
Dec. 16th, 2009

Selective Semantic Zoom of a Document Collection

Dustin Dunsmuir

University of British Columbia

ABSTRACT

Analysts are challenged to make sense of huge document
collections containing text that cannot be easily summarized. Text
analytics can help uncover relationships within the data but there
is a need for visualizations which smoothly integrate an overview
of the document collection with the details of these relationships.
This overview should allow the analyst to organize the document
collection as their investigation progresses. I introduce the
Semantic Zoom View which is designed to do all of the above
through the use of nesting entities within documents and using a
selective semantic zoom. This zoom reveals the details on demand
of a document while keeping the context of the document
collection. This context, which is present in the same view as the
details, can be organized quickly by the analyst.

KEYWORDS: Document collection, semantic zoom, hierarchical
layout, focus+context.

1 INTRODUCTION

Techniques within the field of Information Visualization have
been used for intuitively visualizing attributes of data and
aggregations of data. Many techniques excel at showing the whole
picture which is an essential task with the increasing size of
datasets. Unfortunately this task is made much harder when the
data is not numerical such as with news articles or intelligence
reports. Intelligence analysts often take on the challenging task of
making sense of a large collection of such documents. Analysts
are interested in the activities of certain people or organizations
mentioned within the documents so entity extraction systems have
been developed that automatically extract the key people, places,
dates, etc. from a large document collection (Calais [4] and
MALLET [10] are two examples). Once this process is complete
the result is a set of entities contained within each document. Each
entity also has an entity type such as person, place or date. Then
the visualization techniques can focus on visualizing the
relationships between these entities and the documents, rather
than the full text of each document. The full-text is still important
but it is usually only accessible within a separate window.

Applications for sense-making across text documents typically
involve multiple views for different perspectives of the document
collection and different levels of detail. In his review of
overview+detail, zooming and focus+context displays, Cockburn
found that disadvantages with the overview+detail (a form of
multiple views) technique is the additional use of screen space and
the added time and mental effort required by the user to integrate
the information from the views [5]. Focus+context displays allow
the user to see all the information seamlessly within one view and
in multiple focus point systems the level of detail can be adjusted
at many points across the view. In addition, semantic zoom is a

technique in which the user sees a different representation of the
data at different zoom levels. As Chris Weaver puts it, “Semantic
zoom is a form of details on demand that lets the user see different
amounts of detail in a view by zooming in and out.” [21]. These
two techniques can be combined to allow quick access and re-
access of detailed information directly within a visualization
without losing the context.

The main contribution of this paper to the field of Information
Visualization is to introduce the design of a new visualization
technique for getting an overview of a document collection,
inspecting the details of each document and organizing the
documents all within one view. The implementation of this design
is called the Semantic Zoom View. It uses a selective semantic
zoom similar to the multiple focus point fish-eye views of
previous work [2, 15, 19] and applies it to this field of sense-
making across text documents. Entities are nested within
documents to intuitively illustrate that they are mentioned within
the document.

The Semantic Zoom View will become a part of the CzSaw
system [9]. This system is a multi-view application designed for
sense-making across text documents. The main focus of CzSaw
has been on capturing and supporting the analysis process through
an underlying script of all actions, a history view generated from
the script and a dependency graph that preserves the dependencies
of the variables created in the analysis and allows quick
propagation of changes. My efforts as part of the CzSaw team
have been to develop hybrid visualizations within CzSaw which
allow the analyst to focus on a single powerful and flexible
visualization. The Semantic Zoom View is one of these
visualizations.

For the purposes of testing the Semantic Zoom View, I have
used the VAST contest dataset from 2006 called Alderwood [7].
The screenshots throughout this paper show this dataset. The
documents are news articles from the fictional town of
Alderwood, Washington. Each article consists of paragraphs of
text and is the typical length you would expect from a newspaper
article. The entities within each document are usually 1-3 word
phrases. Each new article also has a name and the date it was
written. Unfortunately within the Alderwood dataset the name is
not the news article name, but rather a unique number.

2 RELATED WORK

In this section past applications for sense-making across text

documents will be discussed and compared to the current

technique. Then some layout algorithms are described which are

similar to those implemented within this project.

2.1 Sense-making

The Jigsaw system [17] is a visual analytics application designed

to be used by intelligence analysts for sense-making across text

documents. It provides multiple views each designed to

emphasize a specific aspect of the documents and entities, but

each within its own separate window. The CzSaw project’s main

data views are based around those views present in Jigsaw [9].

The view within Jigsaw most used to see connections between

documents and entities is the Graph View. While the Graph View

Interactive Arts & Technology, SFU Surrey, dtd@sfu.ca

shows the “document contains entity” relationship with an edge,

the Semantic Zoom View shows this relationship through actual

containment of the entity glyph within the document glyph. This

should be more intuitive than an edge. The Graph View, however,

only contains one copy of every entity whereas in the Semantic

Zoom View each entity is contained once within each document

that it occurs. The zooming ability as explained in this paper

means this repetition does not lead to a large use of screen real

estate.

One view in Jigsaw but not yet in CzSaw, which has some

similarity to this visualization is the Document Cluster View. This

view has two tabs, standard and group, and each visualizes

documents as small coloured rectangles. The standard tab shows

one rectangle for every document and colours these documents

according to filters created by searches. The documents can be

moved around the view and there seems to be no limit to the

number of colours available. When a new filter is created a new

colour appears for the filter. The group tab has the same

functionality except that it also groups the documents by filter and

has multiple copies of documents that match more than one filter.

