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Abstract 

 
Gotsman et al. (SIGGRAPH 2003) presented the first 
method to generate a provably bijective parameteriza-
tion of a closed genus-0 manifold mesh to the unit 
sphere. This involves the solution of a large system of 
non-linear equations. However, they did not show how 
to solve these equations efficiently, so, while theoreti-
cally sound, the method has remained impractical to 
date. We show why simple iterative methods to solve 
the equations are bound to fail, and provide an effi-
cient numerical scheme which succeeds. Our method 
uses a number of optimization methods combined with 
an algebraic multigrid technique. With these, we are 
able to spherically parameterize meshes containing up 
to a hundred thousand vertices in a matter of minutes. 
 
1. Introduction 
 

Parameterization of a closed manifold mesh with 
genus 0 should preferably be done on its natural do-
main: the unit sphere S2. This provides a good starting 
point for various mesh processing algorithms such as 
remeshing, filtering, compression, texture mapping, 
and morphing. Parameterizing a triangle mesh onto the 
sphere means assigning positions on the sphere for 
each of the mesh vertices. The resulting piecewise 
mapping of the planar faces of the mesh to the corre-
sponding spherical triangles must be bijective. Namely, 
the spherical triangles which are the images of the 
mesh triangles must form a partition of the sphere. It is 
also desirable that the spherical triangles reflect the 
shapes of the mesh triangles as much as possible, i.e. 
the parameterization distortion should be minimal in 
some sense. 

A number of papers have addressed the problem of 
generating spherical parameterizations [1,2,6,11,12,13, 
14,18,23,25,26]. The earlier papers [1,12,13,18] at-
tempt to generalize the method of barycentric coordi-
nates for planar parameterization of 3D meshes with 
disk topology, due to Tutte [27] and Floater [8]. This is 
an attractive approach since it is easy to control the 
properties of the resulting parameterization through the 
choice of barycentric coordinates. In the planar case, 
the barycentric methods are guaranteed to generate 
bijective parameterizations, so the hope is that this 

guarantee will extend also to the spherical case. Unfor-
tunately, the extension to the sphere is not straightfor-
ward. Hence the early methods [1,12,14,18]  and their 
extensions [13] do not guarantee that the result is bijec-
tive, and can cause overlaps. Several recent spherical 
parameterization methods employ completely different 
approaches, but these are either difficult to control 
[6,25], or quite slow [23,26]. Most recently, Gotsman 
et al. [11] showed how to correctly generalize the 
method of barycentric coordinates, with all its advan-
tages, to the sphere. The generalization is based on 
results from spectral graph theory [4] due to Colin de 
Verdiere [5] and extensions due to Lovasz [20] and 
Lovasz and Schrijver [21]. At the bottom line, it in-
volves assigning (symmetric) positive weights wij to 
each edge of the mesh and solving the following set of 
4n non-linear equations in 4n unknowns for the em-
bedding coordinates xi=(ui,vi,wi) and auxiliary variables 
αi: 
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where N(i) are the neighbors of the i-th vertex . 
The geometric interpretation of these equations is 

that the difference between each vertex and the appro-
priate weighted combination of its neighbors, as pre-
scribed by the (positive) wij, has only a radial compo-
nent. As such, each vertex is balanced.  

