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Parallel Coordinates

& only 2 orthogonal axes in the plane

' instead, use paralel axes!

PC: Correllation

Duality

& rotate-translate
u point line
a penci: set of lines coincident at one point

v %

& geometric interpretations
= hyperplane, hypersphe
= paints do have intrinsic or

a infovis
= no intinsic order, what to
= indecerminte iy

do?

1y order

weshness techniques
= lounide haman povere srch

= upside: ponertal mtrsc

& most implementations

= user can ineractively swap axes

= Automated Multidimensional
= nselberg 99
= machine learing approsch

Detective

Hierarchical Parallel Coords: LOD

' variable-vidth opacity bands

Proximity-Based Coloring

= cluster prosimity

Structure-Based Brushing

Dimensional Zooming

Cri

ique

Critique

& not easy for novices.
 now used in many 3pps
& hier: major scalabiity improvements
combination of encocding, interaction

Dimensionality Reduction

' mapping multidimensional space into space of fewer
dimensions
= fiter subset of original dimensions
= generate new synthetic dimensions
& why is ower-dimensional approximation useful?
 sssume true intrinsic dimensionaity of dataset i
(much) lower than messured dimensionait!
= why would this be the case?
= only indirect measurement possible

= sparse data i verbose space.
B documents ex; word occurence vectors 10K.
imensions,want dzens of topc cusers

Dimensionality Reduction: Isomap

4096 D: pisels in image
' 2D: wrist rotation, fingers ex

= o
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Goals/Tasks

' goal: keep/explain as much variance as possible
& find clusters
= or compare/evaluate vs. previous clustring
& understand structure
bsolute positon not relable
B sbirary otatonsreiactions i lowD map
= fine-grained structure no relable
 coare ner/for postons safer




Dimensionality Analysis Example

' measuring materials for image synthesis
= BRDF measurements: M samples x 103 materias
= goal: lowD model where can inerpolate
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Dimensionality Analysis: Linear

= how many dimensions is enough?
= could be more than 2 or 3
= find knee in curve: error vs. dims used
' linear dim reduct: PCA, 25 dims
= physicall impossibe intermediate points when
incerpolate
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Dimensionality Analysis: Nonlinear
= nonlinear dim reduct (chartig): 10-15
= sl nermeciate points pryscly possbe
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Meaningful Axes: Nameable By People

ured, o o, s, s, gloey, mtallc
plastic-y, oughness, rubbery, greasiness, dustiness.

MDS: Multidimensional scaling

u lrge family of methods
- inimize difrence betwen nerpint distances i high
piriphuinrion
» e g iz e fncion
u strss(0,4) = | 2ot
= D mavicof oD dstances
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Spring-Based MDS: Naive

»rpst ol pons
mpute sping force to al other points
= Garencs bebwen high i o s distane
ve o better location using computed forces
' compute distances between all points
u O(1?) iteration. O() lgorthm

Faster Spring Model: Stochastic

' compare distances only with a few points
 maintain smalllacs neighberhood set

Faster Spring Model: Stochastic

' compare distances only with a few points
 maintain smalllocs neighberhood set
' each time pick some randoms, swap i if coser

Faster Spring Model: Stochas!

= compare distances only with a few points
= maintain small local neighberhood set
= each time pick some randoms, svap i if closer

Faster Spring Model: Stochastic

= compare distances only with a few points
= maintain smalllocal neighberhood set
= each time pick some randoms, svap i if closer
= small constant: 6 locals, 3 randoms typical
= O(n) iteration, O(r?) algorithm

Glimmer Algorithm
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estriction o decim:

= emation s e computaion
= relaxation to interpolate up to et level

= GPU stochastc as subsysts
= poor convergence propertes if run alone
= low-pass-fie stress appros. for termination
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Glimmer Results

= sparse document dataset: 28K dims, 28K points

55w 26 b e 2000

Cluster Stability

u display
' ako terrain metaphor
& underlying computation
= energy minimization (springs) vs. MDS.
= weighted edges
' do same clusters form with different random start points?
& “ordinatior
el ot of g ndes

Approach

' normalize within each column
 similarity metric

discussion: Pearson's corrllation coefficent
' threshold value for marking as similar
= discussion: finding criical vlue

Graph Layout

u criteria
= geometric distance matching graph-theoretic distance

= insensitve to random starting positions
o prablem with previous werk!
ble computation
a force-directed placement
' discussion: energy minimization
= others: gradient descent, etc
B discusson: termination critera

Barrier Jumping

& same idea as simulated annealing
 but compute directly
= o fnor rpulion forfsction of vrtics
' Solves start position sensitity problem




Results

u effciency

= naive approach: O(V?)

= approximate densty field: O(V)
1 good stabiity

= rotation;reflecton can occur

different random start adding noise

Critique

u real data

= suggest check against subsequent publication!
= give criteia, then discuss why solution fits
' visual + numerical results

= convincing images plus benchmark graphs
' detailed discussion of alternatives at each stage
' specific prescriptive advice in conclusion

MDS Beyond Points

' galaxies: aggregation

= themescpes e andicap
i s e tha pans lone Ty 7, 0]
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Dimension Ordering

1 in NP: hearisti, ike most interesting infovis problems
' divide and conquer

terative hierarchica clstering
B representative dimensions
& choices

= similaity metrics

u ordering algorithms

suap
u simple depe st rversal

Spacing, Filtering

' same idea: automatic support
& interaction
 manul intervention
B structure-based brushing
B focus - context

Results: InterRing

 raw, order, distort, rollup (fiter)
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Results: Parallel Coordinates

 raw, order/space, zoom, filter
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Results: Star Glyphs

= raw, orderspace, distor, filter

Iercive Hirchicat Do Ording, S
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Results: Scatterplot Matrices

= raw, fiter

B B e W R

= approach on multile techniques,
= el data
= shays show order then space then fiter
 hard 1o el which s efctive
rdered st zoom/fiter?

Reminders

' meet with me before end of week!
' presentation topics also due Friday

= your call whether presentation and project topics match
= submit: 3 topic choice, veto day.

= project data task ideas on resources page
= VAST/InfoVis Contests!

Readings Next Week

G o0 prmirieeyriadet b
ot it Lo A Ry Quin st Sngt,
e 15 6] Nov Do 209 (P o 200

e Vil o Sl Word Netorks, Dovid Avtor, Vs it
B e e
g i ) s

=

e et Bt Spin oyt G




