Lecture 5: Color Information Visualization CPSC 533C, Fall 2009

Tamara Munzner
UBC Computer Science

Wed, 23 September 2009

Papers Covered

Representing Colors as Three Numbers, Maureen Stone, IEEE CG\&A 25(4):78-85, Jul 2005. http://www.stonesc.com/pubs/Stone\ CGA\ 07-2005.pdf

Ware, Chapter 3: Lightness, Brightness, Contrast, and Constancy
Ware, Chapter 4: Color
Tufte, Chapter 5: Color and Information
How Not to Lie with Visualization, Bernice E. Rogowitz and Lloyd A. Treinish, Computers In Physics 10(3) May/June 1996, pp 268-273. http://www.research.ibm.com/dx/proceedings/pravda/truevis.htm

Further Reading

A Field Guide To Digital Color, Maureen Stone, AK Peters 2003.
Face-based Luminance Matching for Perceptual Colormap
Generation. Gordon Kindlmann, Erik Reinhard, Sarah Creem. IEEE
Visualization 2002. http://www.cs.utah.edu/~gk/papers/vis02
Color use guidelines for data representation. C. Brewer, 1999. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/ ASApaper.html

Trichromacy

■ different cone responses area function of wavelength

- for a given spectrum
- multiply by response curve

■ integrate to get response

[Stone, Representing Color As Three Numbers, CG\&A 25(4):78-85,
www.stonesc.com/pubs/Stone\ CGA\ 07-2005.pdf]

Metamerism

■ brain sees only cone response
■ different spectra appear the same

[Stone, Representing Color As Three Numbers, CG\&A 25(4):78-85, www.stonesc.com/pubs/Stone\ CGA\ 07-2005.pdf]

Metamerism Demo

[www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/ applets/spectrum/metamers_java_browser.html]

Color Matching Experiments

[Stone, Representing Color As Three Numbers, CG\&A 25(4):78-85, www.stonesc.com/pubs/Stone\ CGA\ 07-2005.pdf]

Color Matching Functions

Stiles-Burch, negative lobe

Wavelength (nm)

CIE standard, all positive

Wavelength (nm)
[Stone, Representing Color As Three Numbers, CG\&A 25(4):78-85, www.stonesc.com/pubs/Stone\ CGA\ 07-2005.pdf]

Spectral Sensitivity

[Joy of Visual Perception, Peter Kaiser. http://www.yorku.ca/eye/photopik.htm]

Color Constancy

■ relative judgements

[courtesy of John McCann, from Stone 2001 SIGGRAPH course
graphics.stanford.edu/courses/cs448b-02-spring/04cdrom.pdf]

Color Constancy

■ relative judgements

[courtesy of John McCann, from Stone 2001 SIGGRAPH course
graphics.stanford.edu/courses/cs448b-02-spring/04cdrom.pdf]

Color Constancy

■ relative judgements

[courtesy of John McCann, from Stone 2001 SIGGRAPH course
graphics.stanford.edu/courses/cs448b-02-spring/04cdrom.pdf]

Color Constancy

■ relative judgements

[courtesy of John McCann, from Stone 2001 SIGGRAPH course
graphics.stanford.edu/courses/cs448b-02-spring/04cdrom.pdf]

Color Constancy

■ relative judgements

[courtesy of John McCann, from Stone 2001 SIGGRAPH course graphics.stanford.edu/courses/cs448b-02-spring/04cdrom.pdf]

Color Constancy

■ relative judgements

[courtesy of John McCann, from Stone 2001 SIGGRAPH course graphics.stanford.edu/courses/cs448b-02-spring/04cdrom.pdf]

Coloring Categorical Data

 22 colors, but only 8 distinguishable $\bullet \bullet$ -
The Internet: 2002

Coloring Categorical Data

- discrete small patches separated in space

■ limited distinguishability: around 8-14
■ channel dynamic range: low

- choose bins explicitly for maximum mileage

■ maximally discriminable colors from Ware
■ maximal saturation for small areas

[Colin Ware, Information Visualization: Perception for Design. Morgan Kaufmann 1999. Figure 4.21]

Minimal Saturation For Large Areas

■ avoid saturated color in large areas
"excessively exuberant"

[Edward Tufte, Envisioning Information, p.82] [Colin Ware, Information Visualization:
Perception for Design. Morgan Kaufmann 1999. Figure 4.20]

Minimal Saturation For Large Areas

- large continouous areas in pastel

■ diverging colormap (bathymetric/hypsometric)

[Tufte, Envisioning Information, p. 91]

Color Deficiency

- deutanope
- protanope

■ has red/green deficit

- 10% of males!
- tritanope

■ has yellow/blue deficit
■ http://www.vischeck.com/vischeck
■ test your images
■ use this with your final projects!

Color Deficiency Examples: vischeck

deuteranope

protanope

tritanope

[www.cs.ubc.ca/~tmm/courses/cpsc533c-04-spr/a1/dmitry/533a1.html, citing Global Assessment of Organic Contaminants in Farmed Salmon, Hites et al, Science 2004 303:226-229.]

Designing Around Deficiencies

■ red/green could have domain meaning

- then distinguish by more then hue alone
- redundantly encode with saturation, brightness

[Courtesy of Brad Paley]

Coloring Ordered Data

■ innate visual order

- greyscale/luminance
- saturation
- brightness

■ unclear visual order
■ hue

Rainbow Colormap Advantages

■ low-frequency segmentation

- the red part, the orange part, the green part, ...

[Rogowitz and Treinish, Why Should Engineers and Scientists Be Worried About Color? http://www.research.ibm.com/people/I/lloydt/color/color.HTM]

Rainbow Colormap Disadvantages

- segmentation artifacts

■ popular interpolation perceptually nonlinear!
■ one solution: create perceptually linear colormap

- but lose vibrancy

[Kindlmann, Reinhard, and Creem. Face-based Luminance Matching for Perceptual Colormap Generation. Proc. Vis 02 www.cs.utah.edu/gk/lumFace]

Non-Rainbow Colormap Advantages

- high-frequency continuity

■ interpolating between just two hues

[Rogowitz and Treinish, How NOT to Lie with Visualization, www.research.ibm.com/dx/proceedings/pravda/truevis.htm]

Segmenting Colormaps

■ explicit rather than implicit segmentation

[Rogowitz and Treinish, How NOT to Lie with Visualization, www.research.ibm.com/dx/proceedings/pravda/truevis.htm]

Cartographic Color Advice, Brewer

■ http://www.colorbrewer.org

[Brewer, www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