Although these documents can be moved around they are put back

to their original locations the next time a filter is added. In

contrast the Semantic Zoom View combines both the colouring

and grouping into one view along with the ability to zoom in to

see the details of each document. In Jigsaw another view must be

used to see the relationships of the entities within a document

(Graph View) or read the text (Document View). Starlight [13]

also offers the same representation in which colour coding can be

applied to the documents based on any values of the entities.

Again, reading the text or getting any other detail besides the

filters matched is only possible in another window.

IN-SPIRE [12] offers the galaxy view where each document is

represented by only 4 pixels and situated in space dependent on

the keywords within it. Clusters of documents are shown around

common keywords. Documents can be filtered from the view and

then the layout recomputed. This layout is not present currently

within the Semantic Zoom View but will be added in the future.

The IN-SPIRE system allows the user to view the document text

in another window.

The design discussed in this paper differs from the above

applications by the use of a zoomable user interface to embed the

document details within the same view. To enable this, an

algorithm is required to handle the selective zooming.

2.2 Zooming Layout Algorithms

Various research projects have investigated the use of

focus+context with semantic zooming acting as a fisheye view.

The main idea is to allow the user the ability to quickly zoom any

part of the graph to see the details while smoothly adjusting the

rest of the graph. One of these techniques is the Continuous Zoom

developed by Bartram et. al. [2] that can be used on hierarchical

graphs. A related method called variable zoom was used in a

study done by Schaffer et. al. [16] involving subjects navigating a

simulated telephone network. The fisheye view was compared to a

full-zoom view and found to be faster to use and for some tasks

allowed better performance. Eleven years later the ADORA

system was developed by Reinhard et. al. [15] which built upon

many of the features of the Continuous Zoom algorithm to make

an improved fish-eye zoom algorithm that was more flexible and

easier to reverse. The ShriMP system has also been developed for

looking at nested graphs (software architecture) [18] and like the

above algorithms is designed for adjusting a graph given the

zooming of a node [19].

These algorithms have the goal of maintaining the user’s

mental model by changing the view as little as possible, but still

making sure there is no occlusion. They also have the goal of

being able to reverse the zooming operations to get back to the

original algorithm. The ADORA method not surprisingly

outperforms the other in its flexibility in being able to restore the

view but this is not surprising as it was designed many years

afterwards. The SHriMP algorithm may have an advantage over

the other two in that it works in both dimensions simultaneously

while the others use interval structures along the X and Y axes.

This means they suffer from many small documents being within

the projected shadow of a larger one. All of these algorithms also

involve shrinking other items to give screen real estate to the one

being expanded, a side effect that I wished to avoid in the

Semantic Zoom View. In the SHriMP algorithm this rescaling is

an optional last step so for these two reasons the algorithm used in

this project is most similar to SHriMP. In section 4.2 the details of

the algorithm and its differences from these is explained.

3 DESIGN

This section will describe the design of all the functions of the
Semantic Zoom View while emphasizing how they are tailored to
meet the perceptual abilities of humans. Then section 4 provides
details on the implementation of the system.

Figure 1. The semantic zoom levels: (a) Fully zoomed out:

represented as a small rectangle. (b) Name only: A rectangle

labelled with the document name. (c) Entities shown: Same as

above but now containing other rectangles (one for each

entity, coloured by type). (d) Entity names shown: Same as

above but now the entity rectangles are labelled with their

value. (e) Full Text: A small window into the full document text

which is scrollable to move around within the document.

The semantic zoom of a document is the central component of
the view and is what makes it unique within this problem domain.
The view initially displays all documents zoomed completely out
so that each is represented as a small rectangle of 50 pixels. Any
document can then be zoomed independently of the rest of the
document collection. The size of the document increases smoothly

during the zooming but there are five semantic zoom levels at
which the detail within the view differs. These levels are
illustrated in Figure 1.

These levels of detail enable an efficient use of space for
displaying document details. As a document is zoomed, it not only
takes up more space on the screen but also displays more detail in
that space. When zoomed out a document has a very small size
but also shows very little information, while a document fully
zoomed in is at its largest size but also shows the most
information.

Unlike a traditional zoomable canvas, each document is
zoomed independently of its surroundings. That is the other
documents do not change their level of detail or size. To prevent
occlusion the surrounding documents are moved outward when
zooming into a document. Since other documents are not zoomed
out, the analyst can still see all of their current detail provided the
screen is big enough. After the analyst has read a document or
seen enough of a document, they can easily zoom it out to provide
more room for other documents. The zoom out operation reverses
the movement of the other documents from before so that each
will return to their original location. This moving of documents
back inward reduces the screen space used which is important
when dealing with document collections containing more than a
thousand documents. More importantly the result is that the
original layout is recreated, as it is desired to have the least impact
on the analyst’s mental model of where documents are located in
the view. The view allows the analyst to move documents around
the space in order to organize them and so the layout they create
should be maintained as much as possible.

The method of zooming into and out of documents quickly
enables the analyst to start an investigation by reading some of the
documents and looking for any suspicious activity within them. It
is quite possible; however, that the analyst already has an idea of
what they are looking for. For this reason, there is a search feature
within the view. With this feature the analyst can search for a
string of text within the full-text of all reports or only within a
specific entity type (only people or only places, etc.). The result of
a search is that all of the documents matching the query are
highlighted within the view.

Brushing and linking across entities can also be done in the
view. An entity will be repeated within the view in all documents
it is contained within although at any given time it is likely that
the majority of these documents will be zoomed out so the entity
cannot be seen. By clicking on an entity, all other documents that
contain this entity will be highlighted and the entity will be
highlighted within them. Document highlighting is done in the
view’s active colour which is explained below. The scenario of
section 5 features searching as well as brushing and linking.

