
Abstract
 is paper discusses a general visualization technique
focused on displaying correlations. It is capable of handling
structured, high dimensional data, as well as unstructured
data such as text. In this technique, we use a rectangular
block to represent the collection of documents that satisfy a
particular query, with the height of the block corresponding
to the number of documents. Multiple blocks can be
displayed at the same time. To show the entire dataset of a
high dimensional structured data, all the distinct values (or
range of values) in each data dimension are queried
individually, resulting an arrangement is very similar to
Parallel Coordinates. To display the correlation of block A
with a new query condition B, we "rst assign a color to the
condition B, then vertically paint portion of block A with
the color based on the strength of the correlation; therefore,
high correlation results in a single dominant color in a
block. Moreover, we compare our approach with Scatterplot
and Parallel Coordinates, arguing that this query-driven
approach could be more suitable in certain circumstances.

1. Introduction
 e increasing amount of data forces us to compress
and abstract it. Visualization is one form of abstraction. You
make up a marking scheme that transforms the data from
its original format --- either numerical, nominal, or
unstructured, such as text --- into a visual format made out
of dozen visual features, in hopes that the outcome is
perceptually distinguishable to the viewer.
 Like any other forms of abstraction, there is the
inevitable loss of information during the process. erefore,
which area of original information you are willing to give
up is now a design choice. Good design happens when the
tradeoff is compensated by quirks of human perception, as
well as the characteristics of the information on hand.
 In this study, we are investigating a general visualization
technique called Color Block, with a emphasis on showing
the correlation in the data. Traditionally, Scatterplot and
Parallel Coordinates are the standard, effective methods for
this task; but we decide to seek other paradigms, focusing
on alternative design tradeoffs. For example, Scatterplot and
Parallel Coordinates share the characteristic that data
entries are individually rendered, hoping that proper "tting

and "ltering will reveal their underlying pattern. We suggest
a more query-oriented approach to display the data, in
which only the data that satis"es the query will be shown as
a single visual entity (a block); however, we can still show
the entire dataset if we ask the disjoint queries that are able
to cover the entire universe of each dimension.
 Of course, this is not the only design tradeoff we are
making in this study. More will be discussed as we address
the rationals behind designing Color Block and our query-
driven approach.

2. Scatterplot, Parallel Coordinates and Mosaic
 Scatterplot and Parallel Coordinates [1] are the de facto
methods to display correlations. eir underlying principles
are the same: every dimension in the data has a
correspondent visual axis; and for every piece of
correlational evidence between two dimensions, it is
displayed as a marker that is an unique combination of two
values, one from each dimension.

 e "gure above shows the same data displayed by both
methods. In the case of the Scatterplot, the two axes are
placed orthogonally, therefore in the Cartesian space
between them, a single dot marker is sufficient to represent
an unique value combination of the two dimensions.

Parallel Coordinates of
3 dimensions with the
same data

Scatterplot of 3
dimensions

Dim 1

Dim 2

Dim 3

Dim 1 Dim 2 Dim 3

Color Block and Query-Driven Visualization

Report for CPSC 533, Instructor: Tamara Munzner
Ivan Zhao, University of British Columbia

 In Parallel Coordinate the dimension axes are parallel to
each other, which saves a lot of space, allowing far more
dimensions to be displayed at the same time. But this
multidimensional power does not come for free: as the axes
are no longer orthogonal, a single dot fails to be an unique
combination of values in these two neighboring axes.
erefore, Parallel Coordinate has to use the next most
efficient representation, which is a line, to literally draw a
connection between the neighboring axes.
 At "rst, this does not appear to be a bad tradeoff, but as
the number of data element increases, the connecting lines
between axes could become very clustered, in a rate much
faster than its Scatterplot counter part; this poses the
biggest challenge to the Parallel Coordinates technique.
 Moreover, both Scatterplot and Parallel Coordinates
have limited performance with categorical data. Because
there are only few possible values in each dimension,
numerous lines and dots would all compile at the same
locations, difficult to tell the actual quantity.
 Mosaic Display [2] effectively addresses this issue. In
the "gure below, the correlation between the nominal
dimension Eye Color and Hair Color are shown as blocks;
the width and the height of each block corresponds to the
percentage of its underlying categorical value; therefore, a
large block entails a strong correlation between the two
values it represents.

