth: late childbearing

[ Fig 3. MacEachren et al. Exploring High-D Spaces with Multiform Matrices and

Small Multiples. Proc InfoVis 2003, p 31-38.] 18 / 33

Multiform Bivariate Matrix

scatterplots/maps, histograms along diagonal

per-col vars: mortality, early detection, recent screening

univariate map var: screening facility availability

[ MacEachren et al. Exploring High-D Spaces with Multiform Matrices and Small
Multiples. Proc InfoVis 2003, p 31-38.]
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Spacefill Form

linked highlight of low doctor ratio counties from
scatterplot

spacefill shows it’s roughly half the items

[ Exploring High-D Spaces with Multiform Matrices and Small Multiples.
MacEachren et al, Proc. InfoVis 2003. ]
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Sorting/Ordering and Linking

sorting/ordering

manual: direct manipulation from user
automatic: conditional entropy metric
automatic: hierarchical clustering to find interesting

linking

highlighting
many others

background color, subspace, conditioning, ...

conditioning: filter in/out of given range on another var

video

InfoVis 2003 DVD
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Automatic Dotplot Ordering: Trellis

alphabetical site,variety use group median

[The Visual Design and Control of Trellis Display. Becker, Cleveland, and Shyu. JCSG
5:123-155 1996]
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Trellis Structure

conditioning/trellising: choose structure

pick how to subdivide into panels
pick x/y axes for indiv panels
explore space with different choices

multiple conditioning

ordering

large-scale: between panels
small-scale: within panels

main-effects: sort by group median

derived space, from categorical to ordered
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Confirming Hypothesis

dataset error with Morris switched?

old trellis: yield against variety given
year/site

new trellis: yield against site and year
given variety

exploration suggested by previous
main-effects ordering

[The Visual Design and Control of Trellis Display. Becker,
Cleveland, and Shyu. JCSG 5:123-155 1996]
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Partial Residuals

fixed dataset, Morris data switched

explicitly show differences

take means into account
line is 10% trimmed mean (toss
outliers)

[The Visual Design and Control of Trellis Display. Becker,
Cleveland, and Shyu. JCSG 5:123-155 1996]
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Critique

careful attention to statistics and perception

finding signals in noisy data

trends, outliers

exploratory data analysis (EDA)

Tukey work fundamental, Cleveland continues
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Critique

careful attention to statistics and perception

finding signals in noisy data

trends, outliers

exploratory data analysis (EDA)

Tukey work fundamental, Cleveland continues
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HiVE: Conditioning

reconfigure conditioning hierarchies to explore data space
treemaps as spacefilling rectangular layouts

each rectangle is conditioned subset of data
nested graphical summaries

size, shape, color used to show subset properties
ordered by conditioning variable

dimensional stacking:
discretization and recursive embedding of dimensions

[Fig 1. Slingsby, Dykes, and Wood. Configuring Hierarchical Layouts to Address
Research Questions. IEEE TVCG 15(6), Nov-Dec 2009 (Proc. InfoVis 2009).]
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HiVE Example: London Property

top split: house type. next: neighborhood. next: time

color: price variance. size: number of sales

resulting patterns:
between neighborhood have different house distributions
within neighborhoods have similar prices

A B

Fig. 6. The data are spatially reaggregated into 4km2 grid squares. Absolute geographical positioning is employed because node size is fixed
and the correct aspect ratio is used (borough boundaries shown for reference). A: Coloured by number of sales: sHier(/,$gd,$yr,$mn);
sLayout(/,SP,VT,HZ); sSize(/,FIX); sColor(/,Ø,Ø,$sal). B: Coloured by average price: oColor(/,3,$prc).
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Fig. 7. Space is at level 2 of the hierarchy. Coloured by coefficient of variation of price (grey is no sales). A: sHier(/,$ty,$br,$yr,$mn);
sLayout(/,OS,SP,VR,HZ); sSize(/,$sal); sColor(/,Ø,Ø,Ø,$vpr). B: Fix rectangle size: oSize(/,4,FIX); oSize(/,3,FIX);
oSize(/, 2,FIX); oSize(/,1,FIX). C: Choropleth maps: oCut(/,4); oCut(/,3); oLayout(/,2,PG); oSize(/,2,$abr).

1. Reconfigure conditioning hierarchies to explore the data space.
Use oCut, oInsert and oSwap to reconfigure the hierarchy to
explore variation in terms of different conditioning variables. For
example, placing $br above $ty in Fig. 7 allows geographical
variation by property type to be explored.

2. Use appropriate layouts to reveal structure in data. Experiment
with alternative layouts to explore the design space. HZ,VT
with fixed rectangle size (see 4) can produce mosaic plots, useful
where combinations of categorical variables are important. OS is
appropriate where there is a large number of values and VT/HZ
where there are fewer values and where the dimensions of the
available space allow good aspect ratios.

3. Preserve salient 1D or 2D ordering. Choose appropriate order-
ing for ordinal, temporal and spatial variables for each hierar-
chical level in response to research questions and order nominal
variable values consistently.

4. Fix rectangle size at appropriate hierarchical levels to produce
consistent layouts with small-multiple-like properties. The re-
sulting juxtaposed graphical elements with shared layout char-
acteristics can facilitate the side-by-side comparison of graphics,
minimising the work required of the eye and brain.

5. Scale colour to data-ranges to different parts of the hierarchy
to explore local and global patterns. Scaling to data-ranges in
localised parts of the hierarchy (e.g. by year in Fig. 4) addresses
research questions based on localised variation, whereas scaling
to the entire data-ranges draws attention to more global patterns.

