
 1

Practical Spherical Embedding of Manifold Triangle Meshes

Shadi Saba Irad Yavneh Craig Gotsman Alla Sheffer
Technion Technion Harvard University UBC

Abstract

Gotsman et al. (SIGGRAPH 2003) presented the first
method to generate a provably bijective parameteriza-
tion of a closed genus-0 manifold mesh to the unit
sphere. This involves the solution of a large system of
non-linear equations. However, they did not show how
to solve these equations efficiently, so, while theoreti-
cally sound, the method has remained impractical to
date. We show why simple iterative methods to solve
the equations are bound to fail, and provide an effi-
cient numerical scheme which succeeds. Our method
uses a number of optimization methods combined with
an algebraic multigrid technique. With these, we are
able to spherically parameterize meshes containing up
to a hundred thousand vertices in a matter of minutes.

1. Introduction

Parameterization of a closed manifold mesh with
genus 0 should preferably be done on its natural do-
main: the unit sphere S2. This provides a good starting
point for various mesh processing algorithms such as
remeshing, filtering, compression, texture mapping,
and morphing. Parameterizing a triangle mesh onto the
sphere means assigning positions on the sphere for
each of the mesh vertices. The resulting piecewise
mapping of the planar faces of the mesh to the corre-
sponding spherical triangles must be bijective. Namely,
the spherical triangles which are the images of the
mesh triangles must form a partition of the sphere. It is
also desirable that the spherical triangles reflect the
shapes of the mesh triangles as much as possible, i.e.
the parameterization distortion should be minimal in
some sense.

A number of papers have addressed the problem of
generating spherical parameterizations [1,2,6,11,12,13,
14,18,23,25,26]. The earlier papers [1,12,13,18] at-
tempt to generalize the method of barycentric coordi-
nates for planar parameterization of 3D meshes with
disk topology, due to Tutte [27] and Floater [8]. This is
an attractive approach since it is easy to control the
properties of the resulting parameterization through the
choice of barycentric coordinates. In the planar case,
the barycentric methods are guaranteed to generate
bijective parameterizations, so the hope is that this

guarantee will extend also to the spherical case. Unfor-
tunately, the extension to the sphere is not straightfor-
ward. Hence the early methods [1,12,14,18] and their
extensions [13] do not guarantee that the result is bijec-
tive, and can cause overlaps. Several recent spherical
parameterization methods employ completely different
approaches, but these are either difficult to control
[6,25], or quite slow [23,26]. Most recently, Gotsman
et al. [11] showed how to correctly generalize the
method of barycentric coordinates, with all its advan-
tages, to the sphere. The generalization is based on
results from spectral graph theory [4] due to Colin de
Verdiere [5] and extensions due to Lovasz [20] and
Lovasz and Schrijver [21]. At the bottom line, it in-
volves assigning (symmetric) positive weights wij to
each edge of the mesh and solving the following set of
4n non-linear equations in 4n unknowns for the em-
bedding coordinates xi=(ui,vi,wi) and auxiliary variables
αi:

()

2

1,.., (1)

1 1,.., (2)

i i ij j
j N i

i

x w x i n

x i n

α
∈

= =

= =

∑

where N(i) are the neighbors of the i-th vertex .
The geometric interpretation of these equations is

that the difference between each vertex and the appro-
priate weighted combination of its neighbors, as pre-
scribed by the (positive) wij, has only a radial compo-
nent. As such, each vertex is balanced.

The algebraic interpretation of these equations is
that the three coordinate vectors of the embedding on
the sphere are in the nullspace of the following Lapla-
cian-type matrix L associated with the graph:

ij
ij

i

w i j
L

i jα
− ≠

= =
 (3)

There is also a physical interpretation of the equa-
tions [10]. Assume that the weights correspond to
spring constants. Then it is relatively easy to see that
the equations (1) are those obtained when applying the
Lagrange multiplier technique to minimize the sum of
the squared weighted edge lengths – the spring energy
- subject to the vertices being on the sphere:

2

()
arg min . . 1

n

ij i j i
i i j N i

x w x x s t x
= ∈

= − =∑ ∑ (4)