The algebraic interpretation of these equations is 
that the three coordinate vectors of the embedding on 
the sphere are in the nullspace of the following Lapla-
cian-type matrix L associated with the graph: 
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There is also a physical interpretation of the equa-
tions [10]. Assume that the weights correspond to 
spring constants. Then it is relatively easy to see that 
the equations (1) are those obtained when applying the 
Lagrange multiplier technique to minimize the sum of 
the squared weighted edge lengths – the spring energy 
- subject to the vertices being on the sphere: 
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Unfortunately, a solution to Eqs. (1) and (2) is not 
sufficient to guarantee a bijective embedding. It will be 
sufficient only if a number of additional conditions on 
the spectrum of L are satisfied. The spectral theory 
[20,21] maintains that the spectrum should contain 
exactly one negative eigenvalue and exactly three null 
eigenvalues corresponding to the three coordinate 
functions of the embedding. The rest of the eigenvalues 
should be positive. In this case, L is called a Colin de 
Verdiere matrix [5] for the mesh connectivity. A solu-
tion to Eqs. (1) and (2) guarantees only partial satisfac-
tion of these conditions – namely that the three coordi-
nate function are contained in L’s nullspace. There 
exists an entire family of trivial solutions to the equa-
tions, which represent non-bijective parameterizations. 
An obvious trivial solution is when all vertices coin-
cide at any one point on the sphere. Here the spring 
energy of (4) achieves the global minimum of 0. This 
corresponds to the case when the co-rank of L is one. A 
somewhat less obvious situation is when all the verti-
ces lie on one great circle on the sphere. This corre-
sponds to the case when the co-rank of L is two. An-
other more surprising set of non-bijective solutions is 
when the spherical triangles “wrap” the sphere more 
than once. This corresponds to the case where the spec-
trum of L contains more than a single negative eigen-
value. Hence a major concern is to “steer” the solver 
towards the desirable bijective solutions. 

Another more general problem is that there exist 
connectivities for which no bijective parameterizations 
even exist. This is the family of non-inscribable planar 
graphs [7]. These correspond to the class of planar tri-
angle graphs which are not Delaunay-realizable, mean-
ing that they cannot be drawn as straight line graphs in 
the plane which are also Delaunay triangulations. This 
implies that for any assignment of positive weights to 
the mesh half-edges, there will be no bijective solution 
to the equations. This, however, is very rare. In most 
cases, not only is there a bijective solution to the equa-
tions, but an entire family of solutions. Beyond the 
obvious two degrees of freedom due to arbitrary rota-
tions on the sphere, there also exist some non-trivial 
transformations which are invariant to the equations. 
See [11] for a simple example. 

The system of Eqs. (1) and (2) is sparse, having the 
structure of the graph adjacency matrix. However, de-
spite this simple structure, solving these quadratic 
equations is non-trivial. Gotsman et al [11] did not 
even attempt to provide an efficient method to solve 
the equations. Instead they simply employed a standard 
MATLAB solver, which did not take any advantage of 
the structure of the system. This solver was only able 
to parameterize meshes with up to 2,000 vertices. For 
these meshes it took several minutes to generate the 
parameterizations. The solver was not able to handle 
larger meshes. Since practical applications tend to in-

volve meshes of tens to hundreds of thousands of verti-
ces, this system of equations remained unsolvable. 

The early methods for spherical parameterization 
based on barycentric coordinates [1,12,18] employ 
simple Gauss-Seidel-type iterative schemes. Although 
not mentioned in the papers, it seems that the authors 
were trying to solve systems similar to Eqs. (1) and (2). 
Without exception, these simple Gauss-Seidel schemes 
ultimately collapse to a trivial solution. Some “tricks” 
have been employed to avoid this collapse, but these 
eventually prevent the system from converging to a 
true solution of the equations. Similar behavior occurs 
in a recent scheme described in [13]. In Section 2, we 
outline the prototype of these inadequate approaches 
and prove that they are bound to fail. In Section 3, we 
describe our approach, which breaks the solution down 
into a two step procedure involving the solution of two 
systems of equations, one linear and one non-linear. 
The linear system is solved using a multiresolution 
algebraic multigrid approach. The solution to this sys-
tem is used as an initial guess for solving the nonlinear 
system. A careful iterative scheme then improves the 
solution until it converges, avoiding any collapses to 
the trivial solutions. Experimental results illustrating 
the quality of our embeddings and the efficiency of our 
methods are provided in Section 4. We conclude in 
Section 5. 
 