 e limitations of this approach are obvious: there can
be only two dimensions at the same time, and you also
“waste” a large space in the middle of each block.
 So isn’t there a way to display correlation that is
categorical-data-friendly, and also supports multi-
dimensions at the same time? If we were still in the
Victorian age, with limited B&W printing and zero
interactivity, these three cases above might very likely cover
up most the ground, as we can either represent a

Mosaic Display
for Categorical Data

Dimension 1
Eye Color

Dimension 2
Hair Color

Blue

Green

Hazel

Brown

Black Brunette Blonde

correlational entry as a dot/glyph (Scatterplot), a line
(Parallel Coordinates), or an area (Mosaic). But with the
help of interactivity and color display, we gain new
dimensions to seek alternative tradeoffs that can satisfy all
the requirements above; our result is the Color Block
visualization.

3.1 Color Block Visualization, the Pile Metaphor
 Let’s start with a metaphor: imagine you are in the
1970s and all your documents are papers. Every time a
interest comes into mind, such as “I wonder how many
people in my company are aged over 40”, you make a
request to your assistant, who would then provide copies of
all the satis"ed documents. So aer a while, your desk
would be covered by numerous piles of documents, each
ties to a request you made; they would probably have
different thickness and the thicker a pile, the more
documents satisfy that particular request.
 Our study is tightly related to this metaphor. ere are
two main components. First is the query system (the
assistant in the metaphor), which is essentially a SQL server.
When the user performs a SQL statement started with
“SELECT (*) ... WHERE conditionX”, the server returns a
collection of documents that satisfy conditionX.
 e second component is the visualization, which we
call Color Block. In this visualization, the collection of
documents returned by each query would be visually
represented as a rectangular block. All blocks have the same
width (important), and the height of a block corresponds to
the number of documents in that collection.
 Let’s look at an example: you have just performed the
following four queries in your company’s human resource
database, each returned a number of documents.

 Based on the Color Block visualization, we use four
blocks of different heights to represent the four collections
of documents:

1) Age > 40 .. 12 docs
2) Height < 170cm ... 8 docs
3) Age > 40 AND Height < 170cm 4 docs
4) Age > 40 OR Height <170cm 20 docs

Total Documents: 40

Age>40 OR Height<170
Age > 40

Age>40 AND Height<170

Height<170

 Age>40 OR Height <170cm is the thickest, because it’s
easier for documents to satisfy that OR condition; you
might also noticed that its height is the exactly the sum of
blocks Age>40 plus Height<170. You can also compare each
block with the reference height at the bottom le, which
represents the height of entire dataset as if presented as a
block. ere’s also a minimum height limit (10 pixels in the
application), just to ensure that queries with very low count
get properly displayed.
 Just like you can &ip through a pile of documents on
your desk, you can click on a block to access all the original
documents that are in that block. You can also toss away or
combine any number of blocks, or perform a secondary
query only based on the blocks that are currently selected.

3.2 Color Block Visualization, Correlation
 e focus of this visualization is to display correlation;
but before we introduce the technique, we shall revisit our
metaphor one more time.
 Let’s say you are sitting in front of your desk and
looking at all the piles of documents, “I wonder how many
people are female in each of them?” So you start calculating
the percentage of female employees in each of the piles.
Aer you get all the numbers down, you use a red pen to
paint on the front edge of each pile, with the painted width
proportional to the percentage in your calculation. Now
you can lie back to your chair, and still have a very good
idea of how each pile satis"es your interest.
 Bridging the metaphor into our visualization, we "rst
associate the new query Sex = Female with a color (red); we
then combine this new query with each of the old ones
through an AND relationship, and obtain the updated
collections of documents:

 Just like we would paint certain portion of a pile’s edge
with a particular color, we are doing the same in the Color
Block visualization. By adding color condition Sex = Female
(red), all four blocks from previous example are updated to
the graph below (Fig). As you can see, the blocks of
Heigh<170 and Age>40 AND Height<170 are dominated by
red color, that means most documents in these two block
satisfy the red coloring condition.