 2

Unfortunately, a solution to Eqs. (1) and (2) is not
sufficient to guarantee a bijective embedding. It will be
sufficient only if a number of additional conditions on
the spectrum of L are satisfied. The spectral theory
[20,21] maintains that the spectrum should contain
exactly one negative eigenvalue and exactly three null
eigenvalues corresponding to the three coordinate
functions of the embedding. The rest of the eigenvalues
should be positive. In this case, L is called a Colin de
Verdiere matrix [5] for the mesh connectivity. A solu-
tion to Eqs. (1) and (2) guarantees only partial satisfac-
tion of these conditions – namely that the three coordi-
nate function are contained in L’s nullspace. There
exists an entire family of trivial solutions to the equa-
tions, which represent non-bijective parameterizations.
An obvious trivial solution is when all vertices coin-
cide at any one point on the sphere. Here the spring
energy of (4) achieves the global minimum of 0. This
corresponds to the case when the co-rank of L is one. A
somewhat less obvious situation is when all the verti-
ces lie on one great circle on the sphere. This corre-
sponds to the case when the co-rank of L is two. An-
other more surprising set of non-bijective solutions is
when the spherical triangles “wrap” the sphere more
than once. This corresponds to the case where the spec-
trum of L contains more than a single negative eigen-
value. Hence a major concern is to “steer” the solver
towards the desirable bijective solutions.

Another more general problem is that there exist
connectivities for which no bijective parameterizations
even exist. This is the family of non-inscribable planar
graphs [7]. These correspond to the class of planar tri-
angle graphs which are not Delaunay-realizable, mean-
ing that they cannot be drawn as straight line graphs in
the plane which are also Delaunay triangulations. This
implies that for any assignment of positive weights to
the mesh half-edges, there will be no bijective solution
to the equations. This, however, is very rare. In most
cases, not only is there a bijective solution to the equa-
tions, but an entire family of solutions. Beyond the
obvious two degrees of freedom due to arbitrary rota-
tions on the sphere, there also exist some non-trivial
transformations which are invariant to the equations.
See [11] for a simple example.

The system of Eqs. (1) and (2) is sparse, having the
structure of the graph adjacency matrix. However, de-
spite this simple structure, solving these quadratic
equations is non-trivial. Gotsman et al [11] did not
even attempt to provide an efficient method to solve
the equations. Instead they simply employed a standard
MATLAB solver, which did not take any advantage of
the structure of the system. This solver was only able
to parameterize meshes with up to 2,000 vertices. For
these meshes it took several minutes to generate the
parameterizations. The solver was not able to handle
larger meshes. Since practical applications tend to in-

volve meshes of tens to hundreds of thousands of verti-
ces, this system of equations remained unsolvable.

The early methods for spherical parameterization
based on barycentric coordinates [1,12,18] employ
simple Gauss-Seidel-type iterative schemes. Although
not mentioned in the papers, it seems that the authors
were trying to solve systems similar to Eqs. (1) and (2).
Without exception, these simple Gauss-Seidel schemes
ultimately collapse to a trivial solution. Some “tricks”
have been employed to avoid this collapse, but these
eventually prevent the system from converging to a
true solution of the equations. Similar behavior occurs
in a recent scheme described in [13]. In Section 2, we
outline the prototype of these inadequate approaches
and prove that they are bound to fail. In Section 3, we
describe our approach, which breaks the solution down
into a two step procedure involving the solution of two
systems of equations, one linear and one non-linear.
The linear system is solved using a multiresolution
algebraic multigrid approach. The solution to this sys-
tem is used as an initial guess for solving the nonlinear
system. A careful iterative scheme then improves the
solution until it converges, avoiding any collapses to
the trivial solutions. Experimental results illustrating
the quality of our embeddings and the efficiency of our
methods are provided in Section 4. We conclude in
Section 5.

2. Inadequate Solution Method

The simplest iterative method for solving Eqs. (1)
and (2) is by “projected” Gauss-Seidel iteration with
damping parameter 0<λ≤1:

Projected Gauss-Seidel(x(0), λ)

1: t = 0
2: repeat
3: for i=1 to n do
4: s = (1-λ)xi(t) + λΣjwijxj(t)
5: xi(t+1) = s/||s||
6: end
7: t = t+1
8: until ||x(t)-x(t-1)||<δ

The physical interpretation of one (undamped) pro-

jected Gauss-Seidel step at vertex i is to minimize the
spring energy (4) with respect to the position of that
vertex. Damping means taking only a partial step in the
direction of the new location, or, equivalently, a partial
step along the sphere in the tangential direction. This
scheme has been used by many authors [1,12,13,18].
Unfortunately, projected Gauss-Seidel decreases the
residual for only a finite number of iterations and dif-
ferent values of λ affect only the speed of the process.

 3

By reducing λ it is possible to get closer to a bijective
solution before it starts to diverge, but this will also
cause the approach to the solution to be very slow. As
it approaches a bijective solution, the scheme ulti-
mately becomes unstable, the residual increases, and
the system collapses to a degenerate solution. We have
observed this in all our experiments.