3.1 Document Organization

The large number of documents in a collection clearly means an
analyst does not have time to read all of the documents. Thus one
goal of the system is to allow the analyst to quickly organize the
collection into those documents that are relevant and those that are
not. They may also wish to create several distinct groups of
documents relating to different parts of their investigation. The
Semantic Zoom View provides three main methods for visually
distinguishing a set of documents from the rest. These are
highlighting, clustering, and grouping.

3.1.1 Colour

Within the view, colour is an important visual channel used to
make a set of documents stand out from the rest of the collection.
Colour is preattentively processed and so all of the items of one
colour can pop out to the analyst. Unfortunately as the number of

colours increases the pop out effect decreases substantially [20].
Thus in the Semantic Zoom View there are only five colours an
analyst can choose from for selection and highlighting search
results. The palette was chosen from the Color Brewer [3] website
among those that are distinguishable by colour deficient people
and these colours were also checked using the Vischeck website
[6]. Two different shades of green and two different shades of
blue were chosen so that the different shades may be distinct from
each other but still used for two groups that contain documents
more similar to each other than others (as decided and organized
by the user).

One colour is always the active colour within the view. The
active colour can be changed at anytime (using the drop down
menu) and the current active colour is what is used to highlight
the results of a search. The active colour is also used when
selecting documents in the view by clicking on them or using a
rubber band rectangle. In essence selecting and highlighting
documents are one and the same in this system as they both add to
the set of coloured documents. To deselect all documents of the
active colour the analyst clicks on the whitespace within the view.
When this happens all the documents that were previously a
different colour are reverted to that colour rather than becoming
the default unselected grey. This memory of the highlighting of a
document allows an analyst to quickly reverse the action of a
search and as done in the scenario of section 5 it can enable them
to find documents matching multiple queries.

Entity highlighting does not directly use colour. Any entities
which match a search query are outlined in black while the
document is highlighted in the active colour. This is due to the
fact that the entities are themselves colour coded by their entity
type and although this palette also meets the requirements of the
Vischeck site, the combined scheme does not. This is why if a
document is zoomed in enough to show entities, highlighting of
the document is done through changing the border colour rather
than the background. This keeps the palettes separate. Another
reason for only highlighting the border when the document is
zoomed in is because I wish to avoid having large areas of
saturation as they stand out far too much [20]. The entity type
colour scheme is used throughout the CzSaw system and is
specific to the dataset as different datasets contain different entity
types. With the Alderwood dataset there are 6 different data types
and those that are similar in meaning (for example date and time)
were given the most similar colours (blue and purple) although
these are still distinguishable by everyone.

Colour is useful for highlighting when trying many searches as
it can be easily reversed by simply reverting to the default colour.
It can also be used when documents are already located in a
meaningful location, but to more permanently mark a set of
documents spatial position should be the number one choice.

3.1.2 2D Position

2D position has been found to be preattentively processed [20]
and also is perceived more accurately than any other visual
channel (such as saturation, shape or area) for quantitative and
qualitative data [11]. Thus within the Semantic Zoom View the
analyst may move one or more documents to a new location by
the normal click and drag or rubber band and drag method. When
documents are moved they may be placed in such a way that they
overlap other documents. In this case the other documents are
moved to remove the overlap as explained in section 4.2. In this
way, documents can be quickly moved around the screen without
causing occlusion. However, in order to quickly organize the
document collection more advanced methods are needed than
simply translating all highlighted documents by the same vector.

Figure 2. The group operation first performs a cluster but then also places the items within a named rectangle that can be moved, resized or

closed. (a) The view before performing the grouping of all green documents. (b) The view with the named group added to it.

For example, when the highlighted documents are spread across

the view with large space between them (as is likely from a
search), translating the set of documents inevitably leads to some
of the documents moving off screen. Thus it is desired to move all
the relevant documents closer together. The cluster feature within
the Semantic Zoom View is designed to do just this. To cluster the
set of documents highlighted in the active colour, the analyst
clicks the cluster button and then clicks a location to cluster at.
Then the active documents are moved such that they cluster
around the point but maintain the same relative positioning
between each other. It can be seen as a scaling down of the
original layout of these documents with a gravity force applied to
pull every document towards the cluster point. More information
on the clustering algorithm is present in section 4.2.

The group function in the view allows the analyst to more
strongly distinguish a set of documents from the whole collection.
A document group has a name and a bounding rectangle within
the view as shown in Figure 2. To create a group for a set of
highlighted documents, the analyst one again can choose a
location within the view. Then the documents are clustered
together and the analyst is prompted for a name for the new
group. The documents are then shown within a rectangle with the
name of the group at the top. To save space in the view this group
can be closed which hides the documents, showing only the name
of the group. Unlike a cluster, documents in a group do not have
to be selected to move together. Instead the group may be clicked
and dragged to move to a new location. Each document appears
only once within the view, so documents may only be part of a
single group. In contrast two clusters may be placed close to each
other with some documents near both. Once a group is established

documents may be easily added or removed from a group by
dragging and dropping them inside or outside the bounds of the
group. Groups are also resized based upon changes made to their
contents such as zooming in on a document.

