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OVERVIEW: Linear Convergence Without Strong-Convexity

I Fitting most machine learning models involves some sort of optimization problem.
I Most common methods in ML are gradient descent and variants: coordinate descent, stochastic gradient.

I Well-known for these methods,

Smoothness + Strong-Convexity ⇒ Linear Convergence

I However, many objectives of ML problems are not strongly-convex.

I Motivated alternative conditions for linear convergence:
I Error bounds (EB) [Luo & Tseng, 1993]:

‖∇f (x)‖ ≥ µ‖xp − x‖ ∀ x

I Essential strong-convexity (ESC) [Liu et al., 2014]:

f (y) ≥ f (x) + 〈∇f (x), y − x〉 + µ
2‖y − x‖2 ∀ x, y such that xp = yp

I Weak strong-convexity (WSC) [Necoara et al., 2015]:

f ∗ ≥ f (x) + 〈∇f (x), xp − x〉 + µ
2‖xp − x‖2 ∀ x

I Restricted secant inequality (RSI) [Zhang & Yin, 2013]:

〈∇f (x), x − xp〉 ≥ µ‖xp − x‖2 ∀ x

I Quadratic growth (QG) [Anitescu, 2000]:

f (x) − f ∗ ≥ µ
2‖xp − x‖

2 ∀ x

? In this work, we consider the Polyak- Lojasiewicz (PL) condition:

Smoothness + PL Condition
Strong-Convexity ⇒ Linear Convergence

I Simple proof of linear convergence.

I For convex functions, equivalent to several of the above conditions.

I For non-convex functions, weakest assumption while still guaranteeing global minimizer.

? We generalize the PL condition to analyze proximal-gradient methods.

? We give simple new analyses in a variety of settings:
I Least-squares and logistic regression.

I Randomized coordinate descent.

I Greedy coordinate descent and variants of boosting.

I Stochastic gradient (diminishing or constant step-size).

I Stochastic variance-reduced gradient (SVRG).

I Proximal-gradient and LASSO.

I Coordinate minimization with separable non-smooth term (bound constraints or L1-regularization).

I Linear convergence rate of training SVMs with SDCA.

PL-Inequality and Linear Convergence

I We first consider the optimization problem

min
x∈IRn

f (x),

where ∇f is Lipschitz-continuous

‖∇f (x)−∇f (y)‖ ≤ L‖x− y‖, ∀ x, y ∈ IRn.

I A function f satisfies the Polyak- Lojasiewicz (PL) condition if

1
2‖∇f (x)‖

2 ≥ µ (f (x)− f ∗) , ∀ x ∈ IRn.

I For gradient descent with constant step size,

xk+1 = xk − 1

L
∇f (xk),

these assumptions give a simple proof of linear convergence,

f (xk+1)− f ∗ ≤ f (xk)− f ∗ +∇f (xk)(xk+1 − xk) + L

2
‖xk+1 − xk‖2 (Lipschitz ∇f)

= f (xk)− f ∗ + 1

2L
‖∇f (xk)‖2 (Definition of xk+1)

≤ f (xk)− f ∗ − µ

L

(
f (xk)− f ∗

)
(PL condition of f)

=
(
1− µ

L

) (
f (xk)− f ∗

)
.

Convergence of Huge-Scale Methods

I Randomized coordinate descent under PL conditions satisfies

E
[
f (xk)− f ∗

]
≤
(
1− µ

Ln

)k [
f (x0)− f ∗

]
,

where L is coordinate-wise Lipschitz constant of ∇f .

I Greedy coordinate descent under the ∞-norm PL condition satisfies

f (xk)− f ∗ ≤
(
1− µ1

L

)k [
f (x0)− f ∗

]
,

giving new rates for variants of boosting.

I Stochastic gradient with decreasing step-size αk =
2k+1

2µ(k+1)2 satisfies

E
[
f (xk)− f ∗

]
≤ Lσ2

2µ(k + 1)
,

and stochastic gradient with constant step-size α has a linear rate plus error,

E
[
f (xk)− f ∗

]
≤ (1− 2µα)k

[
f (x0)− f ∗

]
+
Lσ2α

4µ
.