This undesirable divergence can be explained by
examining the linearized form of the equations near a
bijective solution. First note that for a dense mesh em-
bedded near a bijective solution, αi will tend to a value
on the order of (1-O(d2))Σjwij, where d is the average
length of an edge (which will typically be O(1/√n)).
Furthermore, during the iterations, the values of the αi
will change much less rapidly than the values of xi by a
factor of O(d). Hence we may treat the values of the
unknowns αi as positive constants at this stage, and the
problem reduces to solving the linear system Lx=0,
where L is the matrix defined in (3). The Projected
Gauss-Seidel method may now be recognized as stan-
dard Gauss-Seidel iteration for this equation:

1

1 1

1

1 1

1 1(1) (1) ()

1 1(1) ()

i n

i ij j ij j
j j iii ii

i n

ij j ij j
j j ii i

x t L x t L x t
L L

w x t w x t
α α

−

= = +

−

= = +

+ = − + −

= + +

∑ ∑

∑ ∑

The following corollary of a Theorem ([15], p. 70)
concerning the convergence of Gauss-Seidel iteration
will be useful in analyzing the behavior of this process:

Theorem: If A is a symmetric matrix with a positive
diagonal and A is positive definite when its diagonal
is multiplied by two, then the damped Gauss-Seidel
iteration with parameter 0<λ≤1 for solving Ax=b
converges if and only if A is positive definite.

Now our matrix L in the vicinity of a bijective solu-
tion is symmetric with positive diagonal. Furthermore,
when the diagonal is multiplied by two, the i-th diago-
nal element approaches 2Σjwij. Since the sum of the
absolute values of the rest of the row is Σjwij, this
modified matrix is diagonally dominant, hence positive
definite. Thus the conditions of the Theorem hold for
L. On the other hand, L is a Colin de Verdiere matrix
for the connectivity graph, hence it has at least one
negative eigenvalue. Thus L is not positive definite,
and the Theorem implies that any damped Gauss-
Seidel iteration for L will not converge to a bijective
solution. However, since the iteration does consistently
reduce the spring energy, it will ultimately converge to
a trivial solution.

3. Our Solution

Since Projected Gauss-Seidel is unstable near a bi-
jective solution, we must replace it at that point with a
more sophisticated and stable method. In this section
we describe how we do this, along with some optimi-
zations which help accelerate convergence. The stages
of our method are as follows:
1. Generate a good initial guess for the embedding.
2. Perform Projected Gauss-Seidel steps until the

residue begins to increase.
3. Perform local Newton steps until convergence.

3.1 Generating an initial guess

No matter which iterative method is used, it is al-
ways beneficial to start from a good initial “guess” for
the solution. The simplest initial guess is to center the
mesh at the origin, and then project the vertices to the
sphere. However, this will usually introduce “folds”
into the embedding, which could be very difficult to
eliminate later, and can push the solver in the direction
of a non-bijective solution.

Instead we propose to use a variant of a method pro-
posed by Isenburg et al. [16], to generate the initial
guess:

InitialGuess(M,w)

1. Partition M into two balanced sub-meshes.
2. Embed each sub-mesh in a planar disk using the

barycentric method with weights w.
3. Combine the embeddings of the two submeshes

into one planar embedding using Moebius inver-
sion.

4. Use inverse stereo projection to obtain a spherical
embedding.

We use the MeTiS [17] graph partitioning package

to obtain a balanced minimal vertex separator of the
mesh graph. This means that we identify a small subset
of the vertices, whose removal, along with their inci-
dent edges, leaves us with two unconnected compo-
nents of approximately equal size. The removed verti-
ces are called a separator. We later add them back to
each component, so that both have a common bound-
ary. Because of the celebrated planar separator theorem
[19], we can expect the size of the separator to be
O(√n). It is important that this set not be too small.

Each subgraph is now embedded on the unit disk by
fixing its (common) boundary vertices to points sam-
pled uniformly on the unit circle, and solving the pla-
nar barycentric equations for the interior vertices:

 4

()

interior vertices (5)i ij j
j N i

x w x i
∈

= ∈∑

 This is a sparse linear system, which has a unique
solution. Large systems with this structure may be
solved using an algebraic multigrid (AMG) algorithm,
such as the Ruge-Stueben algorithm [24], described in
the Appendix.

Given the two sub-meshes embedded to the unit
disk with common boundary vertices, we apply the
complex Moebius inversion f(z) =1/conj(z) to one of
the embeddings. This maps the interior of the unit disk
to its exterior. The union of both embeddings produces
a planar embedding (where the origin is mapped to
infinity). Moebius transformations are conformal,
hence in a continuous setting they preserve angles.
This is not strictly true in the discrete setting. However,
in our experience this transformation closely preserves
the shape of the triangles everywhere except at infinity.
See Figure 1.