To provide an overview of the entire document collection all
documents are zoomed completely out in the initial layout. They
appear all the same size in a grid layout which is ordered by the
document date if one is present in the dataset. As of this writing,
one layout has been developed to provide an overview of the
document set. This is the date layout which goes beyond the
normal grid by showing documents in a calendar format for each
month of each year. This layout is currently for ungrouped,
zoomed out documents as it rearranges the position of all
documents and assumes they are all the same size. The date is
taken from the metadata of the document, rather than date entities
within it, so each document has a single date; however it is quite
possible that multiple documents have the same date. Thus the
date view stacks documents with the same date diagonally. This
leads to occlusion but since the documents are zoomed out there is
no loss of information and large stacks can quickly be seen
representing those days that have the most documents. The date
layout can be used by the analyst to find weekly patterns of
highlighted documents (as in figure 7 of section 5) or seasonal
patterns as the summer of each year appears directly below the
summer of the previous year. A similar technique of lining up
dates to find temporal patterns was found useful in the hotel
visitation visualization created by Chris Weaver in Improvise
[22].

In addition, although this layout rearranges all the documents,
the previous layout can be instantly re-obtained. At the same time
those documents that were moved while using the date layout are
not returned to their original location. This allows an analyst to
pick out a set of documents around a given date but still have all
other documents return to their previous location when the date
layout is turned off.

4 IMPLEMENTATION

I have created the Semantic Zoom View as an independent Java
application although in the future it will be a view within the
CzSaw system. As such, the data query methods (with MySQL)
were taken from CzSaw rather than being re-implemented. How
the results of the queries are displayed in the view and all of the
visualization code were written specifically for this project and
use the Zoomable Visual Transformation Machine (ZVTM) Java
library [14].

4.1 Use of ZVTM

Figure 3 illustrates how the visual components of the ZVTM
library are connected and used within the Semantic Zoom View.
The ZVTM library allows the creation of infinite canvases called
virtual spaces which can contain a variety of glyphs. A virtual
space can be seen with a camera which can focus on different
areas of the space and can zoom in or out of the space. Finally the
image of each camera is connected to a view which is shown in a
panel on the screen. For the Semantic Zoom View a glyph is
created for each rectangle and the document and entity labels
however each document is added to a separate virtual space. This
is so that they may be zoomed independently. Thus there are
many virtual spaces, each with its own camera and view, but these
must all be displayed in the same panel.

To accomplish this, the ZVTM portal object was used. A portal
is an inset in the panel that has bounds and its own camera
connected to a virtual space. The example of a portal used in the
ZVTM documentation is that of an overview map that sits in the
corner in a map application. Thus it does not appear to be

originally intended to be moved around the screen. Some work
was needed to accomplish this, although ZVTM provide a listener
for when the mouse enters and exits a portal. There was also no
built in functionality in ZVTM for having a portal change size
automatically in response to changes of the camera or the glyphs
on the virtual space being viewed. Thus to keep the camera only
viewing the document within a portal some calculations were
necessary to resize the portal as a document is zoomed.

The semantic zooming of a document is done by changing the
visibility of glyphs depending on the new altitude of the camera.
Additionally some changes of size on the virtual space are also
needed to smooth the transitions. For example, the background
rectangle of a document is changed in aspect ratio from showing
just the label to fitting all the entities. Other than this, most
changes in size seen within the view are due to a portal’s camera
zooming in on the document.

I extended the compound glyph class of ZVTM to create a class
for a document and a class for an entity. I also extended the portal
class to create an abstract zoom portal which was extended for a
document portal and a group portal. There is no support in ZVTM
for portals within portals as a portal is always directly on the
panel. Thus the group feature is implemented by a portal that is
drawn before the document portals are drawn in front of it. All of
the glyphs within the view are created when the application is first
run so that they may be available when any document is zoomed
in. This means that the only wait time for the building of glyphs is
on startup. For the Alderwood data set, which contains 1,182
documents and 13,356 entities, it takes 15 seconds to load the
view in Parallels using 1.4 GB memory of a MacBook Pro. This
time includes not just creating the glyphs but also connecting to
the database, performing the queries necessary to get all the
documents and displaying the user interface.

Also provided by ZVTM was a mouse listener for actions on
the panel. The methods I implemented using this listener in the
view are for mouse clicked, moved, pressed, dragged, or released
as well as scrolling with the mouse scroll-wheel (or trackpad).
These allow the analyst to interact directly with the documents in
the view using the mouse to do such things as zoom (scroll-
wheel), select and move documents.

The ZVTM library has support for animations of properties of
cameras, portals, glyphs, etc. I used the translation portal
animation to animate the forming of clusters and groups.

Figure 3. How the visualization model of ZVTM is used within the

Semantic Zoom View. Changing the camera altitude causes a

document to appear smaller within its portal as defined by

ZVTM. Then I have added the methods to make the portal

change size to show only the document and the code to make

the zoom semantic by changing the glyphs visible.

4.2 Algorithms

In order to work easily with documents at multiple zoom levels,
and thus at multiple sizes on the screen, three different algorithms
were developed. The first algorithm is used to move documents
and groups in response to the zooming in or out of a document.
The second algorithm removes overlap caused by moving one or
more documents and groups. The third algorithm determines the
location of documents when a new cluster is formed. Since this
project’s main focus is on the design of this new data view, the
following descriptions of the algorithms will be kept relatively
brief.