2. Inadequate Solution Method 
 

The simplest iterative method for solving Eqs. (1) 
and (2) is by “projected” Gauss-Seidel iteration with 
damping parameter 0<λ≤1: 

 
Projected Gauss-Seidel(x(0), λ) 
 
1: t = 0  
2: repeat   
3:    for i=1 to n do 
4:        s = (1-λ)xi(t) + λΣjwijxj(t) 
5:        xi(t+1) = s/||s|| 
6:    end 
7:    t = t+1 
8: until ||x(t)-x(t-1)||<δ 

 
The physical interpretation of one (undamped) pro-

jected Gauss-Seidel step at vertex i is to minimize the 
spring energy (4) with respect to the position of that 
vertex. Damping means taking only a partial step in the 
direction of the new location, or, equivalently, a partial 
step along the sphere in the tangential direction. This 
scheme has been used by many authors [1,12,13,18]. 
Unfortunately, projected Gauss-Seidel decreases the 
residual for only a finite number of iterations and dif-
ferent values of λ affect only the speed of the process. 
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By reducing λ it is possible to get closer to a bijective 
solution before it starts to diverge, but this will also 
cause the approach to the solution to be very slow. As 
it approaches a bijective solution, the scheme ulti-
mately becomes unstable, the residual increases, and 
the system collapses to a degenerate solution. We have 
observed this in all our experiments.  

This undesirable divergence can be explained by 
examining the linearized form of the equations near a 
bijective solution. First note that for a dense mesh em-
bedded near a bijective solution, αi will tend to a value 
on the order of (1-O(d2))Σjwij, where d is the average 
length of an edge (which will typically be O(1/√n)). 
Furthermore, during the iterations, the values of the αi 
will change much less rapidly than the values of xi by a 
factor of O(d). Hence we may treat the values of the 
unknowns αi as positive constants at this stage, and the 
problem reduces to solving the linear system Lx=0, 
where L is the matrix defined in (3). The Projected 
Gauss-Seidel method may now be recognized as stan-
dard Gauss-Seidel iteration for this equation: 

1

1 1

1

1 1

1 1( 1) ( 1) ( )

1 1( 1) ( )

i n

i ij j ij j
j j iii ii

i n

ij j ij j
j j ii i

x t L x t L x t
L L

w x t w x t
α α

−

= = +

−

= = +

+ = − + −

= + +

∑ ∑

∑ ∑
 

The following corollary of a Theorem ([15], p. 70) 
concerning the convergence of Gauss-Seidel iteration 
will be useful in analyzing the behavior of this process: 
 
Theorem: If A is a symmetric matrix with a positive 
diagonal and A is positive definite when its diagonal 
is multiplied by two, then the damped Gauss-Seidel 
iteration with parameter 0<λ≤1 for solving Ax=b 
converges if and only if A is positive definite. 
 

Now our matrix L in the vicinity of a bijective solu-
tion is symmetric with positive diagonal. Furthermore, 
when the diagonal is multiplied by two, the i-th diago-
nal element approaches 2Σjwij. Since the sum of the 
absolute values of the rest of the row is Σjwij, this 
modified matrix is diagonally dominant, hence positive 
definite. Thus the conditions of the Theorem hold for 
L. On the other hand, L is a Colin de Verdiere matrix 
for the connectivity graph, hence it has at least one 
negative eigenvalue. Thus L is not positive definite, 
and the Theorem implies that any damped Gauss-
Seidel iteration for L will not converge to a bijective 
solution. However, since the iteration does consistently 
reduce the spring energy, it will ultimately converge to 
a trivial solution. 
 
 
3. Our Solution 
 

Since Projected Gauss-Seidel is unstable near a bi-
jective solution, we must replace it at that point with a 
more sophisticated and stable method. In this section 
we describe how we do this, along with some optimi-
zations which help accelerate convergence. The stages 
of our method are as follows: 
1. Generate a good initial guess for the embedding. 
2. Perform Projected Gauss-Seidel steps until the 

residue begins to increase. 
3. Perform local Newton steps until convergence. 
 