The planar embedding (u,v) is then mapped to the
unit sphere using the inverse stereo projection:

()2 2
2 2

1(,) 2 ,2 ,1
1

P u v u v u v
u v

= − −
+ +

Note that this maps the unit circle (the common
boundary of the two sub-meshes) to the equator of the
sphere.

Similarly to the Moebius transform, stereo projec-
tion is conformal in the continuous setting. In our dis-
crete setting it closely preserves the shape of the mesh
triangles, providing a good initial guess for the iterative
improvement stage.

Even though each of the two planar embeddings sat-
isfies the planar barycentric equations (5), this does not
imply that they satisfy the corresponding equations (1)
on the sphere. Furthermore, there is no theoretical
guarantee that this initial spherical embedding is bijec-
tive, although, in practice, for dense meshes we found
that this is always the case. The hope is that from this
initial embedding it will be relatively easy to converge
to a bijective solution of the equations.

3.2 Local Gauss-Seidel iteration

As we observed earlier, the projected Gauss-Seidel
iteration does reduce the equation residual, at least at
the beginning of the process. So it is beneficial to use it
as long as it produces the desired effect. We use the
following variation on the iterative procedure in Sec-
tion 2:

Projected Gauss-Seidel

(a) (b) (c)

(d) (e)

Figure 1. Stages in generating a spherical embedding for the gargoyle model (using uniform weights): (a)
Partition into two sub-meshes using MeTiS. (b) Planar parameterization of the sub-meshes. (c) Com-
bined planar embedding (with zoom); (d) Initial spherical parameterization generated by inverse stereo
projection (with zoom) (f) final result after projected Gauss-Seidel and local Newton iterations (with
zoom).

 5

1: t = 0
2: R(0) = 0
3: do
4: for i=1 to n do
5: s = (1-λ)xi(t) + λΣ wijxj(t)
6: αi = ||s||
7: xi(t+1) = s/αi
8: end
9: t = t+1
10: R(t) = Res(x) // residual
11: while R(t) < R(t-1)

The residual Res(x) is defined as:

2

1 ()

1()
n

i i ij j
i j N i

Res x x w x
n

α
= ∈

= −

∑ ∑ ,

where the weights are normalized to sum to unity per
vertex. The main difference between this method and
the standard projected Gauss-Seidel iteration is the
termination condition, where we stop the process once
the residual starts growing. Because of this, we do not
need to be too careful which value of λ is used, so we
use the simple λ=1.

3.3 Local valid Newton step

Once the projected Gauss-Seidel iteration begins to
fail, i.e. increase the residual, we switch to a more so-
phisticated, albeit slower, method: local Newton opti-
mization. This method is guaranteed to reduce the re-
sidual. To reduce the number of variables and con-
straints, we transform the problem to spherical coordi-
nates. Performing a vector product of each side of
Equation (1) with xi, we are able to eliminate the auxil-
iary variables αi from the equations:

xi × Σ wijxj = 0 i=1,..,n (6)
Furthermore, substituting the following spherical

coordinates: xi = cos(θi)cos(φi), yi = sin(θi)cos(φi), zi =
sin(φi), allows us to ignore Equation (2) and reduce (6)
to the following two equations for the two components
of the residual:

1
()

()

(, ,) cos() sin() cos()

sin() cos()cos() 0 1,..,

i ij j j
j N i

i ij j j
j N i

R i w

w i n

θ φ θ θ φ

θ θ φ
∈

∈

=

− = =

∑

∑

2
()

()

(, ,) sin() cos() cos()

cos()cos() sin() 0 1,..,

i ij j j
j N i

i i ij j
j N i

R i w

w i n

θ φ φ θ φ

θ φ φ
∈

∈

= −

− = =

∑

∑

We would like to use a local Newton-type iteration
to reduce these two residuals (over the entire mesh) by

moving the i-th vertex. With some reuse of notation,
the total residuals are defined as:

2
1 1

1

2
2 2

1

(,) (, ,)

(,) (, ,)

n

i

n

i

R R i

R R i

θ φ θ φ

θ φ θ φ

=

=

=

=

∑

∑

Moving vertex i affects the residual only at vertex i and
its neighbors. To apply a Newton step, we need the
Jacobian matrix of the total residuals. The relevant
non-zero partial derivatives of the residuals are:

1

()

()

1

2

()

2

()

(, ,)
cos() cos()cos()

sin() sin() cos()

(, ,)
0

(, ,)
sin()cos() sin()