The Continuous Zoom [2], ADORA [15], and SHriMP [19]
algorithms were mentioned in the related work section. These
algorithms are applicable because they also involve zooming into
items and the changes that are made to the rest of the view as a
result. I started by implementing the SHriMP algorithm.
Unfortunately with all the resulting white space and opting not to
automatically rescale other documents (so zoom levels stay
independent), the layout expands quickly. Thus, I first sort all the
other documents by their distance to the focus document (the one
being zoomed). Then I move each in turn according to the
SHriMP algorithm only if they are occluded by one of the ones
already moved. The resulting layout starting from a grid is shown
in Figure 4. This logic works for zooming into a document
(making it larger) but does not work for zooming out since no
occlusion occurs. Since all the documents start zoomed out, I
simply store whether a document was affected by the zoom, in
order to move all the same documents again for the zoom out.
This data is needed for each zoomed document although it is
cleared when the document is moved since it no longer applies.
The time the algorithm takes to run when zooming in is
O(n(n+1)/2) and when zooming out it is O(n) where n is the
number of ungrouped documents plus the number of groups. The
original SHriMP algorithm runs both ways in O(n). This variant
of the SHriMP algorithm runs in under a second when working
with the Alderwood dataset.

Figure 4. The layout that results from the selective variant of the

SHriMP algorithm which the Semantic Zoom View uses.

This modified SHriMP algorithm improves the compactness of

the layout over the original algorithm but lacks some of the

mental map saving properties of the original as seen in Figure 4.

The original SHriMP algorithm preserves orthogonal orderings

and proximities between nodes while this variation does not

preserve either of those properties. The original layout however

adjusts the entire view even if there are many disjoint parts while

this new algorithm completely preserves clusters of documents

that are disjoint from what is being zoomed as long as there is

space. Currently in the Semantic Zoom View the initial layout is

far less meaningful then any clusters formed through the process.

Thus I argue that less use of screen space and maintaining the

exact position of already sorted documents are much more

important then minimizing the distortion of those documents

surrounding a zoomed document, that are yet unsorted. Ultimately

an experiment must be performed in the future to study this trade

off.
When one or more documents or groups of documents are

moved a different algorithm is used to remove any overlap that
this causes. Once again no items are changed in size. They are
only moved so most likely this causes the overall bounds of the
document layout to grow. The reason that a different algorithm is
used here is because it no longer as important to support a reversal
of this action. An analyst is much less likely to move a document
across the view and then back again then they are to zoom in and
then back out. Thus an implementation of the Force Transfer
Algorithm is used [8]. The speed at which this algorithm runs is
more dependent upon the number of overlaps then the total
number of documents but the worst case is O(n²) where n is the
number of ungrouped documents plus groups in the view. This
number should be fairly small since any overlaps will have
occurred directly from the last move of documents. The algorithm
also does not need to run quickly multiple times (unlike the zoom
algorithm) because it is only applied when the analyst finishes
dragging the documents and groups to their new location.

Figure 5. The layout that results from the force transfer algorithm

after placing a document into the center of the grid. In the

future the documents will be displaced in all four directions

rather than just up and down.

This Force Transfer Algorithm is more effective than the

SHriMP algorithm at keeping changes to the layout to a

minimum, however it takes longer to run. The main problem with

the current implementation of the algorithm occurs when a large

document is placed over many small documents. The algorithm

fails to move all of them in the direction that minimizes the

distance moved. Figure 5 demonstrates an instance of this

problem where some documents should have been moved left or

right. I have worked out a solution that will increase the

complexity of the algorithm but make it more effective. The

details of the solution are beyond the scope of this paper.
The third algorithm was used for the clustering to move

documents from across the view to be clustered around one
location except still in the same relative position. Initially when
the cluster feature was designed the main goal was to collect all
highlighted documents of one colour to a specific location and so

they were packed into a new grid. There are two problems with
this. The first is that their original layout is completely lost. Some
of the documents may have been already clustered or in a date
layout so it is desired not to completely destroy these encodings.
Secondly, the documents may be at different zoom levels which
means they are different sizes within the view. While a decent
solution for the packing rectangles of different sizes into a larger
rectangle is not difficult, finding the minimum bound of the layout
needed is an NP-hard problem [1]. Thus I allow some white space
and constrain the problem by attempting to keep the documents in
the same relative position. The first step in the clustering is to
translate every involved portal (document or group) by the same
vector so that the set is centered on the cluster point. I then order
the portals by their distance to the cluster point. Then in turn each
portal is moved inward along the line connecting its location to
the cluster point until they can no longer move because they
would occlude a portal already moved. This final position is
where each portal is animated to from the original position. This
algorithm gives the appearance of a gravity point that all involved
documents and groups are sucked into. I use the same algorithm
for the clustering involved in forming a group except that all
selected groups are ignored since currently groups cannot contain
other groups. The algorithm runs in O(n(n+1)/2) where n is the
number of documents or groups being clustered.

In the clustering algorithm some spaces still exist between

documents depending on how they were originally positioned in

the view. If in the future it is determined that tightly packing the

clusters is more important than resembling the original layout

some random jittering of positions could be added. Then

reapplying the algorithm could reduce the space used.
Groups add another level to the zoom algorithm and must be

considered when determining what to move within the other two
algorithms. When a group is moved, all of the documents within it
are moved as well. Thus if the document being moved or zoomed
is not within a group then the zoom and move algorithms only
consider groups and documents outside of groups, ignoring those
documents inside groups. The cluster algorithm also ignores these
grouped documents. If the document being zoomed is inside a
group then the zoom algorithm is first applied only to the
documents in the group, then the bounds of the group are adjusted
and it is applied again on all the ungrouped documents and groups
based on the change in bounds. In this way, groups make the
zoom algorithm multi-level.

5 SCENARIO

Now that the current state of the system has been fully explained I

will narrate and illustrate a scenario that an analyst would take

within the system. The goal is to show that someone quickly

trained with the system (perhaps simply by reading this paper) can

carry out the organization of a document collection and narrow

down their investigation and sense-making process to the more

relevant documents. The full task of an intelligence analyst of

discovering plots or suspicious trends is not an easy or quick task.

