
Abstract
 is paper discusses a general visualization technique 
focused on displaying correlations. It is capable of handling 
structured, high dimensional data, as well as unstructured 
data such as text. In this technique, we use a rectangular 
block to represent the collection of documents that satisfy a 
particular query, with the height of the block corresponding 
to the number of documents. Multiple blocks can be 
displayed at the same time. To show the entire dataset of a 
high dimensional structured data, all the distinct values (or 
range of values) in each data dimension are queried 
individually, resulting an arrangement is very similar to 
Parallel Coordinates. To display the correlation of block A 
with a new query condition B, we "rst assign a color to the 
condition B, then vertically paint portion of block A with 
the color based on the strength of the correlation; therefore, 
high correlation results in a single dominant color in a 
block. Moreover, we compare our approach with Scatterplot 
and Parallel Coordinates, arguing that this query-driven 
approach could be more suitable in certain circumstances.

1. Introduction
 e increasing amount of data forces us to compress 
and abstract it. Visualization is one form of abstraction. You 
make up a marking scheme that transforms the data from 
its original format --- either numerical, nominal, or 
unstructured, such as text --- into a visual format made out 
of dozen visual features, in hopes that the outcome is 
perceptually distinguishable to the viewer. 
 Like any other forms of abstraction, there is the 
inevitable loss of information during the process. erefore, 
which area of original information you are willing to give 
up is now a design choice. Good design happens when the 
tradeoff is compensated by quirks of human perception, as 
well as the characteristics of the information on hand. 
 In this study, we are investigating a general visualization 
technique called Color Block, with a emphasis on showing 
the correlation in the data. Traditionally, Scatterplot and 
Parallel Coordinates are the standard, effective methods for 
this task; but we decide to seek other paradigms, focusing 
on alternative design tradeoffs. For example, Scatterplot and 
Parallel Coordinates share the characteristic that data 
entries are individually rendered, hoping that proper "tting 

and "ltering will reveal their underlying pattern. We suggest 
a more query-oriented approach to display the data, in 
which only the data that satis"es the query will be shown as 
a single visual entity (a block); however, we can still show 
the entire dataset if we ask the disjoint queries that are able 
to cover the entire universe of each dimension.
 Of course, this is not the only design tradeoff we are 
making in this study. More will be discussed as we address 
the rationals behind designing Color Block and our query-
driven approach.

2. Scatterplot, Parallel Coordinates and Mosaic
 Scatterplot and Parallel Coordinates [1] are the de facto 
methods to display correlations. eir underlying principles 
are the same: every dimension in the data has a 
correspondent visual axis; and for every piece of 
correlational evidence between two dimensions, it is 
displayed as a marker that is an unique combination of two 
values, one from each dimension.

 e "gure above shows the same data displayed by both 
methods. In the case of the Scatterplot, the two axes are 
placed orthogonally, therefore in the Cartesian space 
between them, a single dot marker is sufficient to represent 
an unique value combination of the two dimensions. 
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3 dimensions with the 
same data
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 In Parallel Coordinate the dimension axes are parallel to 
each other, which saves a lot of space, allowing far more 
dimensions to be displayed at the same time. But this 
multidimensional power does not come for free: as the axes 
are no longer orthogonal, a single dot fails to be an unique 
combination of values in these two neighboring axes. 
erefore, Parallel Coordinate has to use the next most 
efficient representation, which is a line, to literally draw a 
connection between the neighboring axes.
 At "rst, this does not appear to be a bad tradeoff, but as 
the number of data element increases, the connecting lines 
between axes could become very clustered, in a rate much 
faster than its Scatterplot counter part; this poses the 
biggest challenge to the Parallel Coordinates technique.
 Moreover, both Scatterplot and Parallel Coordinates 
have limited performance with categorical data. Because 
there are only few possible values in each dimension, 
numerous lines and dots would all compile at the same 
locations, difficult to tell the actual quantity.
 Mosaic Display [2] effectively addresses this issue. In 
the "gure below, the correlation between the nominal 
dimension Eye Color and Hair Color are shown as blocks; 
the width and the height of each block corresponds to the 
percentage of its underlying categorical value; therefore, a 
large block entails a strong correlation between the two 
values it represents.

 e limitations of this approach are obvious: there can 
be only two dimensions at the same time, and you also 
“waste” a large space in the middle of each block.
 So isn’t there a way to display correlation that is 
categorical-data-friendly, and also supports multi-
dimensions at the same time? If we were still in the 
Victorian age, with limited B&W printing and zero 
interactivity, these three cases above might very likely cover 
up most the ground, as we can either represent a 
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correlational entry as a dot/glyph (Scatterplot), a line 
(Parallel Coordinates), or an area (Mosaic). But with the 
help of interactivity and color display, we gain new 
dimensions to seek alternative tradeoffs that can satisfy all 
the requirements above; our result is the Color Block 
visualization.