1. Sex=Female AND Age>40
 7 docs, 0.58%

2. Sex=Female AND Height<170cm
 6 docs, 0.75%
3. Sex=Female AND Age>40 AND Height<170cm
 3 docs, 0.75%
4. Sex=Female AND (Age>40 OR Height<170cm)
 13 docs, 0.65%

 A key to point out is that a coloring condition is an
autonomous entity; it is not necessary to be associated with
a speci"c block. Of course, you can always add a query
block that is equal to a coloring condition. Let’s do that, and
also add a complementary condition Sex = Male with color
blue. It would result in the following:

 Doesn’t it look amazingly similar to a stacked bar chart?
In fact you can say it is a stacked bar chart, a normalized
one and &ip it over 90 degrees.

 Now, if we carefully question the design of a stacked
bar, the width of each normalized stacked bar is in fact a

Total Documents: 40

Age>40 OR Height<170
Age > 40

Age>40 AND Height<170

Height<170

Condition 1: Sex = Female

Condition 1: Sex = Female
Condition 2: Sex = Male

Total Documents: 40

Age>40 OR Height<170

Age > 40

Height<170

Age>40 AND Height<170

Sex = Female
Sex = Male

Wasted visual dimension?

Condition 1: Sex = Female

Condition 2: Sex = Male

Ag
e>

40
 O

R
 H

ei
gh

t<
17

0

Ag
e

>
40

Ag
e>

40
 A

N
D

 H
ei

gh
t<

17
0

H
ei

gh
t <

 1
70

Se
x

=
Fe

m
al

e

Se
x

=
M

al
e

Stacked Bar Charts
with the same data

“wasted” visual dimension, that does not encode any
information. You may counter argue that their uniform
width provides a visual nicety, but in each Color Block, this
nicety still exists as all blocks have the same "xed width.
Moreover, this uniform width is necessary for a more
important reason: when you are measuring correlations, it
is not the absolute count that matters, just like you cannot
dismiss the strong correlations between certain natural
phenomenon only because they are observed very rarely.
erefore, in terms of correlation to a particular coloring
condition, an uniform width allows all blocks to be treated
“equally”, disregarding how many documents they
represent. In this case, the exclusiveness of a color in a block
indicates the correlations, and the size of the block indicates
how strongly this correlation is supported by the entire
dataset. A single-colored “thick” block will obviously draw a
lot of attention, but at the same time very rare blocks with
little “thickness” can still raise enough attention of the
viewer by being dominated by a single color.

3.2 Display Entire Dataset
 So far we are only creating an individual Color Block
for each of our queries. To display the entire dataset at once,
it is equivalent to querying all possible values in each
dimension of the dataset and displaying them all
simultaneously.
 is can be easily done for nominal/categorical
dimensions. For a nominal dimension DimX, you only
need to obtain its distinct values DimX = {V1, V2, V3...Vn},
then query them individually DimX=V1, DimX=V2 ...etc.
e SQL statement “SELECT DISTINCT DimX” will
help you get the distinct values.
 It gets trickier for numerical dimensions. If we query all
the distinct values, very likely it would result in too many
blocks over &ooding our screen. erefore we need to bin
each dimension to multiple mutually exclusive ranges, and
query the ranges instead. is will lead to information loss,
because certain outliner cases now have to be binned and
“suppressed”, but it’s a design tradeoff we are willing to give
up.

Condition 1: Sex = Female
Condition 2: Sex = Male

Total Documents: 40

Age < 20

Age > 30 AND Age < 40

Age > 20 AND Age < 30

Sex = Female

Sex = Male

Age > 40

 e graph above displays the entire data dimension of
Sex and Age; each block is mutually exclusive from others,
and you can view it as two copies of the original datasets
(one for each dimension). You might also notice that the
Age column and the Sex column oddly have the different
height; this is due to the labels and gaps of the blocks, which
is unavoidable even if we put the labels on the side, then we
still need the gaps to distinguish different blocks. is is
another design tradeoff we are willing to make, the
underlying rational is that it is the relative height of a block
that matters; we assume the the importance of each query
(the height of the block) is only meaningful when there are
competing queries, and the analysis is performed through
block-to-block comparison, instead of block-to-database
comparison.