3.1 Generating an initial guess 
 

No matter which iterative method is used, it is al-
ways beneficial to start from a good initial “guess” for 
the solution. The simplest initial guess is to center the 
mesh at the origin, and then project the vertices to the 
sphere. However, this will usually introduce “folds” 
into the embedding, which could be very difficult to 
eliminate later, and can push the solver in the direction 
of a non-bijective solution. 

Instead we propose to use a variant of a method pro-
posed by Isenburg et al. [16], to generate the initial 
guess: 

 
InitialGuess(M,w) 
 
1. Partition M into two balanced sub-meshes. 
2. Embed each sub-mesh in a planar disk using the 

barycentric method with weights w. 
3. Combine the embeddings of the two submeshes 

into one planar embedding using Moebius inver-
sion. 

4. Use inverse stereo projection to obtain a spherical 
embedding. 

 
We use the MeTiS [17] graph partitioning package 

to obtain a balanced minimal vertex separator of the 
mesh graph. This means that we identify a small subset 
of the vertices, whose removal, along with their inci-
dent edges, leaves us with two unconnected compo-
nents of approximately equal size. The removed verti-
ces are called a separator. We later add them back to 
each component, so that both have a common bound-
ary. Because of the celebrated planar separator theorem 
[19], we can expect the size of the separator to be 
O(√n). It is important that this set not be too small. 

Each subgraph is now embedded on the unit disk by 
fixing its (common) boundary vertices to points sam-
pled uniformly on the unit circle, and solving the pla-
nar barycentric equations for the interior vertices: 
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 This is a sparse linear system, which has a unique 
solution. Large systems with this structure may be 
solved using an algebraic multigrid (AMG) algorithm, 
such as the Ruge-Stueben algorithm [24], described in 
the Appendix. 

Given the two sub-meshes embedded to the unit 
disk with common boundary vertices, we apply the 
complex Moebius inversion f(z) =1/conj(z) to one of 
the embeddings. This maps the interior of the unit disk 
to its exterior. The union of both embeddings produces 
a planar embedding (where the origin is mapped to 
infinity). Moebius transformations are conformal, 
hence in a continuous setting they preserve angles. 
This is not strictly true in the discrete setting. However, 
in our experience this transformation closely preserves 
the shape of the triangles everywhere except at infinity. 
See Figure 1. 

The planar embedding (u,v) is then mapped to the 
unit sphere using the inverse stereo projection: 

( )2 2
2 2

1( , ) 2 ,2 ,1
1
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Note that this maps the unit circle (the common 
boundary of the two sub-meshes) to the equator of the 
sphere.  

 

Similarly to the Moebius transform, stereo projec-
tion is conformal in the continuous setting. In our dis-
crete setting it closely preserves the shape of the mesh 
triangles, providing a good initial guess for the iterative 
improvement stage.  

Even though each of the two planar embeddings sat-
isfies the planar barycentric equations (5), this does not 
imply that they satisfy the corresponding equations (1) 
on the sphere. Furthermore, there is no theoretical 
guarantee that this initial spherical embedding is bijec-
tive, although, in practice, for dense meshes we found 
that this is always the case. The hope is that from this 
initial embedding it will be relatively easy to converge 
to a bijective solution of the equations.  
 
3.2 Local Gauss-Seidel iteration 
 

As we observed earlier, the projected Gauss-Seidel 
iteration does reduce the equation residual, at least at 
the beginning of the process. So it is beneficial to use it 
as long as it produces the desired effect. We use the 
following variation on the iterative procedure in Sec-
tion 2:  
 

Projected Gauss-Seidel 

   
(a) (b) (c) 

 
(d) (e) 