The VAST contest with the Alderwood dataset was to

determine if any inappropriate activities were happening in the

town of Alderwood, so there were no real clues as to where to

start the investigation [7]. Thus after loading the view I begin the

scenario by simply zooming (using the mouse scroll wheel) into

the first document to read it. This document is the oldest news

article as they are ordered by date. It turns out this article is just

about the weekly lottery numbers, something not useful to my

investigation, so I can filter it out. However I should first

determine if there are any other articles about lottery numbers. To

do this I search for “lucky numbers”, a string that appears in the

document. All the documents containing lucky number appears

highlighted in the active colour (Figure 6).

Figure 6. All 160 “lucky numbers” documents are highlighted in the

view by a search.

According to the text at the top of the view there are 160

documents containing “lucky numbers”. To confirm that these are

probably all about the weekly lucky numbers I zoom the

document back down and then switch to the date layout using the

drop down menu. Immediately I see that a highlighted document

occurs once a week on the same day each week (Figure 7).

Figure 7. A portion of the date layout when looking at the temporal

pattern of the lottery number news articles.

Switching back to the normal layout I then filter out all the

highlighted documents. I then zoom in the second document and

read it. It is about the finding of mad cow disease (BSE) within

one cow recently shipped from Canada. The document seems to

be about breaking news and it is the second document in the

collection so perhaps there is more on this topic. “BSE” is an

entity within the document so clicking on it in the full text

performs brushing and linking by highlighting all those other

documents containing it (Figure 8).

Figure 8. Brushing and linking on the BSE entity within the

documents text highlights all those documents that contain it.

One of these is in the bottom right corner indicating it is one of

the last documents in the dataset. Zooming into this document I

find out by reading it that it is an article strongly criticizing a

magazine article titled “America’s Beef is Rotten and Washington

Couldn’t Care Less” (Figure 9). Although this document claims

that the one BSE infected cow found in Washington state (from

the previous article) was quickly isolated, it also mentions that the

author of the magazine article “insinuates that there might be a

conspiracy within the UDSA testing program designed not to find

BSE”. This sounds worthy of investigating but there is more

information about the BSE in the first document.

Thus I zoom this document out and consider the first document

which lists many people and organizations involved in the USDA

investigation. By clicking on each of the these entities in turn I

can see how many documents they occur in and I can spot

documents containing multiple entities by changing the colour and

noting documents that change colour. I already have the BSE

documents highlighted in blue and so I switch to yellow and click

the USDA entity before switching to green and clicking DeHaven

(Figure 10).

Figure 10. Through brushing all DeHaven documents are

highlighted green, USDA documents that don’t include

DeHaven are highlighted yellow and BSE documents not

including the other two are highlighted blue.

Figure 9. Investigating the last document that mentions BSE and finding mention of a conspiracy.

Figure 11. The DeHaven, USDA and BSE document grouped and the rest of the documents clustered on the side.

At this point I decide to do some grouping in order to organize

the documents and more strongly emphasize those documents

worth viewing. In turn, I select each of the colours used so far,

blue, green and yellow and group each set of documents, naming

them after the entity contained in them. To organize the view

further I select all the uncoloured documents in a fourth colour

and cluster them away from the documents I am focused on. Then

I deselect them (Figure 11).

 Now I deselect the green DeHaven documents to discover that

in fact all of them mention either BSE of UDSA as they are all

yellow or blue (Figure 12). Perhaps DeHaven is not an important

character as he is never mentioned without BSE or UDSA.

Figure 12. When green is unselected it is revealed that all

the DeHaven documents are part of the other two searches.

Deselecting all yellow documents shows that all of the DeHaven

documents mention BSE and most of the USDA documents do

since they are also highlighted in blue (Figure 13). Perhaps the

USDA documents not referring to the BSE should be investigated.

Figure 13. All the DeHaven documents are also

documents containing BSE (all blue) and most of the USDA

documents also mention BSE.

Based on these observations, I now decide to combine the

DeHaven group with the BSE group. I select the DeHaven

documents in another colour temporarily to drag and drop them

into the BSE group before I delete the DeHaven group. Then I

zoom in on one of the USDA grey documents. The story mentions

a congressman named Doc Hastings who stopped for a short visit

in Alderwood. Clicking on his name with active colour yellow

highlights all the documents he is in which include 2 other USDA

documents and a BSE document (Figure 14).

Figure 14. The investigation moves onto reading

documents on Doc Hastings to see if how he is connected to

the BSE disease and the USDA.

The investigation can continue from here looking into the BSE,

USDA, and Doc Hastings and further categorizing the documents

while looking for any suspicious activity. The analysis task is a

long and tedious one not easily made shorter. The groups working

on this challenge had several months to determine the plot. This

scenario has been illustrated to demonstrate the flexibility of the

features of the Semantic Zoom View.

6 DISCUSSION

Some strengths and weakness of the design of the Semantic Zoom

View have been mentioned already but in this section more will

be discussed.

Spatial position and colour combine in this design to facilitate

two stages of categorizing documents. Colour can be quickly

applied to the view to find search results and more permanent

organization can be created smoothly using groups. The use of

groups almost negates the need for the filter function. Why filter

documents when you can easily hide them within a group for easy

access in case you need them in the future? Spatial memory of

where groups are placed along with the name the analyst gives a

group should both aid in quickly being able to find documents

previously visited. These visual encodings that match the humans’

perceptual system are a strength of the design.

Using the same colour for highlighting and selection was done

to add flexibility but may be a weakness of the design. It can get

in the way of quickly interacting with the view. A feature for

quickly moving a single document only even if it is highlighted

should be added.