3.3 Logic Sets
 By now you might have noticed a problem in the
coloring scheme. What if the color conditions are not
disjoint? In the example we provide, conditions Sex=Female
and Sex=Male are disjoint and covering the entire dataset;
but for conditions such as Sex=Female and Age>40, which
are necessarily mutually exclusive, our solution is to
automatically modify existing coloring conditions, and
adding in extra ones so the resulting conditions can cover
the entire universe of the dataset.
 For example, imagine you currently have the coloring
condition Sex=Female (red), and by adding the new
condition Age>40 (orange), the system automatically
updates the current coloring conditions to:

 en, all the blocks would be colored based on these
new conditions, in the listed order. A helpful way might be
to imagine the conditions in a Van Diagram:

 As you can see, only the “exclusive” cases (Sex = Female
ONLY, Age > 40 ONLY) can keep their previous coloring.
e newly created conditions are assigned the default color
gray, and separated by a subtle dark gray line. Still, the user

1. Sex = Female AND NOT Age > 40
2. Age > 40 AND NOT Sex = Female
3. Sex = Female AND Age > 40
4. NOT Sex = Female AND NOT Age > 40

Sex = Female
Age > 40

Before:

1. Sex = Female AND NOT Age> 40
2. Age > 40 AND NOT Sex = Female

After:

3. Sex = Female AND Age > 40
4. NOT Sex = Female AND NOT Age > 40

processess the full ability to change, delete, or reorder any of
the automatically created color conditions (more on this in
Section 4).
 Similarly, if there are three mutually non-exclusively
conditions, it would result in 8 possible outcomes,
composed of 3 colored blocks, and 5 uncolored gray ones,
(think of a three-circled Van Diagram). It might be
confusing to distinguish among the 5 gray blocks, but the
design rational is that you don’t have to, nor you are forced
to (given that they are very subtly separated) ---- until, a
single disproportional gray block unavoidably draws your
attention. en, you can either mouse-over, or click on that
block to investigate that particular “abnormal” coloring
condition.

3.4 Brushing
 Brushing is a very useful feature, for example in Parallel
Coordinates, when certain documents are selected in the
table view, their correspondent polylines in the parallel
coordinates will be highlighted as well. It is particular useful
when the view is very clustered, because the highlighting
brings out the documents of interest.
 e same philosophy could be applied to Color Block as
well. When browsing on the level of individual documents,
we can selectively assign each document a color, then
decide to temporally override the current block-level color
coding with the document-level colors we just assigned.
Because a single document would only take up a tiny
fraction of each block’s width, we then need to normalize its
width to take up the entire width.
 For example, we assign document ID 25, 26, 28 each
with a distinct color, then temporally turn on the Color
Overriding function. Document 25, 26 satisfy the Sex =
Female condition, so they split that block evenly. Document
28 is the only one that satis"es Sex = Male, so its color
(yellow) "lls that entire block. e same principle applies to
the rest of the blocks. For a block that does not satisfy any
coloring condition, it is le as the default gray color.
 In our brushing case, positive correlation reveals, if the
same combination of colors always appears in a single block
(disregarding what that block is speci"cally). Of course, you
can always turn off the brushing by switch off the Color
Override function.

4. e Application
 We built a Mac OSX application to implement our
Color Block design. e screen shot and description are on
the next page. Please note that the Brushing function is not
supported currently. We will try to include it in a later
release.

Section of the Entire Data Table

Color ID Name Age Sex

...

25 Mary S. 32 F

26 Melissa P. 33 F

27 James B. 29 M

28 David S. 23 M

...

Color Override = On

Total Documents: 40

Age < 20

Age > 30 AND Age < 40

Age > 20 AND Age < 30

Sex = Female

Sex = Male

Age > 40

Two views of the Inspector window.

❻

❼

Selections (in yellow) are linked with the
list, helping you to locate the blocks if
they get lost

The List View showing all the
blocks (or columns of blocks).
You can hide or unhide the
blocks.

When mouse is over a certain block,
the status bar displays its condition and count
(with current color conditions)

❷ ❸

❺

Operations you can perform with
one block or multiple blocks.

❶

❽

When click on a single block,
you can update its properties.
Note that the Name property is
different from its SQL condition.
You can give a block a shorter,
easier to remembered name.

The SQL condition of a block
can be updated after creation.

Blocks can be
moved around;
but their locations
can be locked
too.

Each legend contains a set of
coloring conditions. You can
assign a hot key to each legend,
for fast switching.

Each document is a visualization of a
single SQL table, storing all the query
results as Color Blocks.

❹

Within each legend, there could
be multiple coloring conditions,
each based on a query and
associated with a color.
You can also automatically create
conditions based on the currently
selected blocks.