Figure 1. Stages in generating a spherical embedding for the gargoyle model (using uniform weights): (a) 
Partition into two sub-meshes using MeTiS. (b) Planar parameterization of the sub-meshes. (c) Com-
bined planar embedding (with zoom); (d) Initial spherical parameterization generated by inverse stereo 
projection (with zoom) (f) final result after projected Gauss-Seidel and local Newton iterations (with 
zoom). 
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1:  t = 0 
2:  R(0) = 0  
3:  do   
4:      for i=1 to n do 
5:          s = (1-λ)xi(t) + λΣ wijxj(t) 
6:          αi = ||s|| 
7:          xi(t+1) = s/αi  
8:      end 
9:      t = t+1 
10:    R(t) = Res(x) // residual  
11: while R(t) < R(t-1) 

 
The residual Res(x) is defined as: 
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where the weights are normalized to sum to unity per 
vertex. The main difference between this method and 
the standard projected Gauss-Seidel iteration is the 
termination condition, where we stop the process once 
the residual starts growing. Because of this, we do not 
need to be too careful which value of λ is used, so we 
use the simple λ=1.  
  
3.3 Local valid Newton step 
 

Once the projected Gauss-Seidel iteration begins to 
fail, i.e. increase the residual, we switch to a more so-
phisticated, albeit slower, method: local Newton opti-
mization. This method is guaranteed to reduce the re-
sidual. To reduce the number of variables and con-
straints, we transform the problem to spherical coordi-
nates. Performing a vector product of each side of 
Equation (1) with xi, we are able to eliminate the auxil-
iary variables αi from the equations: 

xi × Σ wijxj = 0   i=1,..,n                      (6) 
Furthermore, substituting the following spherical 

coordinates: xi = cos(θi)cos(φi), yi = sin(θi)cos(φi), zi = 
sin(φi), allows us to ignore Equation (2) and reduce (6) 
to the following two equations for the two components 
of the residual: 
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We would like to use a local Newton-type iteration 
to reduce these two residuals (over the entire mesh) by 

moving the i-th vertex. With some reuse of notation, 
the total residuals are defined as: 

                          

2
1 1

1

2
2 2

1

( , ) ( , , )

( , ) ( , , )

n

i

n

i

R R i

R R i

θ φ θ φ

θ φ θ φ

=

=

=

=

∑

∑
 

Moving vertex i affects the residual only at vertex i and 
its neighbors. To apply a Newton step, we need the 
Jacobian matrix of the total residuals. The relevant 
non-zero partial derivatives of the residuals are: 
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and for j∈N(i): 
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The Jacobian of the total residual is then obtained 
by applying the chain rule: 

1 1 1
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R R R
φ θ φ
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components of the 2x2 Jacobian matrix. 
Having this, the local Newton iteration is as fol-

lows: 
 

Local Newton Iteration 
 
1:  t = 0  
2:  while 1( ( ), ( ))R t tθ φ + 2 ( ( ), ( ))R t tθ φ  > tol 
3:     for i=1 to n do 
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4:         J = Jacobian of 1( ( ), ( ))R t tθ φ  and  
             2 ( ( ), ( ))R t tθ φ  by θi and φi.     

6:         11
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8:      end 
9:      t = t+1 
10: end 

 
Local Newton iteration is applied to each vertex in 

turn. It involves inverting a 2x2 matrix and applying 
the iteration. By definition, this iteration will always 
decrease the residual in the vicinity for some value of 
λ>0. However, finding the value of λ for which the 
decrease is maximal is non-trivial. We find the optimal 
value by using a linesearch technique. In each iteration 
we start with λ=1 and repeatedly decrease λ by half if 
this leads to a larger decrease in residue, while con-
straining λ>0.05 in order not to stagnate the conver-
gence.  

To better condition the system, when optimizing the 
i-th vertex we rotate the vertex and its 1-ring 
neighborhood so that the vertex’s normal coincides 
with the x-axis. This will give us small values of θi and 
φi.  

When the iterations have converged, we will be left 
with an embedding which is an approximate solution to 
Eqs. (1) and (2) up to a prescribed tolerance, and is not 
degenerate. Since the spectral theory also implies that 
all the triangles of the bijective spherical embedding 
will have positive area – this guarantees that a small 
enough tolerance will always result in a bijective em-
bedding.  
 