3.1 Color Block Visualization, the Pile Metaphor
 Let’s start with a metaphor: imagine you are in the 
1970s and all your documents are papers. Every time a 
interest comes into mind, such as “I wonder how many 
people in my company are aged over 40”, you make a 
request to your assistant, who would then provide copies of 
all the satis"ed documents. So aer a while, your desk 
would be covered by numerous piles of documents, each 
ties to a request you made; they would probably have 
different thickness and the thicker a pile, the more 
documents satisfy that particular request.
 Our study is tightly related to this metaphor. ere are 
two main components. First is the query system (the 
assistant in the metaphor), which is essentially a SQL server. 
When the user performs a SQL statement started with 
“SELECT (*) ... WHERE conditionX”, the server returns a 
collection of documents that satisfy conditionX.
 e second component is the visualization, which we 
call Color Block. In this visualization, the collection of 
documents returned by each query would be visually 
represented as a rectangular block. All blocks have the same 
width (important), and the height of a block corresponds to 
the number of documents in that collection.
 Let’s look at an example: you have just performed the 
following four queries in your company’s human resource 
database, each returned a  number of documents.

 Based on the Color Block visualization, we use four 
blocks of different heights to represent the four collections 
of documents:

1) Age > 40     ............................................................ 12 docs
2) Height < 170cm    ................................................... 8 docs
3) Age > 40 AND Height < 170cm    .......................... 4 docs
4) Age > 40 OR Height <170cm    ............................. 20 docs

Total Documents: 40

Age>40 OR Height<170
Age > 40

Age>40 AND Height<170

Height<170



 Age>40 OR Height <170cm is the thickest, because it’s 
easier for documents to satisfy that OR condition; you 
might also noticed that its height is the exactly the sum of 
blocks Age>40 plus Height<170. You can also compare each 
block with the reference height at the bottom le, which 
represents the height of entire dataset as if presented as a 
block. ere’s also a minimum height limit (10 pixels in the 
application), just to ensure that queries with very low count 
get properly displayed. 
 Just like you can &ip through a pile of documents on 
your desk, you can click on a block to access all the original 
documents that are in that block. You can also toss away or 
combine any number of blocks, or perform a secondary 
query only based on the blocks that are currently selected.
 
3.2 Color Block Visualization, Correlation
 e focus of this visualization is to display correlation; 
but before we introduce the technique, we shall revisit our 
metaphor one more time. 
 Let’s say you are sitting in front of your desk and 
looking at all the piles of documents, “I wonder how many 
people are female in each of them?” So you start calculating 
the percentage of female employees in each of the piles. 
Aer you get all the numbers down, you use a red pen to 
paint on the front edge of each pile, with the painted width 
proportional to the percentage in your calculation. Now 
you can lie back to your chair, and still have a very good 
idea of how each pile satis"es your interest.
 Bridging the metaphor into our visualization, we "rst 
associate the new query Sex = Female with a color (red); we 
then combine this new query with each of the old ones 
through an AND relationship, and obtain the updated 
collections of documents:

  Just like we would paint certain portion of a pile’s edge 
with a particular color, we are doing the same in the Color 
Block visualization. By adding color condition Sex = Female 
(red), all four blocks from previous example are updated to 
the graph below (Fig). As you can see, the blocks of 
Heigh<170 and Age>40 AND Height<170 are dominated by 
red color, that means most documents in these two block 
satisfy the red coloring condition.