One weakness of the current new design is that although the

majority of features are based upon related work or the perceptual

abilities of humans, the combination of features is unique and it

remains to be verified that they match the tasks of the analyst

effectively. Thus, some experiments and interviews are needed to

determine the applicability of the technique. These would

preferably be with actual analysts. There are a number of

questions needed to be answered. One of these concerns the initial

layout of the visualization. Given no numerical data for a location

for each document what is the best way to layout the documents? I

have used a grid of documents placed in the center of the view so

that there is space to move documents outside the grid in

organizing them. Perhaps it would be more useful if the

documents were spaced out so the grid filled the screen. This

would mean zooming any document in place would results in less

overall change to the view. Alternatively each document could

start further zoomed in so that the grid filled the view with small

spaces between documents. Given a small enough collection this

would allow an analyst to see the names of all the documents.

This could be useful but could also present an unnecessary

amount of detail. This is a trade-off that is currently unanswered

and the solution may only be found by allowing a potential user to

try each method.

Aside from whether the operations present in the view are

useful is the question of whether the ways in which they are

currently performed are intuitive and easy to remember. For

example, is it more intuitive to use the scroll wheel to zoom a

document or to zoom a document by dragging the corner?

Usability studies will need to be conducted to solve issues such as

this.

6.1 Lessons Learned

I have learned a great deal from working on this project, both

about some of the problems with visual encodings as well as some

of the unsolved problems in the areas I researched for the

implementation.

Choosing colours which are easy to spot among many other

colours is not easy, especially if all the colours should be

distinguishable to colour deficient people. Spatial position is a

much better method of separating categories. Unfortunately the

problem of how to nicely show overlapping groups of items for

any number of groups and overlaps is an unsolved problem both

spatially and with colours. It does not seem likely to be solved

anytime soon. Most systems with colour coding, such as IN-

SPIRE [12] use a specific colour to specify that an item should

really be two or more colours. In other words one colour is

dedicated to indicate any kind of overlap of sets. This originally

did not strike me as being very effective as it does not show what

the overlap is but there does not seem to be an easy alternative.

Another thing I learned may be both a strength and weakness of

my design. In investigating the document set and acting as an

analyst I found I zoomed all the way into documents often. To get

the real context of the document I had to read the full text and

since brushing could be done directly from the full text I rarely

zoomed just to the entity level. While it is good that it is so easy to

zoom in and read the text it is not good that the other zoom levels

did not factor into my scenario. One possibility is that this simply

relates to the stage of the analysis I was at. It is also true that I am

not a professional analyst and may perform quite differently from

them.

There is a really hard problem of how to use space effectively

when trying to lay items out by date. Clearly if there is a gap

between the dates in a set of items this should be represented

within the view but how can you have space for many gaps of

different sizes while effectively visualizing items that have similar

dates?

Finally, as mentioned in section 4.2, I discovered that

sometimes when a problem is NP-hard such as the packing

problem [1], adding some constraints that make sense intuitively

to the application and relaxing the problem a little can help to

solve it. I am referring to the constraint of maintaining a similar

relative positioning of the documents within the cluster algorithm.

6.2 Future Work

The experiments and usability studies mentioned in section 6 are

an important part of the future work on this project; however,

there are also a number of extensions and more advanced features

that may prove useful to analysts.

As mentioned in section 3.1.1, documents remember previous

highlighting so that they may display it when the current

highlighting is removed. This is done through a stack of highlight

colours within the implementation of a document. Although it is

useful, this feature can get confusing if the stack becomes large or

the highlights within it are fairly old. This confusion is because it

is not currently possible to see the stack of highlighting colours or

to change their order. A function for adjusting the global stacking

of colours should help this issue. Just by adjusting the colour

order with this feature the analyst could pick out documents with

both highlight colours by seeing which ones change colour.

Another feature that should be added to help emphasize when

documents meet two search queries is the ability to place groups

within groups thereby unrestricting the number of levels of the

view. Although groups cannot overlap, at least an analyst can

place documents that meet two queries within a subgroup of one

of the groups formed by the queries. Given the object oriented

nature of the implementation adding this feature would not require

much effort.

6.2.1 Visualizing Entities

Some additional visualization techniques involving entities should

be developed. The current techniques mostly focus on the

documents and the people and places mentioned within them are

often more important to the analyst. Currently brushing and

linking allows the analyst to quickly see how many documents an

entity is contained in but it is not easy to compare this for multiple

entities or to find entities that share many of the same documents.

In contrast it is really easy to see all of the entities within one

document as they are clearly displayed nested within it. Thus

providing a facility to temporarily merge multiple documents

together and see all the entities within the new super document

may be useful. A one level treemap could be created within the

super document where the size of an entity is relative to how

many of the documents it is present in. A two level treemap could

be created where the first level is split by entity type and the

second as described above. Within this super document and within

documents in general the analyst should be given the ability to

layout the entities to fit their thought process and to filter out any

entities they don’t wish to see just as both these activities are

currently possible at the document level.

6.2.2 Spatial Layout

The date layout is currently rather limited as it does not handle

groups or zoomed in documents. Handling groups could be done

by applying a separate date layout to those documents within a

group and placing the groups off to the side. As mentioned in

section 6.1, this may not be easy. Accurately placing documents

by date in a calendar format may not be possible within a small

space especially if the documents have vastly different dates.

Regardless, this view should be made more flexible to better

integrate with the other features of the view.

The use of 2D position allows the analyst to organize the

documents to further their investigation and understanding.

Unfortunately aside from the date layout the rearrangement of the

documents is currently only specified manually by the analyst.