4. Experimental Results  

 
We have fully implemented the numerical schemes 

described in this paper. The resulting software is avail-
able on the Web at http://www.cs.technion.ac.il/~shadis. 

We have experimented with our numerical scheme 
using various input models and weights. We observed 
that the Tutte (uniform) weights embedding had the 
smallest residual before the local Newton improvement 
phase, and converged the fastest. We did not experi-
ence any collapsed or double (wrapped) embeddings.  

The figures below demonstrate the results of run-
ning our algorithm with different weights and on mod-
els of different size. We explored three types of 
weights: uniform [27], conformal [22], and mean-value 
[9]. Both conformal and mean-value weights do not 
strictly satisfy the Colin de Verdiere conditions. Con-
formal weights can be negative, and mean-value 
weights are not symmetric. They are nevertheless very 
commonly used, as they tend to result in angle preserv-
ing parameterizations. In practice, on all the models we 

tested, both types of weights resulted in bijective 
parameterizations when using our method. To visualize 
the embeddings we used the parameterization to map 
the normals from the original models to the spherical 
versions. Figure 2 compares the parameterization of 
two irregular meshes (triceratops and gargoyle) using 
the three types of weights. While there are visible dif-
ferences between uniform weights embedding and the 
other two, the conformal and mean-value embeddings 
are nearly identical. As expected, for meshes with 
regular geometry such as the torso (Figure 3) uniform 
and mean-value/conformal weights result in very simi-
lar parameterizations. Similarly, mean value (or con-
formal) parameterization of models which are close in 
shape to the sphere such as the head and the skull (Fig-
ure 3) produces nearly isometric parameterizations. In 
contrast, mean value spherical parameterization of 
models with high curvature variation, such as the hu-
man (Figure 3) or the gargoyle (Figure 2) results in 
significant stretch.  

Table 1 summarizes the runtimes of our algorithm. 
For all the examples, the algorithm terminated once the 
residual was less than 10-6. We break down the time 
into two components, the time it takes to generate the 
initial guess (Section 3.1) (implemented in MATLAB), 
and the time it takes to obtain the final result (Sections 
3.2-3.3) (implemented in C++). The total runtimes, as 
measured on a 2.8 GHz PC with 1GB RAM, vary be-
tween 10 seconds for models of 5,000 triangles to 
1,350 seconds (22 minutes) for a model of 129,000 
triangles. As can be seen from the values, the runtime 
is roughly linear in the size of the input meshes. The 
time for uniform weights embedding is typically 
smaller than for conformal or mean value embeddings, 
which require roughly the same time. For comparison, 
Praun and Hoppe [23] quote times of 7 to 25 minutes 
for parameterizing models of 25,000 to 100,000 trian-
gles, although they generate completely different 
parameterizations.  

Two recent methods [2,13] consider variations of 
the Gauss-Seidel procedure (Section 2), which we 
showed to be unstable. Gu et al. [13] use a trial and 
error approach to adjust the damping parameter λ, in 
order to obtain a value for which the procedure may be 
terminated sufficiently close to a bijective solution 
before diverging. When successful, they quote times of 
530 seconds for parameterizing meshes with 30,000 
faces. Birkholz [2] uses a hierarchical method which 
works with the spherical angles of the embedding. His 
method requires approximately 600 seconds to param-
eterize meshes with about 100,000 faces. The hierar-
chical approach stabilizes the conversion, but is able to 
obtain only an approximate solution 
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5. Discussion and Conclusion 
 

We have presented an efficient numerical scheme to 
solve the non-linear equations described by Gotsman et 
al [11], which guarantee a bijective spherical parame-
terization of a closed manifold genus-0 mesh. This 
scheme enables us to parameterize meshes containing 

hundreds of thousands of vertices in a matter of min-
utes.  