1. Sex=Female AND Age>40  
                                     ................................... 7 docs, 0.58%

2. Sex=Female AND Height<170cm 
       ................................... 6 docs, 0.75%
3. Sex=Female AND Age>40 AND Height<170cm 
       ................................... 3 docs, 0.75%
4. Sex=Female AND (Age>40 OR Height<170cm) 
         ................................ 13 docs, 0.65%

 A key to point out is that a coloring condition is an 
autonomous entity; it is not necessary to be associated with 
a speci"c block. Of course, you can always add a query 
block that is equal to a coloring condition. Let’s do that, and 
also add a complementary condition Sex = Male with color 
blue. It would result in the following:

 Doesn’t it look amazingly similar to a stacked bar chart? 
In fact you can say it is a stacked bar chart, a normalized 
one and &ip it over 90 degrees. 

 Now, if we carefully question the design of a stacked 
bar, the width of each normalized stacked bar is in fact a 
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“wasted” visual dimension, that does not encode any 
information. You may counter argue that their uniform 
width provides a visual nicety, but in each Color Block, this 
nicety still exists as all blocks have the same "xed width. 
Moreover, this uniform width is necessary for a more 
important reason: when you are measuring correlations, it 
is not the absolute count that matters, just like you cannot 
dismiss the strong correlations between certain natural 
phenomenon only because they are observed very rarely. 
erefore, in terms of correlation to a particular coloring 
condition, an uniform width allows all blocks to be treated 
“equally”, disregarding how many documents they 
represent. In this case, the exclusiveness of a color in a block 
indicates the correlations, and the size of the block indicates 
how strongly this correlation is supported by the entire 
dataset. A single-colored “thick” block will obviously draw a 
lot of attention, but at the same time very rare blocks with 
little “thickness” can still raise enough attention of the 
viewer by being dominated by a single color.

3.2 Display Entire Dataset
 So far we are only creating an individual Color Block 
for each of our queries. To display the entire dataset at once, 
it is equivalent to querying all possible values in each  
dimension of the dataset and displaying them all 
simultaneously.
 is can be easily done for nominal/categorical 
dimensions. For a nominal dimension DimX, you only 
need to obtain its distinct values DimX = {V1, V2, V3...Vn}, 
then query them individually DimX=V1, DimX=V2 ...etc.  
e SQL statement “SELECT DISTINCT DimX ....” will 
help you get the distinct values.
 It gets trickier for numerical dimensions. If we query all 
the distinct values, very likely it would result in too many 
blocks over &ooding our screen. erefore we need to bin 
each dimension to multiple mutually exclusive ranges, and 
query the ranges instead. is will lead to information loss, 
because certain outliner cases now have to be binned and 
“suppressed”, but it’s a design tradeoff we are willing to give 
up.

Condition 1: Sex = Female
Condition 2: Sex = Male

Total Documents: 40

Age < 20

Age > 30 AND Age < 40

Age > 20 AND Age < 30

Sex = Female

Sex = Male

Age > 40

 e graph above displays the entire data dimension of 
Sex and Age; each block is mutually exclusive from others, 
and you can view it as two copies of the original datasets 
(one for each dimension). You might also notice that the 
Age column and the Sex column oddly have the different 
height; this is due to the labels and gaps of the blocks, which 
is unavoidable even if we put the labels on the side, then we 
still need the gaps to distinguish different blocks. is is 
another design tradeoff we are willing to make, the 
underlying rational is that it is the relative height of a block 
that matters; we assume the the importance of each query 
(the height of the block) is only meaningful when there are 
competing queries, and the analysis is performed through 
block-to-block comparison, instead of block-to-database 
comparison.
 
3.3 Logic Sets
 By now you might have noticed a problem in the 
coloring scheme. What if the color conditions are not 
disjoint? In the example we provide, conditions Sex=Female 
and Sex=Male are disjoint and covering the entire dataset; 
but for conditions such as Sex=Female and Age>40, which 
are necessarily mutually exclusive, our solution is to 
automatically modify existing coloring conditions, and 
adding in extra ones so the resulting conditions can cover 
the entire universe of the dataset. 
 For example, imagine you currently have the coloring 
condition Sex=Female (red), and by adding the new 
condition Age>40 (orange), the system automatically 
updates the current coloring conditions to:

 en, all the blocks would be colored based on these 
new conditions, in the listed order. A helpful way might be 
to imagine the conditions in a Van Diagram: 

 As you can see, only the “exclusive” cases (Sex = Female 
ONLY, Age > 40 ONLY) can keep their previous coloring.  
e newly created conditions are assigned the default color 
gray, and separated by a subtle dark gray line. Still, the user 