(, ,)
cos() cos()cos()

cos()sin()

i ij j j
j N ii

i ij j j
j N i

i

i i ij j
j N ii

i ij j j
j N ii

i i

R i
w

w

R i

R i
w

R i
w

θ φ
θ θ φ

θ

θ θ φ

θ φ
φ
θ φ

θ φ φ
θ
θ φ

φ θ φ
φ

θ φ

∈

∈

∈

∈

∂
= −

∂

−

∂
=

∂
∂

= −
∂

∂
= −

∂

−

∑

∑

∑

∑

()

sin()ij j
j N i

w φ
∈
∑

and for j∈N(i):

1

1

2

2

(, ,)
cos() cos()

(, ,)
sin()sin()

(, ,)
sin()sin()cos()

(, ,)
sin()cos()sin()

cos()cos() cos()

ij j j i
i

ij i j i
i

ij j i i
i

ij j i i
i

ij j j i

R j
w

R j
w

R j
w

R j
w

w

θ φ
φ θ θ

θ
θ φ

φ θ θ
φ
θ φ

φ θ φ
θ
θ φ

φ θ φ
φ

θ φ φ

∂
= −

∂
∂

= −
∂

∂
=

∂
∂

=
∂

+

The Jacobian of the total residual is then obtained
by applying the chain rule:

1 1 1
1 1

()

() ()
() ()

j N ii i i

R R i R j
R i R j

θ θ θ∈

∂ ∂ ∂
= +

∂ ∂ ∂∑

and similarly for 1 2 2, and
i i i

R R R
φ θ φ
∂ ∂ ∂
∂ ∂ ∂

. These are the four

components of the 2x2 Jacobian matrix.
Having this, the local Newton iteration is as fol-

lows:

Local Newton Iteration

1: t = 0
2: while 1((), ())R t tθ φ + 2 ((), ())R t tθ φ > tol
3: for i=1 to n do

 6

4: J = Jacobian of 1((), ())R t tθ φ and
 2 ((), ())R t tθ φ by θi and φi.

6: 11

2

(1) () ((), ())
(1) () ((), ())

i i

i i

t t R t t
J

t t R t t
θ θ θ φ

λ
φ φ θ φ

−+
= − +

8: end
9: t = t+1
10: end

Local Newton iteration is applied to each vertex in

turn. It involves inverting a 2x2 matrix and applying
the iteration. By definition, this iteration will always
decrease the residual in the vicinity for some value of
λ>0. However, finding the value of λ for which the
decrease is maximal is non-trivial. We find the optimal
value by using a linesearch technique. In each iteration
we start with λ=1 and repeatedly decrease λ by half if
this leads to a larger decrease in residue, while con-
straining λ>0.05 in order not to stagnate the conver-
gence.

To better condition the system, when optimizing the
i-th vertex we rotate the vertex and its 1-ring
neighborhood so that the vertex’s normal coincides
with the x-axis. This will give us small values of θi and
φi.

When the iterations have converged, we will be left
with an embedding which is an approximate solution to
Eqs. (1) and (2) up to a prescribed tolerance, and is not
degenerate. Since the spectral theory also implies that
all the triangles of the bijective spherical embedding
will have positive area – this guarantees that a small
enough tolerance will always result in a bijective em-
bedding.

4. Experimental Results

We have fully implemented the numerical schemes

described in this paper. The resulting software is avail-
able on the Web at http://www.cs.technion.ac.il/~shadis.

We have experimented with our numerical scheme
using various input models and weights. We observed
that the Tutte (uniform) weights embedding had the
smallest residual before the local Newton improvement
phase, and converged the fastest. We did not experi-
ence any collapsed or double (wrapped) embeddings.

The figures below demonstrate the results of run-
ning our algorithm with different weights and on mod-
els of different size. We explored three types of
weights: uniform [27], conformal [22], and mean-value
[9]. Both conformal and mean-value weights do not
strictly satisfy the Colin de Verdiere conditions. Con-
formal weights can be negative, and mean-value
weights are not symmetric. They are nevertheless very
commonly used, as they tend to result in angle preserv-
ing parameterizations. In practice, on all the models we

tested, both types of weights resulted in bijective
parameterizations when using our method. To visualize
the embeddings we used the parameterization to map
the normals from the original models to the spherical
versions. Figure 2 compares the parameterization of
two irregular meshes (triceratops and gargoyle) using
the three types of weights. While there are visible dif-
ferences between uniform weights embedding and the
other two, the conformal and mean-value embeddings
are nearly identical. As expected, for meshes with
regular geometry such as the torso (Figure 3) uniform
and mean-value/conformal weights result in very simi-
lar parameterizations. Similarly, mean value (or con-
formal) parameterization of models which are close in
shape to the sphere such as the head and the skull (Fig-
ure 3) produces nearly isometric parameterizations. In
contrast, mean value spherical parameterization of
models with high curvature variation, such as the hu-
man (Figure 3) or the gargoyle (Figure 2) results in
significant stretch.