We have no theoretical guarantee that our method 
indeed solves the equations, namely reduces the resid-
ual to zero given enough time. Theoretically, the itera-
tions may get stuck in a local minimum. However, we 
have overwhelming experimental evidence that this is 
not the case. The good initial guess seems to bring the 
solver sufficiently close to a bijective solution, and, in 

(a) (b) (c) (d) 

  
(e) (f) (g) (h) 

    
Figure 2: Spherical parameterization of triceratops (a) and gargoyle (e): using uniform weights (b, 
f), using conformal weights (c, g) and using mean value weights (d, h). 

 
Model # triangles Weights Initial Guess (sec) Solution  

(sec) 
uniform 2.7 8.15 

conformal 1.3 14.8 
 

Triceratops  
 

5,660 
mean-value 2.3 16.1 

uniform 10.2 39.3 
conformal 4.7 86.8 

 
Gargoyle 

 
20,000 

mean-value 4.7 162.5 
uniform 9.9 43.4 Torso 22,720 

mean-value 5.2 87.2 
uniform 10.8 120.5 Skull 40,000 

mean-value 10.1 149.8 
uniform 21.3 306.5 Bunny 69,664 

mean-value 17.4 456.0 
uniform 35.0 878.8 Human 119,998 

mean-value 32.0 1,134.3 
uniform 41.9 1,045.9 Head 128,750 

mean-value 36.3 1,307.2 
     

Table 1: Performance statistics of our algorithm. 
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all our experiments, we were able to bring the residual 
below any reasonable tolerance by sufficient iteration. 

Our scheme uses a spherical embedding constructed 
through inverse stereo projection of a planar embed-
ding as an initial guess for its careful iterative scheme. 
Although this initial guess is not guaranteed to be bi-
jective, the theory guarantees that the final solution 
will always be bijective (up to the solution tolerance) if 
the weights are symmetric. 

For non-symmetric (or negative) weights, the theory 
does not guarantee that the solution to the equations 
will be bijective, even if we start out with an embed-
ding that is. However, in this case, we can extend the 
algorithm to guarantee that the embedding remains 
bijective throughout the process. When a new position 
is computed for any vertex, we check that the bijectiv-
ity has not been violated. Should that be the case, the 
vertex is “backtracked” slowly towards its previous 
position until it becomes valid again. Hence the final 
result will also be bijective. 

The test for validity of a vertex is straightforward: 
calculate the normals for all the oriented incident faces. 
Then the mapping is bijective at that vertex iff these 
normals form acute angles with the normal to the 
sphere at the vertex. 

The runtime in our current implementation is domi-
nated by the second phase – iterations over the entire 
mesh on the sphere. We would like to apply a multigrid 
method to accelerate this phase as well. However, this 
will be more difficult since algebraic multigrid is pri-
marily designed for linear systems, and the second 
phase is inherently non-linear. 
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Figure 3: Spherical parameterization using uniform (middle column) and mean-value (right column) 
weights. The zoom in on the head region of the human model highlights the superior shape preserva-
tion achieved by mean value weights compared to uniform weights for irregular meshes (sharper fea-
tures such as ears, mouth and nose) 
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Appendix 
 

Multigrid computational methods employ a hierar-
chy of progressively coarser grids to accelerate the 
solution of linear systems of equations, usually arising 
from the discretization of boundary-value problems. 
Invented for regular grids, the scope of multigrid 
methods has been widened considerably with the intro-
duction of Algebraic Multigrid (AMG) techniques. 
This allows also solving sparse unstructured problems 
and handling non-PDE applications. In particular, it is 
very well suited to the linear systems that arise in mesh 
parameterization to the plane using barycentric coordi-
nates. We adopt the classical approach of Ruge and 
Steuben [24], which is briefly described next. For a 
complete elementary presentation of AMG, see Chap-
ter 8 of [3]. 