I We give a rate for stochastic variance-reduced gradient (SVRG) for finite sums,

argmin
x

f (x) =
1

n

n∑
i=1

fi(x).

Comparison to Other Conditions for Obtaining Linear Convergence

Theorem

For a function f with a Lipschitz-continuous gradient, the
following implications hold:

(SC) → (ESC) → (WSC) → (RSI) → (EB) ≡ (PL) → (QG).

If we further assume that f is convex then we have

(RSI) ≡ (EB) ≡ (PL) ≡ (QG).
Invex

QG

PL = EB

RSI

SC

ESC

WSC

Convex

OSC, SSC, RSC

I QG is weakest but does not imply invexity (allows non-global local minima).

I PL ≡ EB are most general conditions that allow linear convergence to global minimizer.

Functions Satisfying the PL Condition

I Strongly-convex functions:
I By minimizing both sides of the strong-convexity condition,

f (y) ≥ f (x) + 〈∇f (x), y − x〉 + µ

2
‖y − x‖2,

we obtain the PL-inequality with the same constant µ.

I f (x) = g(Ax) for strongly convex g:
I Satisfies the PL condition by the Hoffman [1952] bound.

I Includes least-squares with singular matrix.

I f (x) = g(Ax) for strictly-convex g:
I Satisfies the PL condition on bounded sets.

I Includes logistic regression when iterations/solutions are finite.
x

f(x) 

I Some non-convex functions also satisfy the inequality:
I Figure: f (x) = x2 + 3 sin2(x) has L = 8 and µ = 1/32 even though f ′′(x) can be negative.

→ For general non-convex problems, implies radius of linear convergence is larger than with SC.

Proximal-Gradient Generalization

I Consider the more general problem,

min
x
F (x) ≡ f (x) + g(x),

where f has an L-Lipschitz gradient and g is a simple non-smooth convex function.
I E.g., bound constraints, probability simplex constraints, L1-regularization.

I For this setting, we introduce the proximal-PL condition,

1
2Dg(x, L) ≥ µ (F (x)− F ∗),

where

Dg(x, α) ≡ −2αmin
y

[
〈∇f (x), y − x〉 + α

2
‖y − x‖2 + g(y)− g(x)

]
I For proximal-gradient with constant step-size 1/L,

xk+1 = argmin
y

[
〈∇f (xk), y − xk〉 + L

2
‖y − xk‖2 + g(y)− g(xk)

]
,

assuming L-Lipschitz continuity and proximal-PL, we can easily prove linear convergence,

F (xk+1)− F ∗ = f (xk+1) + g(xk) + g(xk+1)− g(xk)− F ∗

≤ F (xk)− F ∗ + 〈∇f (xk), xk+1 − xk〉 + L

2
‖xk+1 − xk‖2 + g(xk+1)− g(xk)

≤ F (xk)− F ∗ − 1

2L
Dg(xk, L)

≤ F (xk)− F ∗ − µ

L

(
F (xk)− F ∗

)
=
(
1− µ

L

) (
F (xk)− F ∗

)
.

I This proximal-gradient proof is much simpler than previous analyses.

Functions Satisfying the Proximal-PL Inequality

The proximal-PL inequality is satisfied if:

1. f satisfies the PL inequality and g is constant.

2. f is strongly convex.

3. f has the form f (x) = h(Ax) for a strongly convex function h and a matrix A, while g is
an indicator function for a polyhedral set.

4. F is convex and satisfies the QG property.
I Implies linear convergence for L1-regularized least squares (LASSO) and the SVM dual.

Proximal Coordinate Minimization and Support Vector Machines

I If we do proximal coordinate descent/minimization, then we have

E
[
F (xk)− F ∗

]
≤
(
1− µ

Ln

) [
F (x0)− F ∗

]
.

I Implies linear convergence of shooting algorithm for general LASSO problems.

I Another important example is support vector machines,

argmin
x∈IRd

λ

2
xTx +

l∑
i

max(0, 1− yiwTxi),

whose associated dual problem is

min
yi∈[0,U ]

1

2
yTMy −

∑
i

yi.

I Dual problem satisfies QG property.
I Obtain linear convergence rate on primal by showing SDCA has global linear convergence rate on dual.