Table 1 summarizes the runtimes of our algorithm.
For all the examples, the algorithm terminated once the
residual was less than 10-6. We break down the time
into two components, the time it takes to generate the
initial guess (Section 3.1) (implemented in MATLAB),
and the time it takes to obtain the final result (Sections
3.2-3.3) (implemented in C++). The total runtimes, as
measured on a 2.8 GHz PC with 1GB RAM, vary be-
tween 10 seconds for models of 5,000 triangles to
1,350 seconds (22 minutes) for a model of 129,000
triangles. As can be seen from the values, the runtime
is roughly linear in the size of the input meshes. The
time for uniform weights embedding is typically
smaller than for conformal or mean value embeddings,
which require roughly the same time. For comparison,
Praun and Hoppe [23] quote times of 7 to 25 minutes
for parameterizing models of 25,000 to 100,000 trian-
gles, although they generate completely different
parameterizations.

Two recent methods [2,13] consider variations of
the Gauss-Seidel procedure (Section 2), which we
showed to be unstable. Gu et al. [13] use a trial and
error approach to adjust the damping parameter λ, in
order to obtain a value for which the procedure may be
terminated sufficiently close to a bijective solution
before diverging. When successful, they quote times of
530 seconds for parameterizing meshes with 30,000
faces. Birkholz [2] uses a hierarchical method which
works with the spherical angles of the embedding. His
method requires approximately 600 seconds to param-
eterize meshes with about 100,000 faces. The hierar-
chical approach stabilizes the conversion, but is able to
obtain only an approximate solution

 7

5. Discussion and Conclusion

We have presented an efficient numerical scheme to
solve the non-linear equations described by Gotsman et
al [11], which guarantee a bijective spherical parame-
terization of a closed manifold genus-0 mesh. This
scheme enables us to parameterize meshes containing

hundreds of thousands of vertices in a matter of min-
utes.

We have no theoretical guarantee that our method
indeed solves the equations, namely reduces the resid-
ual to zero given enough time. Theoretically, the itera-
tions may get stuck in a local minimum. However, we
have overwhelming experimental evidence that this is
not the case. The good initial guess seems to bring the
solver sufficiently close to a bijective solution, and, in

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Spherical parameterization of triceratops (a) and gargoyle (e): using uniform weights (b,
f), using conformal weights (c, g) and using mean value weights (d, h).

Model # triangles Weights Initial Guess (sec) Solution

(sec)
uniform 2.7 8.15

conformal 1.3 14.8

Triceratops

5,660
mean-value 2.3 16.1

uniform 10.2 39.3
conformal 4.7 86.8

Gargoyle

20,000

mean-value 4.7 162.5
uniform 9.9 43.4 Torso 22,720

mean-value 5.2 87.2
uniform 10.8 120.5 Skull 40,000

mean-value 10.1 149.8
uniform 21.3 306.5 Bunny 69,664

mean-value 17.4 456.0
uniform 35.0 878.8 Human 119,998

mean-value 32.0 1,134.3
uniform 41.9 1,045.9 Head 128,750

mean-value 36.3 1,307.2

Table 1: Performance statistics of our algorithm.

 8

all our experiments, we were able to bring the residual
below any reasonable tolerance by sufficient iteration.

Our scheme uses a spherical embedding constructed
through inverse stereo projection of a planar embed-
ding as an initial guess for its careful iterative scheme.
Although this initial guess is not guaranteed to be bi-
jective, the theory guarantees that the final solution
will always be bijective (up to the solution tolerance) if
the weights are symmetric.

For non-symmetric (or negative) weights, the theory
does not guarantee that the solution to the equations
will be bijective, even if we start out with an embed-
ding that is. However, in this case, we can extend the
algorithm to guarantee that the embedding remains
bijective throughout the process. When a new position
is computed for any vertex, we check that the bijectiv-
ity has not been violated. Should that be the case, the
vertex is “backtracked” slowly towards its previous
position until it becomes valid again. Hence the final
result will also be bijective.

The test for validity of a vertex is straightforward:
calculate the normals for all the oriented incident faces.
Then the mapping is bijective at that vertex iff these
normals form acute angles with the normal to the
sphere at the vertex.

The runtime in our current implementation is domi-
nated by the second phase – iterations over the entire
mesh on the sphere. We would like to apply a multigrid
method to accelerate this phase as well. However, this
will be more difficult since algebraic multigrid is pri-
marily designed for linear systems, and the second
phase is inherently non-linear.

