What resource limitations are we faced with?
• computational limits
 – processing time
 – system memory
• human limits
 – human attention, cognition, and memory
• display limits
 – pixels are precious resource, the most constrained resource
 – information density: ratio of space used to encode info vs unused whitespace
 – tradeoff between clutter and wasting space, find sweet spot between dense and sparse displays

Why use an external representation?
Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why do visualization work?
• limits of memory & cognition
 – change blindness
• power of perception to reveal
 – how many V’s?

Why does visualization work?
• limits of memory & cognition
• record information
• see data in context
• support computational analysis
• explain hypotheses
• expand memory
• find/reveal patterns
• generate hypotheses
• inspire
• make decisions

Why does visualization work?
• limits of memory & cognition
• record information
• see data in context
• support computational analysis
• explain hypotheses
• expand memory
• find/reveal patterns
• generate hypotheses
• inspire
• make decisions

Which subway map is better? Why?

Many definitions
• The purpose of visualization is insight, not pictures
• Visualization is really about external cognition, that is, how resources outside the mind can be used to boost the cognitive capabilities of the mind
• Good data visualization...
 – makes data accessible
 – combines strengths of humans and computers
 – enables insights
 – promotes system analytics
 – visualizes = human data interaction

My own favorite definition
Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why focus on tasks and effectiveness?
• effectiveness requires match between data/task and representation
 – set of representations is huge
 – human in the loop needs the details & no trusted automatic solution exists
 – each system has a different set of strengths and weaknesses

Why does visualization work?
• limits of memory & cognition
• record information
• see data in context
• support computational analysis
• explain hypotheses
• expand memory
• find/reveal patterns
• generate hypotheses
• inspire
• make decisions

Why focus on tasks and effectiveness?
• effectiveness requires match between data/task and representation
 – set of representations is huge
 – many are ineffective mismatch for specific data/task combo

Why focus on tasks and effectiveness?
• effectiveness requires match between data/task and representation
 – set of representations is huge
 – many are ineffective mismatch for specific data/task combo
 – increases chance of finding good solutions if you understand full space of possibilities

What does visualization do?
• reveals patterns
• assesses validity of statistical model
• summarizes lose information, details matter
• confirms expected and finds unexpected patterns
• assess availability of resources

Reveal patterns

Visualize definition & motivation
Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

• human in the loop needs the details & no trusted automatic solution exists
 – doesn’t know exactly what questions to ask in advance
 – exploratory data analysis
 – speed up through human-in-the-loop visual data analyzers
 – presents brown results to others
 – stepping stone towards automation
 – before model creation to provide understanding
 – during algorithm creation to refine, debug, set parameters
 – before or during deployment to build trust and monitor

Communicate ideas to others

Getting help
- labs with TAs
 - 3 slots on Fridays: 9-10, 11-12, 4-5
 - all in ICICS/CS Room 015
 - first lab Jan 17
 - consultation on D3 exercises and final project
- my office hours Tue right after class (3:30-4:30pm)
- by appointment, email me to arrange (tmm@cs.ubc.ca)
 - unlikely to catch me by dropping by, I'm usually either in meeting or elsewhere
- X661 (X-Wing of ICICS/CS bldg)
 - unlikely to catch me by dropping by, I'm usually either in meeting or elsewhere

Why analyze visualizations?
- imposes structure on huge design space
 - scaffold to help you think systematically
- guiding the exploration steps
 - Navigate Select Filter Aggregate

Exercise
- Which gender and income level shows a different effect of age on triglyceride levels?

Why does visualization work?
- limits of memory & cognition
 - change blindness
 - power of perception to reveal
- limits on number of possibilities ineffective for particular task/scenario combination

Course structure
- theoretical foundations, all term
 - in-class lecture twice/week, 2-3:20pm Tue/Thu
 - in-class in-class exercises leading into foundations exercises
 - post-class: finish foundations exercises
- D3 programming, weeks 1-8
 - partially flipped
 - pre-class: watch videos (plus a few readings)
 - pre-class: pre-lab quizzes, due by Fri before the lab
 - in-class work on programming exercises in Friday labs
 - individual consultation with TAs
 - post-class: finish exercises at home, to hand in

Exercise
- Which gender and income level shows a different effect of age on triglyceride levels?

