Information Visualization Midterm Review

Tamara Munzner
Department of Computer Science
University of British Columbia

Last updated: Mar 5, 2020

https://www.cs.ubc.ca/~tamara/essays/IV/SV-38

Data and Dataset Types

Dataset Types
- Attributes (rows)
- Items

Multidimensional Table
- Cell containing value

Networks & Datasets
- Positions (item)
- Geometry

Why?

Grid of positions
- Interaction
- Foundations (table, network, spatial)

How?

Items & Attributes
- item: individual entity, discrete
 - eg patient, car, stock, city
 - "independent variable"
- attribute: property that is measured, observed, logged...
 - eg height, blood pressure for patient
 - "dependent variable"

Subtopics
- Nested model
 - four levels: domain, abstraction, idiom, algorithm

What?

Assignments
- Topics
 - Data & Task Abstractions
 - Marics & Channels
 - Tables
 - Interactive Views
 - Maps
 - Color

Midterm logistics
- time: 75 min
- materials allowed: one-sided "cheat sheet"
 - one side of 8.5"x11" paper
 - no other materials
- bags under desk, phones off and in bag
- do not open exam until told to do so

Milestone 2

- 80% Programming Achievement
- 5% Project Management
- (see update 3/4)
- 15% Writereap

Milestone 3

- Programming Achievement 40%
- Foundations 40%
- Writereap 20%

Milestone 4: four levels of visualization design

- domain situation
- who are the targets users?
- abstraction
 - translate from specific domain to vocabulary of visualization
- what is shown?
- data abstraction
 - how is the user looking at it?
 - task abstraction
 - often must transform data, guided by task
- idiom
 - how is it shown?
- visual encoding idiom how to draw
 - interaction idiom: how to manipulate
 - algorithm
 - efficient computation

Data abstraction: Three operations

- translate from domain-specific language to generic visualization language
- identify dataset type(s), attribute types
- identify cardinality
- how many items in the dataset?
- what is cardinality of each attribute?
- number of levels for categorical data
- range for quantitative data
- consider whether to transform data
 - guided by understanding of task
Channel effectiveness

- expressiveness
 - match channel and data characteristics
 - channels differ in accuracy of perception
 - distinguishability
 - match available levels in channel w/ data

Separability vs. Integrity

Position
- constraint view: mark type constrains what else can be encoded
 - points: 0 constraints on size, can encode more attributes w/ size & shape
 - areas: 1 constraint on size (length), can still size code other way (width)
 - rectilinear: 2 constraints on size (length/width), cannot size code or shape code
 - quick check: can you size-code another attribute, or is size/shape in use?

Grouping
- containment
 - same spatial region
- similarity
 - same values as other categorical channels

Manipulate

How to handle complexity: 4 families of strategies

- derive new data to show within view
- change view over time
- facet across multiple views

Coordinate views: Design choice interaction

Decomposing color

- first rule of color: do not talk about color!
 - color: confusing if treated as monolithic
 - decompose into three channels
 - ordered can show magnitude
 - luminance: how bright
 - separation: how colorful
 - categorical can show identity
 - hue, what color
 - channels have different properties
 - how much they convey directly to perceptual system
 - how much they convey how many discriminable bins can we use?