1. Sex = Female AND NOT Age > 40
2. Age > 40 AND NOT Sex = Female
3. Sex = Female AND Age > 40
4. NOT Sex = Female AND NOT Age > 40

Sex = Female
Age > 40

Before:

1. Sex = Female AND NOT Age> 40
2. Age > 40 AND NOT Sex = Female

After:

3. Sex = Female AND Age > 40
4. NOT Sex = Female AND NOT Age > 40



processess the full ability to change, delete, or reorder any of 
the automatically created color conditions (more on this in 
Section 4).
 Similarly, if there are three mutually non-exclusively 
conditions, it would result in 8 possible outcomes, 
composed of 3 colored blocks, and 5 uncolored gray ones, 
(think of a three-circled Van Diagram). It might be 
confusing to distinguish among the 5 gray blocks, but the 
design rational is that you don’t have to, nor you are forced 
to (given that they are very subtly separated) ---- until, a 
single disproportional gray block unavoidably draws your 
attention. en, you can either mouse-over, or click on that 
block to investigate that particular “abnormal” coloring 
condition.
 
3.4 Brushing
 Brushing is a very useful feature, for example in Parallel 
Coordinates, when certain documents are selected in the 
table view, their correspondent polylines in the parallel 
coordinates will be highlighted as well. It is particular useful 
when the view is very clustered, because the highlighting 
brings out the documents of interest.
 e same philosophy could be applied to Color Block as 
well. When browsing on the level of individual documents, 
we can selectively assign each document a color, then 
decide to temporally override the current block-level color 
coding with the document-level colors we just assigned. 
Because a single document would only take up a tiny 
fraction of each block’s width, we then need to normalize its 
width to take up the entire width.
 For example, we assign document ID 25, 26, 28 each 
with a distinct color, then temporally turn on the Color 
Overriding function. Document 25, 26 satisfy the Sex = 
Female condition, so they split that block evenly. Document 
28 is the only one that satis"es Sex = Male, so its color 
(yellow) "lls that entire block. e same principle applies to 
the rest of the blocks. For a block that does not satisfy any 
coloring condition, it is le as the default gray color.
 In our brushing case, positive correlation reveals, if the 
same combination of colors always appears in a single block 
(disregarding what that block is speci"cally). Of course, you 
can always turn off the brushing by switch off the Color 
Override function.

4. e Application
 We built a Mac OSX application to implement our 
Color Block design. e screen shot and description are on 
the next page. Please note that the Brushing function is not 
supported currently. We will try to include it in a later 
release. 

Section of the Entire Data Table

Color ID Name Age Sex

... ... ... ... ...

25 Mary S. 32 F

26 Melissa P. 33 F

27 James B. 29 M

28 David S. 23 M

... ... ... ... ...

Color Override = On 

Total Documents: 40

Age < 20

Age > 30 AND Age < 40

Age > 20 AND Age < 30

Sex = Female

Sex = Male

Age > 40



Two views of the Inspector window.

❻

❼

Selections (in yellow) are linked with the 
list, helping you to locate the blocks if 
they get lost

The List View showing all the 
blocks (or columns of blocks). 
You can hide or unhide the 
blocks.

When mouse is over a certain block,
the status bar displays its condition and count 
(with current color conditions)

❷ ❸

❺

Operations you can perform with 
one block or multiple blocks.

❶

❽

When click on a single block, 
you can update its properties. 
Note that the Name property is 
different from its SQL condition. 
You can give a block a shorter, 
easier to remembered name.

The SQL condition of a block 
can be updated after creation.

Blocks can be 
moved around; 
but their locations 
can be locked 
too.

Each legend contains a set of 
coloring conditions. You can 
assign a hot key to each legend, 
for fast switching.

Each document is a visualization of a 
single SQL table, storing all the query 
results as Color Blocks.

❹

Within each legend, there could 
be multiple coloring conditions, 
each based on a query and 
associated with a color.
You can also automatically create 
conditions based on the currently 
selected blocks.