This lack of facilities for meaningfully automatically performing a

layout of documents is due to a lack of numerical data within the

documents. As mentioned in the related work section though there

have been algorithms developed for placing documents on a plane

according to their keywords [12]. In the future one of these

techniques will be used to perform a layout of the document

collection. The analyst should be able to recompute the layout

after filtering out some documents as with IN-SPIRE but should

also be able to keep some documents in the view that are

unaffected by the layout so they may still manually organize

them.

7 CONCLUSION

The Semantic Zoom View is a promising new information
visualization design using a focus+context method for
investigating a document collection. There are clearly many ways
in which it can be expanded upon and this is the focus of my
thesis. A large part of my thesis work will be concentrated on
determining which encodings and functions are most useful to
analysts in the investigation process. This will be an iterative
process in which feedback from users informs changes to the
design. Although there is much work ahead this paper has
introduced the basic visualization design and concepts around
which the view is focused. These are providing a flexible
overview capability and document organization environment and
then using semantic zooming to quickly get details on demand for
any document.

REFERENCES

[1] N. Bansal, J. R. Correa, C. Kenyon, and M. Sviridenko. Bin packing

in multiple dimensions: inapproxamibility results and approximation

schemes. Mathematics of Operations Research, 31(1):31-49, Feb.

2006.

[2] L. Bartram, A. Ho, J. Dill, and F. Henigman. The continuous

zoom: a constrained fisheye technique for viewing and navigating

large information spaces. Symposium on User Interface Software and

Technology, pages 207-215, 1995.

[3] C. Brewer. Colorbrewer. http://colorbrewer.org, 2009 (accessed Dec

2, 2009).

[4] Calais. http://www.opencalais.com/, 2009 (accessed Oct 25, 2009).

[5] A. Cockburn, A. Karlson, and B. B. Bederson. A review of

overview+detail, zooming, and focus+context interfaces. ACM

Computing Surveys, 41(1): 2:1-2:31, 2008.

[6] R. Dougherty, and A. Wade. VisCheck. http://www.vischeck.com,

2002 (accessed Dec 2, 2009).

[7] G. Grinstein, T. O’Connell, S. Laskowski, C. Plaisant, J. Scholtz,

and M. Whiting. The VAST 2006 contest: a tale of Alderwood. In

Proc. IEEE Symposium on Visual Analytics Science and Technology

(VAST), pages 215-216, 2006.

[8] X. Huang, W. Lai, A. S. M. Sajeev, and J. Gao. A new algorithm for

removing node overlapping in graph visualization. Information

Sciences, 177:2821–2844, 2007.

[9] N. Kadivar, V. Chen, D. Dunsmuir, E. Lee, C. Qian, J. Dill, C.

Shaw, and R. Woodbury. Capturing and supporting the analysis

process. In Proc. IEEE Visual Analytics Science & Technology

(VAST), pages 131-138, 2009.

[10] A. K. McCallum, MALLET: A machine learning for language

toolkit. http://mallet.cs.umass.edu, 2002. (accessed Oct 25, 2009).

[11] T. Munzner. Visualization, chapter 27. In Peter Shirley, Steve

Marschner, authors, Fundamentals of Computer Graphics, Third

Edition, pages 675-707. AK Peters Ltd, 2009.

[12] Pacific Northwest National Laboratory. IN-SPIRE. http://in-

spire.pnl.gov/getacopy.stm, 2008. (accessed Oct 26, 2009)

[13] Pacific Northwest National Laboratory. Starlight.

http://starlight.pnl.gov/, 2008. (accessed Oct 23, 2009)

[14] E. Pietriga. A toolkit for addressing HCI issues in visual language

environments. In Proc. IEEE Symposium on Visual Languages and

http://www.opencalais.com/
http://www.vischeck.com/
http://mallet.cs.umass.edu/
http://in-spire.pnl.gov/getacopy.stm
http://in-spire.pnl.gov/getacopy.stm
http://starlight.pnl.gov/

Human-Centric Computing (VL/HCC'05), pages 145-152, Sept.

2005.

[15] T. Reinhard, S. Meier, and M. Glinz. An improved fisheye zoom

algorithm for visualizing and editing hierarchical models. Second

International Workshop on Requirements Engineering Visualization

(REV), Oct. 2007.

[16] D. Schaffer, Z. Zuo, S. Greenberg, L. Bartram, J. Dill, S. Dubs, and

M. Roseman. Navigating hierarchically clustered networks through

fisheye and full-zoom methods. ACM Transactions on Computer-

Human Interaction, 3(2):162-188, 1996.

[17] J. Stasko, C. Gorg, and Z. Liu Jigsaw: supporting investigative

analysis through interactive visualization. In Proc. IEEE Visual

Analytics Science & Technology (VAST), pages 118-132, 2008.

[18] M-A. D. Storey, C. Best, and J. Michaud. SHriMP views: an

interactive environment for exploring Java programs. International

Conference on Program Comprehension, 2001.

[19] M-A. D. Storey, and H. Muller. Graph layout adjustment strategies.

Proc. Symp. on Graph Drawing, 1027:487-499, 1996.

[20] C. Ware. Information visualization: perception for design, chapter 4-

5. Morgan Kaufmann/Academic Press, 2nd edition, 2004.

[21] C. Weaver. Building highly-coordinated visualizations in Improvise.

In Proc. of Information Visualization, 2004.

[22] C. Weaver, D. Fyfe, A. Robinson, D. Holdsworth, D. Peuquet, and

A. MacEachren. Visual exploration and analysis of historic hotel

visits. Information Visualization (Special Issue on Visual Analytics),

6:89-103, 2007.