Mac OSX Implementation of Color Block Visualization

5. Scenarios of Usage
 We will look at two scenarios of usage, both with real
world datasets. e "rst scenario uses the famous Parallel
Coordinates “cars” dataset, which contains about 400 of
cars’ performance specs. e resulting visualization has
already been shown in Section 4 on the previous page.
 As you can see at the bottom le corner, the reference
height indicates that there are 407 total documents in the
dataset. e List View on the le shows that there are 9
dimensions in total in the dataset. We are hiding the
dimension Displ because we are unclear what it represents;
dimension Name is hidden because it has too many distinct
nominal values that cannot all "t in the screen (but we can
always look them up using the List View, or in the Table
View browsing the entire documents).
 If we ignore the coloring for a second and only focus on
the shape (height) of the blocks, there is already a lot
information in the display. For example, from the similar
sized blocks in the Year dimension, we know that the
annual car production is pretty even from 1970 to 1982; we
can also see that the American car production is almost the
combination of European and Japanese; and there are more
4 cylinder cars than other cylinder types...etc.
 Now let’s see some correlations. Presume we are
interested in how the manufacturing country correlates to
other specs of the car, so we make 3 coloring conditions
based on the 3 values in the Country dimension (American,
European, Japanese); if there’s another country, it would be
the default color gray, however there’s not such entry in our
dataset.
 Immediately, the American muscle cars of the 70s are
unavoidably exhibited in the display. As American cars are
colored in orange, we can see that high Cylinder numbers,
high Acceleration, large HorsePower as well as low MPG are
all dominated by orange, stereotypically depicting the
muscle cars of that era. On the other hand, if you lack basic,
prior knowledge about car specs, it might still lead you to
suspect that these speed and the fuel efficiency dimensions
are correlated, as they all share the similar coloring
characteristics (increasing/decreasing amount of orange).
 More interestingly, you can see that the heyday of
American Muscle cars ended at 1979: as we hit our "rst
energy crisis, smaller, more fuel efficient European and
Japanese cars started to &ourish in the market.
 e "rst scenario is based on a highly structured tabular
dataset, with clearly de"ned dimensions (columns) that
either contain nominal or numerical values. In our second
scenario, we are looking at an aviation safety dataset of
airplane incidents/accidents information. ere are 11000
documents, with over 80 dimensions, but our primary
interest is on two dimensions only: REMARKS and
COMMENTS, which both contain textual information "lled
out by the pilot or ground crew, to describe the incident/
accident.

 Assume we are interested in incident cases of rainy and
windy weather conditions. We created two custom blocks,
each based on keyword queries that might describe each
condition (“rain” OR “water”; “wind” OR “windy”). Result
shows that there are way more documents of the “wind”,
“windy” pair, than the “rain”, “water” pair. However, if we
also create four coloring conditions, each based on a
nominal value in the SKY dimension in the dataset
(describing sky condition), we can see a much stronger
correlation between the SKY = Overcast and the documents
that contain “rain”, “water” keywords. is is of course a
trivial "nding, as we all know overcast weather leads to
rainfall; but the point is that the keywords of “rain”, “water”,
“wind”... etc, are not tied to any speci"c values in the
dataset, nor are they tied to a single dimension (both
COMMENTS and REMARKS in this case). is
demonstrates the &exibility of our query-driven approach,
in terms of supporting unstructured data.

6. Discussion

6.1 Query-driven Display
 As we addressed in the introductions, our study
intentionally seeks alternative approaches to display
correlation. We believe these differences could result in
multiple advantages.
 First, our biggest difference from the standard
Scatterplot/Parallel Coordinate paradigm is the level of
information we are showing. In a typical Scatterplot or
Parallel Coordinate, all data entries are individually
displayed; and the analyst’s task is essentially "ltering out

highly
correlated

Condition 1: SKY = Null
Condition 2: SKY = No Cloud
Condition 3: SKY = Some Cloud
Condition 4: SKY = Overcast