Mac OSX Implementation of Color Block Visualization



5. Scenarios of Usage
 We will look at two scenarios of usage, both with real 
world datasets. e "rst scenario uses the famous Parallel 
Coordinates “cars” dataset, which contains about 400 of 
cars’ performance specs. e resulting visualization has 
already been shown in Section 4 on the previous page. 
 As you can see at the bottom le corner, the reference 
height indicates that there are 407 total documents in the 
dataset. e List View on the le shows that there are 9 
dimensions in total in the dataset. We are hiding the 
dimension Displ because we are unclear what it represents; 
dimension Name is hidden because it has too many distinct 
nominal values that cannot all "t in the screen (but we can 
always look them up using the List View, or in the Table 
View browsing the entire documents).
 If we ignore the coloring for a second and only focus on 
the shape (height) of the blocks, there is already a lot 
information in the display. For example, from the similar 
sized blocks in the Year dimension, we know that the 
annual car production is pretty even from 1970 to 1982; we 
can also see that the American car production is almost the 
combination of European and Japanese; and there are more 
4 cylinder cars than other cylinder types...etc.
 Now let’s see some correlations. Presume we are 
interested in how the manufacturing country correlates to 
other specs of the car, so we make 3 coloring conditions 
based on the 3 values in the Country dimension (American, 
European, Japanese); if there’s another country, it would be 
the default color gray, however there’s not such entry in our 
dataset.
 Immediately, the American muscle cars of the 70s are 
unavoidably exhibited in the display. As American cars are 
colored in orange, we can see that high Cylinder numbers, 
high Acceleration, large HorsePower as well as low MPG are 
all dominated by orange, stereotypically depicting the 
muscle cars of that era. On the other hand, if you lack basic, 
prior knowledge about car specs, it might still lead you to 
suspect that these speed and the fuel efficiency dimensions 
are correlated, as they all share the similar coloring 
characteristics (increasing/decreasing amount of orange).
 More interestingly, you can see that the heyday of 
American Muscle cars ended at 1979: as we hit our "rst 
energy crisis, smaller, more fuel efficient European and 
Japanese cars started to &ourish in the market.
 e "rst scenario is based on a highly structured tabular 
dataset, with clearly de"ned dimensions (columns) that 
either contain nominal or numerical values. In our second 
scenario, we are looking at an aviation safety dataset of 
airplane incidents/accidents information. ere are 11000 
documents, with over 80 dimensions, but our primary 
interest is on two dimensions only: REMARKS and 
COMMENTS, which both contain textual information "lled 
out by the pilot or ground crew, to describe the incident/
accident. 

 Assume we are interested in incident cases of rainy and 
windy weather conditions. We created two custom blocks, 
each based on keyword queries that might describe each 
condition (“rain” OR “water”; “wind” OR “windy”). Result 
shows that there are way more documents of the “wind”, 
“windy” pair, than the “rain”, “water” pair. However, if we 
also create four coloring conditions, each based on a 
nominal value in the SKY dimension in the dataset 
(describing sky condition), we can see a much stronger  
correlation between the SKY = Overcast and the documents 
that contain “rain”, “water” keywords. is is of course a 
trivial "nding, as we all know overcast weather leads to 
rainfall; but the point is that the keywords of “rain”, “water”, 
“wind”... etc, are not tied to any speci"c values in the 
dataset, nor are they tied to a single dimension (both 
COMMENTS and REMARKS in this case). is 
demonstrates the &exibility of our query-driven approach, 
in terms of supporting unstructured data.

6. Discussion

6.1 Query-driven Display
 As we addressed in the introductions, our study 
intentionally seeks alternative approaches to display 
correlation. We believe these differences could result in 
multiple advantages.
 First, our biggest difference from the standard 
Scatterplot/Parallel Coordinate paradigm is the level of 
information we are showing. In a typical Scatterplot or 
Parallel Coordinate, all data entries are individually 
displayed; and the analyst’s task is essentially "ltering out 

highly 
correlated

Condition 1: SKY = Null
Condition 2: SKY = No Cloud
Condition 3: SKY = Some Cloud
Condition 4: SKY = Overcast



