Information Visualization

Task Abstraction

Tamara Munzner

Department of Computer Science
University of British Columbia

Nested model: Four levels of visualization design

- domain situation
- task abstraction
- interaction idiom
- algorithm

Domain characterization

- details of an application domain
- group of users, target domain, their questions, & their data
 - varies widely by domain
 - must be specific enough to get traction
- domain questions/problems
 - break down into simpler abstract tasks

Design Process

- Characterize Domain Situation
- Map Domain-Language Task to Abstract Task
 - Identify/Create Suitable Idiom/Technique
 - Identify/Create Suitable Algorithm

Example: Find good movies

- **Identify good movies in genres I like**
 - domain: general population, movie enthusiasts
- **Tasks**
 - highly rated by critics
 - highly rated by audiences
 - successful at the box office
 - similar to movies I liked
 - matches specific genre
- **Data**
 - IMDb, Rotten Tomatoes

Example: Horrorified

- **Identify high-score horror movies**
 - domain: general population, movie enthusiasts
- **Tasks**
 - highly rated by critics
 - highly rated by audiences
- **Data**
 - IMDb, Rotten Tomatoes

Example: Find good movies

- **Identify good movies in genres I like**
 - domain: general population, movie enthusiasts
- **Tasks**
 - highly rated by critics
 - highly rated by audiences
- **Data**
 - IMDb, Rotten Tomatoes

Why: Task Abstraction

- means and ends
- how
- what
- why

Analysis example: Derive one attribute

- smaller number
 - centrality metric for networks
 - derived quantitive attributes
 - derived qualitative attributes

- larger number
 - connectivity metric for networks
 - derived qualitative attributes
 - derived quantitative attributes

Tasks: Actions and targets

- very high-level pattern
 - zoom-in/out
 - hover
 - refine

Actions: Analyze

- consume
 - discover vs present
 - classic split
- enjoy
 - skrope vs explain
- derive
 - present
 - produce
 - analyze
 - search
 - query

Tasks: Actions and targets

- what does user know?
 - target, location
 - lookup
 - ex: word in dictionary
 - alphabetical order
 - locate
 - ex: keys in your house
 - ex: node in network
- browse
 - ex: books in bookstore
- explore
 - ex: cool neighborhood in new city

Actions: Search

- what does user know?
 - target, location
 - lookup
 - ex: word in dictionary
 - alphabetical order
 - locate
 - ex: keys in your house
 - ex: node in network
- browse
 - ex: books in bookstore
- explore
 - ex: cool neighborhood in new city
Abstraction

- These (action, target) pairs are good starting points for vocabulary
- But sometimes you’ll need more precision
- Rule of dumb: systemically remove all domain jargon
- Interplay: task and data abstraction
 - Need to use data abstraction within task abstraction
 - To specify your target
 - But task abstraction can lead you to transform the data
 - Iterate back and forth
 - First pass data, first pass task, second pass data...

Examples: Job market

- Trends: How did job market develop since recession overall?
- Outliers: Real estate related jobs

Exercise: Rating Charts for Tasks

- **Task A:** sort attributes
- **Task B:** compare pair of attributes (Direct vs Distributor)
- **Task C:** compare pair of attributes (Distributor vs OEM)
- **Task D:** present trends across all attributes
- **Task E:** spot outlier attributes
- **Task F:** enjoy / engage

Example: Genomics II

- **Task**
 - Goal: control data quality for gene expression data
 - Tasks: Judge magnitude of sample
 - Compare samples, identify within-group variance & outliers
 - Compare groups, identify between-group variance

Example: Economics

- **Task**
 - Compare two pairs of attributes (Direct vs Distributor)
 - Analyze: search, query & match

Example: Horrid vs stacked bars

- Horrid: browse/explore
- Stacked bars: location/lookup

Exercise: Task abstraction in genomics I

- **Derive**
 - Only some samples show the desired effect
 - Derive two groups of samples
 - The difference between the samples is caused by differential expression (different activity) of genes in a particular pathway
 - She would like to understand which genes are likely to cause the difference
 - Identify those genes
 - Compare gene expression of pathway genes between two groups
 - Identify the outliers
 - Explore the annotation

Exercise: Task abstraction in genomics I

- **Locate**
 - The difference between the samples is caused by differential expression (different activity) of genes in a particular pathway
 - She would like to understand which genes are likely to cause the difference
 - Identify those genes
 - Compare gene expression of pathway genes between two groups
 - Identify the outliers
 - Explore the annotation

Exercise: Task abstraction in genomics I

- **Locate**
 - The difference between the samples is caused by differential expression (different activity) of genes in a particular pathway
 - She would like to understand which genes are likely to cause the difference
 - Identify those genes
 - Compare gene expression of pathway genes between two groups
 - Identify the outliers
 - Explore the annotation
Todo this week
• D3 videos to watch this week
 – Making a Bar Chart with D3 and SVG [30 min]
• Quiz 2 to do this week, due by Fri Jan 17, 8am
• Labs start this week!
 – Fri 9-10, 11-12, 4-5
 – strongly recommended but optional; we do not track attendance
• TA office hours for individual consultation and help
 – TAs will typically alternate weeks
 – if you can’t register, try attending the one you want
• Foundations Exercise 2 out next time (Thu Jan 16)
 – due Wed Jan 22
• Programming Exercise 1 out next time (Thu Jan 16)
 – due Wed Jan 29

Credits
• Visualization Analysis and Design (Ch 3)
• Alex Lex & Miriah Meyer, http://dataviscourse.net/
• Marti Hearst, exercise (tasks & charts)
 – Teaching as Coaching (VIS 2015 panel on Vis, The Next Generation)