References

[1] M. Alexa. Merging polyhedral shapes with scattered

features. The Visual Computer, 16 (1):26-37, 2000.
[2] H. Birkholz. Shape-preserving parametrization of ge-

nus 0 surfaces. Proc. Winter Conference on Computer
Graphics (WSCG), 2004.

[3] W.L. Briggs, V.H. Henson and S.F. McCormick. A
Multigrid Tutorial. SIAM, 2000.

[4] F.R.K. Chung. Spectral Graph Theory. CBMS 92,
AMS, 1997.

[5] Y. Colin de Verdiere. Sur un nouvel invariant des gra-
phes et un critere de planarite. Journal of Combinato-
rial Theory B 50:11-21, 1990. [English translation: On
a new graph invariant and a criterion for planarity, in:
Graph Structure Theory (N. Robertson, P. Seymour,
Eds.) Contemporary Mathematics, AMS, pp. 137-147,
1993.]

[6] G. Das and M.T. Goodrich. On the complexity of opti-
mization problems for 3-dimensional convex polyhedra
and decision trees. Computational Geometry, 8:123-
137, 1997.

[7] M. B. Dillencourt and W. D. Smith. Graph-theoretical
conditions for inscribability and Delaunay realizability.

Proc. 6th Canad. Conf. Computational Geometry, 1994,
pp. 287–292.

[8] M.S. Floater. Parameterization and smooth approxima-
tion of surface triangulations. Computer Aided Geo-
metric Design, 14:231–250, 1997.

[9] M. S. Floater. Mean value coordinates. Computer
Aided Geometric Design, 20(1):19-27, 2003.

[10] M.S. Floater. Some examples of barycentric mappings
on spheres. Preprint, 2003.

[11] C. Gotsman, X. Gu, and A. Sheffer. Fundamentals of
spherical parameterization for 3D meshes. ACM
Trans. Graph., 22(3):358–363, 2003 (Proc. SIGGRAPH
2003).

[12] X. Gu and S.-T. Yau. Computing conformal structures
of surfaces. Communications in Information and Sys-
tems 2(2):121-146, 2002.

[13] X. Gu, Y. Wang, T.F. Chan, P.M. Thompson and S.T.
Yau.,Genus zero surface conformal mapping and its
application to brain surface mapping, IEEE Transac-
tions on Medical Imaging, 23(8):949-958, 2004.

[14] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis
and G. Sapiro. Conformal surface parametrization for
texture mapping. IEEE Transactions on Visualization
and Computer Graphics, 6(2):1-9, 2000.

[15] E. Isaacson and H.B. Keller. Analysis of Numerical
Methods. Wiley, 1966.

[16] M. Isenburg, S. Gumhold and C. Gotsman.
Connectivity Shapes. Proceedings of Visualization,
2001.

[17] G. Karypis and V. Kumar. Multilevel k-way partition-
ing scheme for irregular graphs. Journal of Parallel and
Distributed Computing, 48:96-129, 1998.

[18] L.P. Kobbelt, J. Vorsatz, U. Labisk and H.-P. Seidel. A
shrink-wrapping approach to remeshing polygonal sur-
faces. Proceedings of Eurographics 1999.

[19] R.J. Lipton and R.E. Tarjan. A separator theorem for
planar graphs. SIAM J. Appl. Math. 36:177-189, 1979.

[20] L. Lovasz. Steinitz representations of polyhedra and
the Colin de Verdiere number. Journal of Combinato-
rial Theory B 82:223-236, 2001.

[21] L. Lovasz and A. Schrijver. On the nullspace of a Colin
de Verdiere matrix. Annales de l'Institute Fourier
49:1017-1026, 1999.

[22] U. Pinkall and K. Polthier. Computing discrete minimal
surfaces and their conjugates. Experimental Mathemat-
ics, 2(1):15-36, 1993.

[23] E. Praun, H. Hoppe. Spherical parametrization and
remeshing. ACM Transactions on Graphics, 22(3):340-
349, 2003. (Proc. SIGGRAPH 2003).

[24] J. Ruge and K. Steuben. Algebraic multigrid. In S.
McCormick, editor, Multigrid Methods. SIAM, 1987.

[25] A. Shapiro and A. Tal. Polygon realization for shape
transformation. The Visual Computer, 14(8-9):429-
444, 1998.

[26] A. Sheffer, C. Gotsman and N. Dyn. Robust spherical
parameterization of triangular meshes. Computing,
72(1-2):185-193, 2004.

[27] W.T. Tutte. How to draw a graph. Proc. London Math.
Soc. 13(3):743-768, 1963.