the less useful pieces. In our query-driven approach, the 
minimal visual unit is no longer individual data entries, but 
query results that are collections of the data entries. 
 is unit difference provides us improved compactness 
in the display because in any collection of documents, there 
are always far fewer values (or ranges of values) that 
satisfying a query than the actual number of documents. 
rough setting the minimal visual unit as query, it 
bypasses the problem of visual occlusion, as there are no 
longer renderings of individual data entries that can 
overlap. erefore, a display setup of hundreds of 
documents could easily scale to support millions more 
documents from the same dataset, with no decrease in 
visual performance. For example, we are showing over 
11000 documents in Scenario 2, and it looks just as clean as 
the examples in Section 3, which have 40 documents. 
 Second, our approach “associates” correlations 
differently. In our method, one coloring condition is 
projected and correlated to the entire display; whereas in 
the Parallel Coordinates, only the correlation in 
neighboring axes are shown. We speculate that our method 
might be more in tune with human attention, because it 
allows the viewer to focus on a single topic at a time, instead 
of constantly “shuffling” the orders of axes to see the 
correlation of interest in Parallel Coordinates. However, this 
speculation still needs to be veri"ed by proper user studies.
 ird, the query-driven approach also provides us a 
different layout philosophy, which we believe to be more 
&exible. In Scatterplot, Parallel Coordinate and Mosaic 
Display value entities have to be projected onto dimensional 
axes to be meaningful; but in Color Block, because each 
block already self-contains all its information (in its label, 
height, and coloring), there is a larger freedom in the layout 
arrangement. e user can spatially group, order and 
reorder the blocks to assign them different meta-meanings. 
It might also lead to better usage of spacial memory, 
however this also needs to be veri"ed by user studies.
 Fourth, we believe our query-driven approach can 
reduce the analyst’s cognitive burden of keeping tracks of 
hypotheses. For example, in the Second Scenario, if an 
analyst of the aviation data suspects that nighttime might 
lead to more birds striking to the airplane, then this 
suspicion/hypothesis is "rst transformed into a keyword 
query, describing both nighttime and birds (e.g. “night, 
dusk, dark, bird, Canada goose”...etc), and "nally a color 
condition. In this case, when interacting with the 
visualization, the analyst no longer needs to remember the 
details of the hypothesis (like what keywords are speci"cally 
in the query); all he/she needs to care about is the 
signi"cance of the color patterns, as all the hypotheses have 
transcend into colors. A similar idea also applies to query 
blocks, as each block can also carry a query, hence a 
hypothesis. In some extreme cases, users can constantly 
switch between multiple coloring conditions, with no need 

to recall what each one represents, until a dominated/salient 
color pattern merges. In fact, the Hot Key function in the 
application was designed for this purpose, allowing a 
speedy switch between color legends.
 Last, we think the biggest difference of our approach is 
not in terms of visualization but the relationship between 
the user and the data. In most traditional methods, data is 
passively display as is, so each visualization is essentially a 
“read-only” display, with certain "ltering and reordering 
capability. In our approach, by displaying data as queries, it 
provides us more freedom accessing the data, breaking 
apart the structural boundaries of columns in tabular 
datasets. For example, In the Second Scenario, we accessed 
and combined the results from both REMARKS and 
COMMENTS dimensions at the same time. is is like 
treating each document entry as a single text "le, so we no 
longer need to worry about wether a piece of information is 
numerical, nominal or textual. Aer all, dimensions/
columns are frequently man-made artifacts; when pilots "ll 
out forms to describe their incidents, different people could 
have completely different understandings of where to "ll 
out what information. In this case, why should we treat data 
as the reality, when in fact there is already an extra arti"cial 
layer on top of it?
 
6.2 Limitations
 As mentioned earlier, we see design as a play of 
tradeoffs. As this stage of our study, we can already deduce 
multiple limitations of our visualization from the tradeoffs, 
with potentially more aer proper user studies.
 First, because we display data entries as a collection (a 
block), this is essentially an extra abstraction/compression 
process, that unavoidably leads to the loss of visual 
information of individual entries. As a result, many outliers 
will inevitably be missed in the display, and we believe this 
is a tradeoff that cannot be compensated.
 Second, although we praise our query-driven 
approach's ability to display cross dimensions, very likely 
the user would still prefer to work within well-de"ned 
dimensions/columns. In this case, for numerical 
dimensions, range adjustment could be a real a problem. 
When the user adjusts the range in one block, he/she would 
have to manually adjust the ranges of neighboring blocks, 
which can be very tedious. erefore for utilitarian 
purposes, we might have to break the “purity” in block-to-
block independence, and to link the ranges of neighboring 
blocks; besides, how to design a interface for range 
adjustment can also be another challenge.
 ird, the display for logic sets addressed in Section 3.3 
could be too complicated. By having all the color-stripes in 
the same direction, our method forces the user to pay extra 
attention to the ordering of the stripes, or to use mouse-
over/mouse-click to obtain further information. While in 
methods such as Treemaps, all the logic conditions are built 