Grading Scheme
- Exams: 30%
 - Midterm Exam: 15%, Final Exam: 15%
- Final Project: 30%
 - Programming Assignment: 50% of project
 - Foundations Assignment: 40% of project
 - Process Log: 10% of project
- Programming Assignments: 12%
 - 3 instances, 4% each
 - Foundations Assignments: 12%
 - 3 instances, 4% each
 - Participation: 10%
 - in-class exercises/Piazza discussion
 - Pre-Lab Prep Quizzes: 6%
 - 2 quizzes, 6 of them count 1% each (worst score dropped)

Resources
- optional textbook for further reading
 - Tamara Munzner
 - Visualization Analysis and Design
 - https://www.cs.ubc.ca/~tmm/vadbook/
 - UBC library has multiple free ebook copies
 - content will be covered in lecture

Getting help
- labs with TAs
 - 3 slots on Fridays: 9-10, 11-12, 4-5
 - all in ICICS/CS Room 015
 - first lab Jan 17
 - consultation on D3 exercises and final project
- my office hours Tue right after class (3:30-4:30pm)
 - by appointment, email me to arrange (tmm@cs.ubc.ca)
 - unlikely to catch me by dropping by, I'm usually either in meeting or elsewhere
- X661 (X-Wing of ICICS/CS bldg)

Course staff
- Instructor:
 - Tamara Munzner
 - pronouns: she/her
- TAs:
 - Michael Oppermann
 - Zipeng Liu
 - pronouns: he/him
- Piazza:
 - is the best way to reach us
 - use for all discussion and questions (not email)
 - https://piazza.com/class/k41qv94wb3r4uq
 - my office hours start today, right after class (X661)
 - Piazza is the best way to reach us

Course structure
- final projects, weeks 6-14
 - integrate programming and foundations
 - self-chosen teams of 3
 - stages
 - milestone 1: pitch (due Mar 6)
 - milestone 2: work in progress (due Mar 20)
 - milestone 3: final version (due Apr 8)
 - exams
 - midterms (Mar 12)
 - final (May 28)
 - primary focus will be on foundations
 - participation
 - in-class exercises/Piazza discussion

Information
- web page course is the vortex
 - mirror/temporary now up: https://www.cs.ubc.ca/~tmm/courses/436V-20/
 - permanent URL coming soon: https://students.cs.ubc.ca/~cs-436v/20/
 - don't forget to refresh frequent updates
- Socrative software clicker
 - https://api.socrative.com/rc/FwT2fa
- Canvas: pre-lab quizzes
 - https://canvas.ubc.ca/courses/44149
- Github, class
 - stay tuned

Course structure
- final projects, weeks 6-14
 - integrate programming and foundations
 - self-chosen teams of 3
 - stages
 - milestone 1: pitch (due Mar 6)
 - milestone 2: work in progress (due Mar 20)
 - milestone 3: final version (due Apr 8)
 - exams
 - midterms (Mar 12)
 - final (May 28)
 - primary focus will be on foundations
 - participation
 - in-class exercises/Piazza discussion

Information
- web page course is the vortex
 - mirror/temporary now up: https://www.cs.ubc.ca/~tmm/courses/436V-20/
 - permanent URL coming soon: https://students.cs.ubc.ca/~cs-436v/20/
 - don't forget to refresh frequent updates
- Socrative software clicker
 - https://api.socrative.com/rc/FwT2fa
- Canvas: pre-lab quizzes
 - https://canvas.ubc.ca/courses/44149
- Github, class
 - stay tuned

Course staff
- Instructor:
 - Tamara Munzner
 - pronouns: she/her
- TAs:
 - Michael Oppermann
 - Zipeng Liu
 - pronouns: he/him
- Piazza:
 - is the best way to reach us
 - use for all discussion and questions (not email)
 - https://piazza.com/class/k41qv94wb3r4uq
 - my office hours start today, right after class (X661)
 - Piazza is the best way to reach us

Course structure
- theoretical foundations, all term
 - in-class lectures twice/week, 2-3:20pm Tue/Thu
 - in-class in-class exercises leading into foundations exercises
 - post-class: finish foundations exercises
- D3 programming, weeks 1-8
 - partially flipped
 - pre-class: watch videos (plus a few readings)
 - pre-class: pre-lab quizzes, due by Fri before the lab
 - in-class work on programming exercises in Friday labs
 - individual consultation with TAs
 - post-class: finish exercises at home, to hand in

Exercise
- Which gender and income level shows a different effect of age on triglyceride levels?