Tackling tables

- homogeneity
 - same data type? same scales?
- need different approaches based on scale
 - how many attributes?
 - up to ~50 translatable with direct visual encoding
 - thousands: need transformations / analytical methods
 - how many items?
 - up to ~10k: need transformations / analytical methods
 - >10k: need different approaches for "normal" and "high-scale"

Some keys: Categorical regions

- regions: contiguous bounded areas distinct from each other
 - using space to separate (proximity)
 - following expressiveness principle for categorical attributes

Idiom: bar chart

- one key, one value
 - colors
 - use order to separate (proximity)
 - eye: length = express count value
 - spatial regions: one per mark
 - separated boundarially aligned vertically
 - ordered by quartile
 - task
 - compare, looking values
 - scalability
 - dozen to hundreds of levels for key axis

Some keys: Express values (magnitudes)

0 Keys: Express values (magnitudes)

Idiom: scatterplot

- express values
 - quantitative attributes
 - no keys, only values
 - color
 - size (bubble plots)
 - channels
 - x-axis, y-axis position
 - size
 - number, sliders, distribution, correlation, clusters
 - scalability
 - hundreds of items

Scatterplots: Encoding more channels

- additional channels for point marks
 - color
 - size (bubble plots)
 - espaço: more axes grow quadratically radius is misleading
 - shape

Keys and values

- key
 - independent attribute
 - used as unique index to look up items
- simple tables: 1 key
- multidimensional tables: multiple keys
- value
 - dependent attribute, value of cell
 - classify arrangements by key count
 - ~0, 1, 2, many...

Notes:

- sorted: answer when done
- same scale?
- need different approaches based on scale
- homogeneity
- same/ different scales?
- need different approaches based on scale
- how many attributes?
- how many items?
- up to ~50: translatable with direct visual encoding
- thousands: need transformations / analytical methods
- up to ~10k: need different approaches for "normal" and "high-scale"

Dense Space-Filling
Separate Order Align
1 Key 2 Keys 3 Keys Many Keys
List Recursive Subdivision Volume Matrix
Rectilinear Parallel Radial
ARRANGE TABLES

AXIS ORIENTATION

Separate

Rectilinear

Idiom: heatmap

• two keys, one value
 – data
 – 2 case study (gene, experimental condition)
 – 1 quant attr (expression level)
 – marks: point
 – separate and align in 2D matrix
 – channel
 – color by quant attr
 – (default: diverging colormap)
 – task
 – find clusters, outliers
 – scalability
 – 194 terms, 100 of case levels, 10 quant attr levels

Idiom: cluster heatmap

• in addition
 – derived data
 – 2 cluster hierarchies
 – dendrogram
 – parent-child relationships in tree with connection line marks
 – leaves aligned so interior branch heights easy to compare

• heatmap
 – marks re-jointed by cluster hierarchy traversal
 – task: assess quality of cluster band by systematic methods

Idiom: pie chart, polar area chart

• pie chart
 – line mark with angle channel: variable (sector) width
 – separated & aligned radially, uniform length
 – accuracy: all are less accurate than line length

• polar area chart
 – line marks with length channel: variable length
 – separated & aligned radially, uniform width
 – more direct analog to bar charts

Idiom: glyphmaps

• rectilinear good for linear vs nonlinear trends

• radial good for cyclic patterns

Idiom: normalized stacked bar chart

• task
 – part-to-whole judgements

• normalized stacked bar chart
 – stacked bar chart, normalized to full size height
 – single stacked bar equivalent to full pie
 – high information density requires narrow rectangle

• pie chart
 – information density requires large rectangle

Idiom: parallel coordinates

• scatterplot matrix (SPLOM)
 – rectilinear axes, point mark
 – all possible pairs of axes
 – scalability
 – one dozen attributes
 – distance to hundreds of items

• space-filling idiom: heatmap
 • two keys, one value
 – data
 – 2 case study (gene, experimental condition)
 – 1 quant attr (expression level)
 – marks: point
 – separate and align in 2D matrix
 – channel
 – color by quant attr
 – (default: diverging colormap)
 – task
 – find clusters, outliers
 – scalability
 – 194 terms, 100 of case levels, 10 quant attr levels

Idiom: SPLOM

• scatterplot matrix
 – rectilinear axes, point mark
 – all possible pairs of axes
 – scalability
 – one dozen attributes
 – distance to hundreds of items

• space-filling idiom: heatmap
 • two keys, one value
 – data
 – 2 case study (gene, experimental condition)
 – 1 quant attr (expression level)
 – marks: point
 – separate and align in 2D matrix
 – channel
 – color by quant attr
 – (default: diverging colormap)
 – task
 – find clusters, outliers
 – scalability
 – 194 terms, 100 of case levels, 10 quant attr levels
Task: Correlation

- scatterplot matrix
 - positive correlation
 - diagonal low-to-high
 - negative correlation
 - diagonal high-to-low
 - uncorrelated: spread out
- parallel coordinates
 - positive correlation
 - parallel line segments
 - negative correlation
 - all segments cross at halfway point
 - uncorrelated
 - scattered crossings

Parallel coordinates quiz: car data

- What correlations do you see?
 - positive?
 - negative?
 - none?
 - not sure?
 - horsepower to acceleration
 - weight to mileage?

Parallel coordinates, limitations

- visible patterns only between neighboring axis pairs
- how to pick axis order?
 - usual solution: reorderable axes, interactive exploration
 - same weakness as many other techniques
 - downside of interaction: human-powered search
 - some algorithms proposed, none fully solve

Orientation limitations

- rectilinear: scalability wrt #axes
 - 2 axes: best
 - 3 problematic
 - 4+ impossible
- parallel: unfamiliarity, training time

Encode tables: Arrange space

- data: text
 - text + 1 quant attrib per line
- derived data:
 - one pixel high
 - length according to original
 - color by attrib
 - scalability
 - 10K+ lines

Idiom: Dense software overviews

- Layout Density
 - Dense
 - Space-Filling

Arrange tables

- Express/Values
 - Separate, Order, Align-Regions
 - Parallel
 - Radial
 - Dense
 - Space-Filling

Upcoming

- D3 videos week 3
 - Making a Bar Chart with D3 and SVG (30 min)
- Quiz 3, due by Fri Jan 24, 8am
- Programming Exercise 1, due Wed Jan 29
- Foundations 3, out Thu Jan 30
- D3 videos/reading week 4
 - The General Update Pattern of D3.js (80 min)
 - Interaction with Unidirectional Data Flow (16 min)
 - Read/Reusable D3 Components

Design critique & redesign: NZ

- Consider the following questions:
 - What could be the goals of the designer for questions that the visualization answers? (domain-specific & abstract?)
 - What data is represented in this visualization? Be specific.
 - How is each data type visually encoded (morph/channels)?
 - Can you read the data precisely? Is the visual encoding appropriately chosen?
 - Will how would this work without numeric labels?
 - Develop two alternative designs to visualize this data.
 - free to discuss with your peers, but draw your own solution.
 - mark your best design, briefly note why you think it’s better.

Credits

- Visualization Analysis and Design (Ch 7)
- AlexLex & Miriah Meyer: http://dataviscourse.net/
- Ben Jones, UW/Tableau