in the visual structure, and little interaction is required. But 
we decided not to adopt the Treemap method because it 
makes correlation comparison more in the area-to-area 
manner, instead of the width-to-width manner (of each 
color stripe) that we believe to be more accurate to human 
perception. A possibly improvement could be to use better 
interaction techniques, such as tooltips, to display the 
logical condition of each block, instead the current status-
bar method.
 Last, all color-related visualizations have to inevitably 
face the issue color abusing. When there are more colors 
than you can distinguish, it would be very difficult to 
associate one color with its represented query condition. 
(Interestingly, we also noticed that it is oen the ordering of 
colors, instead of color per se, that help us to discriminate 
underlying query conditions). Our proposed solution is to 
use a "nely tuned color library that can hopefully auto-
assign highly identi"able colors to conditions.

7. Implementation
 e SQL system in our study is based on SQLite, which 
has the advantage of being lightweight, fast, and does not 
require a server. We created a minimal Objective-C wrapper 
on top of this C library.
 e application and visualization are implemented with 
Objective-C and Apple’s Cocoa framework. Cocoa is an 
excellent framework for creating OSX native applications; 
we get all the window GUI for free from Cocoa; however, 
the actual drawings of Color Blocks, as well as all the 
associated mouse and event handling have to be manually 
created and linked with the Cocoa framework (where most 
of the bugs were).

8.  Lessons Learned & What I Would Have Done
 is study initiated as a reaction against the messy 
lines/edges in the Parallel Coordinates. My original goal 
was to improve the edge rendering/"ltering used in that 
method, but many hours of fruitless sketching forced to me 
seek otherwise. From this, it reinforced my learning that 
before solving a problem, it is necessary to see where the 
problem comes from, and to see if we can bypass it. Inspired 
by Cleveland’s paper on visual features, I tried to integrate 
new dimensions (color) into the visualization. e result 
de"nitely bypassed many previous issues faced in the 
Scatterplot/Parallel Coordinates paradigm.
 e query-driven idea wasn’t intentional either. Initially 
I used the SQL backend only to store "les, with a very thick 
layer of wrapper class that nicely formats the data, before 
hand them into the rendering classes. But then I got 
inspired by the contrast in data handling philosophy, 
between two commercial visualization tools. One is 
Starlight [3] , which has absolutely zero customize-ability 
(all data is real-only); in contrast, Tableau [4] allows you to 

reformat the data, and to perform some simple queries on 
the &y, even aer the data have been imported. I found 
myself much more productive with Tableau, as I could 
offload a lot of my thinking back to the tool, (which then 
could be used as new data, resulting in a healthy analysis 
“loop”). is project, especially this paper, crystalized many 
of my thinkings on this issue.
 If there were more time, I would de"nitely come up 
with better scenario examples for this paper. e two 
scenarios in Section 5 only demonstrates the basic 
functionality of this visualization, not its potential power.
 Also, I wish there was time to do a more extensive 
literature review, especially to relate to the “query-driven 
visualization” idea. In this study, we have almost no idea if 
the approach has been addressed before or not, therefore we 
cannot declare the novelty of this approach (we suspect it 
must have been done before).
 Moreover, real world testing and user studies are a 
must. Too oen we are “designing” solutions to non-existed 
problems. is is especially a pitfall for a general technique 
such as this one (instead of improving on preexisted, proven 
ones). I wish there was more time to actually drive the 
visualization in real world analysis environment (which I 
will in my coming up internship at Boeing, for aviation data 
analysis), and also let other people try it out (which I would 
probably release it as an Open-source application).

9. Conclusion
In this study we designed a general visualization technique 
called Color Block, which is capable of displaying 
correlation in multidimensional structured data, as well as 
unstructured data such as text. We argued that its 
underlying approach, which is to display data queries 
instead of data entries, could be more advantages than the 
Scatterplot/Parallel Coordinates’ approach in certain 
circumstances. However, because we did not perform any 
user studies, the full potential as well as many problems of 
the Color Block technique is still unclear; but we think there 
won’t be many problems because the design is simple and 
&exible.
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