 9

Figure 3: Spherical parameterization using uniform (middle column) and mean-value (right column)
weights. The zoom in on the head region of the human model highlights the superior shape preserva-
tion achieved by mean value weights compared to uniform weights for irregular meshes (sharper fea-
tures such as ears, mouth and nose)

 10

Appendix

Multigrid computational methods employ a hierar-
chy of progressively coarser grids to accelerate the
solution of linear systems of equations, usually arising
from the discretization of boundary-value problems.
Invented for regular grids, the scope of multigrid
methods has been widened considerably with the intro-
duction of Algebraic Multigrid (AMG) techniques.
This allows also solving sparse unstructured problems
and handling non-PDE applications. In particular, it is
very well suited to the linear systems that arise in mesh
parameterization to the plane using barycentric coordi-
nates. We adopt the classical approach of Ruge and
Steuben [24], which is briefly described next. For a
complete elementary presentation of AMG, see Chap-
ter 8 of [3].

The AMG algorithm for the iterative solution of the
sparse linear system, ,Lx f= consists of a setup phase
and a solve phase. In the setup, a set of progressively
coarser systems and associated approximations is con-
structed, starting with the full vector of variables, and
ending with a very coarse system of just a few vari-
ables. Each coarsening is performed by choosing a
subset of variables in the current system. The main
criterion for choosing the coarse variables is the
"strength of connections" as reflected in the relative
sizes of elements of the matrix, L, and its approxima-
tions in the coarser systems. Specifically, a threshold,
0 1,t≤ ≤ is chosen, typically 0.25. Then, if (),L i j is
larger in absolute value than t times the largest off-
diagonal element of L, then variable i is said to depend
on variable j, and variable j is said to influence variable
i. Based on this notion of dependence, the variables are
partitioned into two categories: C variables - the subset
that will comprise the next-coarser system, and F vari-
ables – the rest. The set C is generated by a graph al-
gorithm based on two criteria:
1. Every variable j, that influences variable ,i F∈

must itself be in C, or else variables i and j must
both depend on at least one variable .k C∈

2. C should be a maximal subset with the property
that no variable in C depends on another vari-
able in C.

It is sometimes not possible to satisfy both criteria.
In this case, it is preferable to satisfy the first, while
using the second as a guide. These criteria generally
lead to coarse systems that strike a good balance be-
tween a significant reduction in the number of vari-
ables and good approximation properties. Note that the
construction of the level is based on pure algebraic
considerations, and is not directly related to the geome-
try of the mesh from which the problem is derived.

In addition to constructing the hierarchy, suitable
sparse prolongation (interpolation) operators are con-
structed for transferring information between levels of
the hierarchy. These operators are also determined by L
and its coarse versions. Generally, the set iC C∈ of
coarse variables used in the interpolation to variable

,i F∈ is the set of C-variables which influence vari-
able i. The interpolation coefficients are chosen such
that errors which are not eliminated efficiently by the
Gauss-Seidel iteration will be interpolated accurately.
This allows the coarse approximation to correct such
errors very effectively, and thus all errors are elimi-
nated efficiently by the algorithm described below.

More formally, if the solution vector, x, is of length
n, then in the setup phase we construct a set of progres-
sively coarser vectors of sizes 0 1 2, , , , ,kn n n n n= K
corresponding prolongation matrices 0 1 2 1, , , , ,kP P P P −K
where jP is a matrix of jn rows and 1jn + columns that
is used to interpolate data from level j+1 to level j, and
a set of matrices, 0 1 2, , , , .kL L L L L= K The latter ma-
trices are constructed in order, using the Galerkin prin-
ciple: 1 .T

j j j jL P L P+ = The number of levels, k+1, is
chosen such that kn is small enough for the problem at
level k to be solved directly at a negligible cost.

Once the setup phase is complete, the problem is
solved iteratively by multigrid cycles, defined recur-
sively below. Here, jx% denotes at all times the most
up-to-date approximation for the solution of the level-j
problem. To solve the linear system Lx = f, call algo-
rithm AMG with j = 0, some initial approximation, 0x% ,
and 0f = f. The parameters 1ν and 2ν are fixed small
non-negative integers, typically both equal to 1.

(), ,j jx f jAMG %

 1. If ,j k= return 1
.j jL f−

2. Perform 1ν Gauss-Seidel iterations on the
system j j jL x f= with initial guess .jx%

3. Compute the residual, j j j jr f L x= − % , and re-
strict it to the next coarser level by

 1 .T
j j jf P r+ ← Set 1 0.jx + =%

4. Recursively call
()1 1 1, , 1 .j j jx x f j+ + +← +AMG% %

5. Interpolate and add the coarse-level correc-
tion by 1.j j j jx x P x +← +% % %

6. Perform 2ν Gauss-Seidel iterations on the
system j j jL x f= with initial guess jx% and
return the result.