6. Condition datasets by attributes of different granularities at ad-

jacent levels of the hierarchy. In the case of time, this allows
us to consider the effects of cyclical temporal patterns (e.g.
$yr,$mn). In the case of space this draws attention to the ef-
fects of spatial resolution and scale.

7. Condition by different aggregations of time and space. This helps
explore the effects of modifiable units on patterns in the data.

8. Reaggregate spatial data to equally-sized grid cells and fix rect-
angle size. This can produce consistent small-multiple-like ar-
rangements (see 4) that retain the properties of the original ge-
ographical coordinate space (e.g. Fig. 6) and can be used to ad-
dress research questions that relate to geographic variation in ab-
solute geographical space.

9. Use dynamic techniques to relate these various states. For exam-
ple, use highlighting to show items across hierarchy and brush-
ing for details-on-demand. Smooth transitions between layouts
can to help reduce cognitive load when relating these.

8 FURTHER AND ONGOING WORK

Although our examples and notation have focussed on space-filling
rectangular layouts, the concepts are applicable to other types of lay-
out as illustrated by our introductory example and our use of some
non-rectangular layouts. HiVE was developed so that we could be
systematic in describing configurations and reconfigurations in layouts
and so we could describe and build interfaces for collaborative visu-
alisation. We are extending this so that it can encode a broader set of
hierarchical layouts that use dimensional stacking by adding states and
operators to represent a wider range of visual variables. For example,

!"#!"#$%!&'()*(+",(-.$/#%01#$%(2#)1+1-2#-+"("+'.0*!(*.(+331)!!(1)!)+1-2(40)!*#.$!

[Fig 7a. Slingsby, Dykes, and Wood. Configuring Hierarchical Layouts to Address
Research Questions. IEEE TVCG 15(6), Nov-Dec 2009 (Proc. InfoVis 2009).]
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HiVE Example: London Property

top split: neighborhood. next: house type. next: sale
time (year). next: sale time (month).
color: average price. size: fixed.
resulting pattern: expensive neighborhoods near center
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Fig. 2. A: Sized-based ordering, coloured by average price: sHier(/,$br,$ty,$yr,$mn); sLayout(/,SQ); sSize(/,$sal);
sColor(/,Ø,Ø,Ø,$prc). B: Reconfigure to a spatial and temporal layout: oLayout(/,1,SP); oLayout(/,2,OS); oLayout(/,3,VT);
oLayout(/,4,HZ). C: Fix the size: oSize(/,1,FIX); oSize(/,2,FIX); oSize(/,3,FIX); oSize(/,4,FIX). D: Remove time, and
colour by deviation from expected sales: oCut(/,4); oCut(/,3); oColor(/,2,$xsl).

the hierarchy can produce layouts similar to mosaic plots (and ma-
trix diagrams if sizes are fixed). They are particularly suitable where
variables have hierarchical dependencies, such as our calendar views
(sHier($yr,$mn)).

6.3 Layouts for time-based data and questions

Temporal data can be considered as ordinal. In Fig. 1A, years are
not arranged temporally; as such, temporal trends are difficult to de-
tect. Rearranging the years into a time-based order using an ordered
space-filling layout [36] (Fig. 1B) makes the increase in annual house
price easier to detect. In Fig. 1C, we have added month to the hi-
erarchy producing calendar views coloured by the number of sales.
Seasonal variations in the numbers of sales are apparent for flats and
terraced housing, however colour rescaling (using oColorMap) or
using colour schemes that are local to individual parts of the hierarchy
are required to detect these patterns where property types have low
sales. Alternatively, colour can be used to show values as a proportion
or deviation from a baseline. Appropriate baselines include those that
reflect the values expected from hypotheses that we might then accept
or reject on the basis of the display. For example, in Fig. 4A (calendar
views), our null hypothesis is that the number of sales does not vary
monthly (expected or baseline values are a twelfth of the sales for each
year). The geographically-consistent seasonal trends that are apparent
might cause us to reject our null hypothesis. Identifying the elements
with statistically-significant levels of variation might help us make that

choice. Fig. 4B shows the deviation of price from the yearly average
(accounting for inflation). Whilst prices rises steadily every year, this
is not the case for 2008 where prices have dropped markedly in the
final quarter, a trend not observed in Westminster.

Nesting the two temporal resolutions of year and month to pro-
duce calendar views is appropriate where we are expecting yearly and
monthly patterns. However, this may obscure other temporal patterns.
In Fig. 3B, we use an ordered squarified layout of all 108 months in
the period ordered from the left top to bottom right (compare with the
calendar views in Fig. 3A). Although both graphics show exactly the
same data, the use of $my and the associated OS layout in Fig. 3B
make the upward trend in prices and subsequent slump more apparent
as it is a continuous trend over the entire period. The result is a more
appropriate layout for research questions that relate to ongoing rather
than periodic change. The additional hierarchical level used in Fig.
3A and alternative layouts are more appropriate for comparing annual
patterns which are overshadowed by the longer term trend in the case
of this attribute. Again, interactive colour rescaling or colouring on
the basis of relative values is required to detect relative rises and falls
in different boroughs.

6.4 Geographical layouts

Spatially-ordered layouts (SP) have rectangles that are arranged ac-
cording their geographical locations. The effect of this layout can be
seen by comparing the non-spatial layout in Fig. 2A with the spatial
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[Fig 2c. Slingsby, Dykes, and Wood. Configuring Hierarchical Layouts to Address
Research Questions. IEEE TVCG 15(6), Nov-Dec 2009 (Proc. InfoVis 2009).]
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Reading For Next Time

Chapter 7: Item Reduction Methods

A review of overview+detail, zooming, and focus+context
interfaces. Andy Cockburn, Amy Karlson, and Benjamin B.
Bederson. ACM Computing Surveys 41(1), 2008.
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