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OVERVIEW: Linear Convergence Without Strong-Convexity Comparison to Other Conditions for Obtaining Linear Convergence

» Fitting most machine learning models involves some sort of optimization problem. Theorem Qs

» Most common methods in ML are gradient descent and variants: coordinate descent, stochastic gradient.

For a function f with a Lipschitz-continuous gradient, the
following implications hold:

(5C) — (ESC) — (WSC) — (RSI) — (EB) = (PL) — (QG).

If we further assume that f is convex then we have

| | » | (RSI) = (EB) = (PL) = (QG).
» Motivated alternative conditions for linear convergence:
» Error bounds (EB) [Luo & Tseng, 1993]: » QG is weakest but does not imply invexity (allows non-global local minima).

» PL = EB are most general conditions that allow linear convergence to global minimizer.

» Well-known for these methods,

Smoothness + Strong-Convexity = Linear Convergence

» However, many objectives of ML problems are not strongly-convex.

Vi@ = pllzy ==l Va

» Essential strong-convexity (ESC) [Liu et al., 2014]: Functions Satisfying the PL Condition
fly) > flx) + (Vf(x),y —x) + 5lly — =||* V 2,y such that z, = y,

» Strongly-convex functions:

» Weak strong-convexity (WSC) [Necoara et al., 2015]: » By minimizing both sides of the strong-convexity condition,
v
fr > f@) + (Vf(@),z, — z) + Lz, — 3|2 Va fy) = f@) + (Vf(@)y =)+ Slly — =",
+ Restricted secant inequality (RSI) [Zhang & Yin, 2013]: we obtain the PL-inequality with the same constant L.
(Vf(@),z —zp) > pllz, —z|?> V=z » f(x) = g(Ax) for strongly convex g:
» Satisfies the PL condition by the Hoffman [1952] bound.

» Quadratic growth (QG) [Anitescu, 2000]:
» Includes least-squares with singular matrix. fx)
fla) — f* = Bz, — 2l Vo |
» f(z) = g(Ax) for strictly-convex g:

* In this work, we consider the Polyak-tojasiewicz (PL) condition: > Satisfies the PL condition on bounded sets.

» Includes logistic regression when iterations/solutions are finite.

X

Smoothness + P L Condition _ [inear Convergence » Some non-convex functions also satisfy the inequality:
» Figure: f(z) = 2° + 3sin*(x) has L = 8 and i = 1/32 even though f”(x) can be negative.
» Simple proof of linear convergence. = | N S di €1 < " th SC
» For convex functions, equivalent to several of the above conditions. — IFor general non-convex problems, Implies radius of linear convergence IS larger than wit :

» For non-convex functions, weakest assumption while still guaranteeing global minimizer.

Proximal-Gradient Generalization

* We generalize the PL condition to analyze proximal-gradient methods.

* We give simple new analyses in a variety of settings: » Consider the more general problem,

» Least-squares and logistic regression. min F(x) = f(x) + g(x),
» Randomized coordinate descent. _ _ _ . _ _ _
where f has an L-Lipschitz gradient and ¢ is a simple non-smooth convex function.

» E.g., bound constraints, probability simplex constraints, L1-regularization.

» Greedy coordinate descent and variants of boosting.

» Stochastic gradient (diminishing or constant step-size).

» Stochastic variance-reduced gradient (SVRG). » For this setting, we introduce the proximal-PL condition,
» Proximal-gradient and LASSO.
» Coordinate minimization with separable non-smooth term (bound constraints or L1-regularization). %Dg(az, L) > (F(:Ij) . F*),
» Linear convergence rate of training SVMs with SDCA. where
: Qv
PL-Inequality and Linear Convergence Dy(z,a) = 20 i [Wf(ﬂ?)» y—z)+5lly - z||* + g(y) — 9(55)]
» We first consider the optimization problem » For proximal-gradient with constant step-size 1/L,
min f(x), htl .| k no, L k|2 ~
where V f is Lipschitz-continuous - ! argymln < f@),y =) + QHy v+ 9ly) — gl ) ’
IVf(x)=Vfyl| <Llxz—vyl|, VazyelR" assuming L-Lipschitz continuity and proximal-PL, we can easily prove linear convergence,
» A function [ satisfies the Polyak-t.ojasiewicz (PL) condition if F(2"™) — F* = £ + g(a") + (2 — g(2) — F*
. L
V@2 > p(f(z)—f9), VzeR" < F(a") = F* 4 (VF(h), 2" = 2%) 4 Sl = ab|" + (™) — g(a")
1
» For gradient descent with constant step size, < F(Cli'k) — F" — ﬁDg(fEk, L)
1 ES ES
xk“:xk—ZVf(xk), < F(z") — F —%(F(wk)—F)
these assumptions give a simple proof of linear convergence, — (1 — %) (F(ﬁ) — F*) ,
L
f@") — f* < f(@") — £+ V) (@ =2+ §ka+1 — |7 (Lipschitz V f) » This proximal-gradient proof is much simpler than previous analyses.
= f(a") = f* + ZHVf(a: )|’ (Definition of ") Functions Satisfying the Proximal-PL Inequality
< fla") = " — 7 (f(z") = ) (PL condition of f) The proximal-PL inequality is satisfied if:
— (1 — %) (f(mk) — f*) . 1. f satisfies the PL inequality and ¢ is constant.

2. f is strongly convex.

Convergence of Huge-Scale Methods

3. f has the form f(x) = h(Ax) for a strongly convex function h and a matrix A, while g is

» Randomized coordinate descent under PL conditions satisfies an indicator function for a polyhedral set.
R [f(:zzk) B f*] < (1 B ﬂ)k [f(xo) B f*] 4. F'is convex and satisfies the QG property.
_ ’ » Implies linear convergence for L1-regularized least squares (LASSO) and the SVM dual.

where L is coordinate-wise Lipschitz constant of V1.

» Greedy coordinate descent under the co-norm PL condition satisfies Proximal Coordinate Minimization and Support Vector Machines
k
f($k) — < (1 — %) [f(wo) — f*} : » If we do proximal coordinate descent/minimization, then we have
giving new rates for variants of boosting. E [F(xk) — F*} < (1 — Li) [F(g;o) — F*} ,
> Stochastic gradient with decreasing step-size 2u(k+1)? Satisnes » Implies linear convergence of shooting algorithm for general LASSO problems.
. Lo~ Another important example is support vector machines
E[f(xk)—f} < ; " P P o |
2u(k +1) \ l
and stochastic gradient with constant step-size « has a linear rate plus error, argmin oty + Z max(0, 1 — ysziUz'),
d
Lo’a relt !
s k * . :
I [f(fl?k) — 1] < =2pa)” [f(z") = ] A o whose associated dual problem is
. |
» We give a rate for stochastic variance-reduced gradient (SVRG) for finite sums, m[(l)nU] inMy - Z ;.
yic|V, .
l | j
argmin f(x) = —Z fi(x). » Dual problem satisfies QG property.
v L » Obtain linear convergence rate on primal by showing SDCA has global linear convergence rate on dual.