The AMG algorithm for the iterative solution of the 
sparse linear system, ,Lx f=  consists of a setup phase 
and a solve phase. In the setup, a set of progressively 
coarser systems and associated approximations is con-
structed, starting with the full vector of variables, and 
ending with a very coarse system of just a few vari-
ables. Each coarsening is performed by choosing a 
subset of variables in the current system. The main 
criterion for choosing the coarse variables is the 
"strength of connections" as reflected in the relative 
sizes of elements of the matrix, L, and its approxima-
tions in the coarser systems. Specifically, a threshold, 
0 1,t≤ ≤  is chosen, typically 0.25. Then, if ( ),L i j  is 
larger in absolute value than t times the largest off-
diagonal element of L, then variable i is said to depend 
on variable j, and variable j is said to influence variable 
i. Based on this notion of dependence, the variables are 
partitioned into two categories: C variables - the subset 
that will comprise the next-coarser system, and F vari-
ables – the rest.  The set C is generated by a graph al-
gorithm based on two criteria: 
1. Every variable j, that influences variable ,i F∈  

must itself be in C, or else variables i and j must 
both depend on at least one variable .k C∈  

2. C should be a maximal subset with the property 
that no variable in C depends on another vari-
able in C. 

It is sometimes not possible to satisfy both criteria. 
In this case, it is preferable to satisfy the first, while 
using the second as a guide. These criteria generally 
lead to coarse systems that strike a good balance be-
tween a significant reduction in the number of vari-
ables and good approximation properties. Note that the 
construction of the level is based on pure algebraic 
considerations, and is not directly related to the geome-
try of the mesh from which the problem is derived. 

In addition to constructing the hierarchy, suitable 
sparse prolongation (interpolation) operators are con-
structed for transferring information between levels of 
the hierarchy. These operators are also determined by L 
and its coarse versions. Generally, the set iC C∈ of 
coarse variables used in the interpolation to variable 

,i F∈  is the set of C-variables which influence vari-
able i. The interpolation coefficients are chosen such 
that errors which are not eliminated efficiently by the 
Gauss-Seidel iteration will be interpolated accurately. 
This allows the coarse approximation to correct such 
errors very effectively, and thus all errors are elimi-
nated efficiently by the algorithm described below.   

More formally, if the solution vector, x, is of length 
n, then in the setup phase we construct a set of progres-
sively coarser vectors of sizes 0 1 2, , , , ,kn n n n n= K  
corresponding prolongation matrices 0 1 2 1, , , , ,kP P P P −K  
where jP  is a matrix of jn  rows and 1jn +  columns that 
is used to interpolate data from level j+1 to level j, and 
a set of matrices, 0 1 2, , , , .kL L L L L= K  The latter ma-
trices are constructed in order, using the Galerkin prin-
ciple: 1 .T

j j j jL P L P+ =  The number of levels, k+1, is 
chosen such that kn  is small enough for the problem at 
level k to be solved directly at a negligible cost. 

Once the setup phase is complete, the problem is 
solved iteratively by multigrid cycles, defined recur-
sively below. Here, jx%  denotes at all times the most 
up-to-date approximation for the solution of the level-j 
problem. To solve the linear system Lx = f, call algo-
rithm AMG with j = 0, some initial approximation, 0x% , 
and 0f  = f. The parameters 1ν  and 2ν  are fixed small 
non-negative integers, typically both equal to 1.  

( ), ,j jx f jAMG %  

      1.    If ,j k=  return 1
.j jL f−  

2. Perform 1ν  Gauss-Seidel iterations on the 
system j j jL x f= with initial guess .jx%   

3. Compute the residual, j j j jr f L x= − % , and re-
strict it to the next coarser level by  

       1 .T
j j jf P r+ ←  Set 1 0.jx + =%  

4. Recursively call 
( )1 1 1, , 1 .j j jx x f j+ + +← +AMG% %  

5. Interpolate and add the coarse-level correc-
tion by 1.j j j jx x P x +← +% % %  

6. Perform 2ν  Gauss-Seidel iterations on the 
system j j jL x f= with initial guess jx%  and 
return the result. 

 