the less useful pieces. In our query-driven approach, the
minimal visual unit is no longer individual data entries, but
query results that are collections of the data entries.
 is unit difference provides us improved compactness
in the display because in any collection of documents, there
are always far fewer values (or ranges of values) that
satisfying a query than the actual number of documents.
rough setting the minimal visual unit as query, it
bypasses the problem of visual occlusion, as there are no
longer renderings of individual data entries that can
overlap. erefore, a display setup of hundreds of
documents could easily scale to support millions more
documents from the same dataset, with no decrease in
visual performance. For example, we are showing over
11000 documents in Scenario 2, and it looks just as clean as
the examples in Section 3, which have 40 documents.
 Second, our approach “associates” correlations
differently. In our method, one coloring condition is
projected and correlated to the entire display; whereas in
the Parallel Coordinates, only the correlation in
neighboring axes are shown. We speculate that our method
might be more in tune with human attention, because it
allows the viewer to focus on a single topic at a time, instead
of constantly “shuffling” the orders of axes to see the
correlation of interest in Parallel Coordinates. However, this
speculation still needs to be veri"ed by proper user studies.
 ird, the query-driven approach also provides us a
different layout philosophy, which we believe to be more
&exible. In Scatterplot, Parallel Coordinate and Mosaic
Display value entities have to be projected onto dimensional
axes to be meaningful; but in Color Block, because each
block already self-contains all its information (in its label,
height, and coloring), there is a larger freedom in the layout
arrangement. e user can spatially group, order and
reorder the blocks to assign them different meta-meanings.
It might also lead to better usage of spacial memory,
however this also needs to be veri"ed by user studies.
 Fourth, we believe our query-driven approach can
reduce the analyst’s cognitive burden of keeping tracks of
hypotheses. For example, in the Second Scenario, if an
analyst of the aviation data suspects that nighttime might
lead to more birds striking to the airplane, then this
suspicion/hypothesis is "rst transformed into a keyword
query, describing both nighttime and birds (e.g. “night,
dusk, dark, bird, Canada goose”...etc), and "nally a color
condition. In this case, when interacting with the
visualization, the analyst no longer needs to remember the
details of the hypothesis (like what keywords are speci"cally
in the query); all he/she needs to care about is the
signi"cance of the color patterns, as all the hypotheses have
transcend into colors. A similar idea also applies to query
blocks, as each block can also carry a query, hence a
hypothesis. In some extreme cases, users can constantly
switch between multiple coloring conditions, with no need

to recall what each one represents, until a dominated/salient
color pattern merges. In fact, the Hot Key function in the
application was designed for this purpose, allowing a
speedy switch between color legends.
 Last, we think the biggest difference of our approach is
not in terms of visualization but the relationship between
the user and the data. In most traditional methods, data is
passively display as is, so each visualization is essentially a
“read-only” display, with certain "ltering and reordering
capability. In our approach, by displaying data as queries, it
provides us more freedom accessing the data, breaking
apart the structural boundaries of columns in tabular
datasets. For example, In the Second Scenario, we accessed
and combined the results from both REMARKS and
COMMENTS dimensions at the same time. is is like
treating each document entry as a single text "le, so we no
longer need to worry about wether a piece of information is
numerical, nominal or textual. Aer all, dimensions/
columns are frequently man-made artifacts; when pilots "ll
out forms to describe their incidents, different people could
have completely different understandings of where to "ll
out what information. In this case, why should we treat data
as the reality, when in fact there is already an extra arti"cial
layer on top of it?

6.2 Limitations
 As mentioned earlier, we see design as a play of
tradeoffs. As this stage of our study, we can already deduce
multiple limitations of our visualization from the tradeoffs,
with potentially more aer proper user studies.
 First, because we display data entries as a collection (a
block), this is essentially an extra abstraction/compression
process, that unavoidably leads to the loss of visual
information of individual entries. As a result, many outliers
will inevitably be missed in the display, and we believe this
is a tradeoff that cannot be compensated.
 Second, although we praise our query-driven
approach's ability to display cross dimensions, very likely
the user would still prefer to work within well-de"ned
dimensions/columns. In this case, for numerical
dimensions, range adjustment could be a real a problem.
When the user adjusts the range in one block, he/she would
have to manually adjust the ranges of neighboring blocks,
which can be very tedious. erefore for utilitarian
purposes, we might have to break the “purity” in block-to-
block independence, and to link the ranges of neighboring
blocks; besides, how to design a interface for range
adjustment can also be another challenge.
 ird, the display for logic sets addressed in Section 3.3
could be too complicated. By having all the color-stripes in
the same direction, our method forces the user to pay extra
attention to the ordering of the stripes, or to use mouse-
over/mouse-click to obtain further information. While in
methods such as Treemaps, all the logic conditions are built

in the visual structure, and little interaction is required. But
we decided not to adopt the Treemap method because it
makes correlation comparison more in the area-to-area
manner, instead of the width-to-width manner (of each
color stripe) that we believe to be more accurate to human
perception. A possibly improvement could be to use better
interaction techniques, such as tooltips, to display the
logical condition of each block, instead the current status-
bar method.
 Last, all color-related visualizations have to inevitably
face the issue color abusing. When there are more colors
than you can distinguish, it would be very difficult to
associate one color with its represented query condition.
(Interestingly, we also noticed that it is oen the ordering of
colors, instead of color per se, that help us to discriminate
underlying query conditions). Our proposed solution is to
use a "nely tuned color library that can hopefully auto-
assign highly identi"able colors to conditions.

7. Implementation
 e SQL system in our study is based on SQLite, which
has the advantage of being lightweight, fast, and does not
require a server. We created a minimal Objective-C wrapper
on top of this C library.
 e application and visualization are implemented with
Objective-C and Apple’s Cocoa framework. Cocoa is an
excellent framework for creating OSX native applications;
we get all the window GUI for free from Cocoa; however,
the actual drawings of Color Blocks, as well as all the
associated mouse and event handling have to be manually
created and linked with the Cocoa framework (where most
of the bugs were).

8. Lessons Learned & What I Would Have Done
 is study initiated as a reaction against the messy
lines/edges in the Parallel Coordinates. My original goal
was to improve the edge rendering/"ltering used in that
method, but many hours of fruitless sketching forced to me
seek otherwise. From this, it reinforced my learning that
before solving a problem, it is necessary to see where the
problem comes from, and to see if we can bypass it. Inspired
by Cleveland’s paper on visual features, I tried to integrate
new dimensions (color) into the visualization. e result
de"nitely bypassed many previous issues faced in the
Scatterplot/Parallel Coordinates paradigm.
 e query-driven idea wasn’t intentional either. Initially
I used the SQL backend only to store "les, with a very thick
layer of wrapper class that nicely formats the data, before
hand them into the rendering classes. But then I got
inspired by the contrast in data handling philosophy,
between two commercial visualization tools. One is
Starlight [3] , which has absolutely zero customize-ability
(all data is real-only); in contrast, Tableau [4] allows you to

reformat the data, and to perform some simple queries on
the &y, even aer the data have been imported. I found
myself much more productive with Tableau, as I could
offload a lot of my thinking back to the tool, (which then
could be used as new data, resulting in a healthy analysis
“loop”). is project, especially this paper, crystalized many
of my thinkings on this issue.
 If there were more time, I would de"nitely come up
with better scenario examples for this paper. e two
scenarios in Section 5 only demonstrates the basic
functionality of this visualization, not its potential power.
 Also, I wish there was time to do a more extensive
literature review, especially to relate to the “query-driven
visualization” idea. In this study, we have almost no idea if
the approach has been addressed before or not, therefore we
cannot declare the novelty of this approach (we suspect it
must have been done before).
 Moreover, real world testing and user studies are a
must. Too oen we are “designing” solutions to non-existed
problems. is is especially a pitfall for a general technique
such as this one (instead of improving on preexisted, proven
ones). I wish there was more time to actually drive the
visualization in real world analysis environment (which I
will in my coming up internship at Boeing, for aviation data
analysis), and also let other people try it out (which I would
probably release it as an Open-source application).

9. Conclusion
In this study we designed a general visualization technique
called Color Block, which is capable of displaying
correlation in multidimensional structured data, as well as
unstructured data such as text. We argued that its
underlying approach, which is to display data queries
instead of data entries, could be more advantages than the
Scatterplot/Parallel Coordinates’ approach in certain
circumstances. However, because we did not perform any
user studies, the full potential as well as many problems of
the Color Block technique is still unclear; but we think there
won’t be many problems because the design is simple and
&exible.

10. Bibliography
[1] Wegman, EJ. (1990). Hyperdimensional data analysis
using parallel coordinates. Journal of the American
Statistical Association
[2] Friendly, M. (1994). Mosaic displays for multi-way
contingency tables. Journal of the American Statistical
Association
[3] Starlight Information Visualization System. http://
starlight.pnl.gov/
[4] Tableau Soware. http://www.tableausoware.com/

