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1 Hinge Loss

In the main paper [1], we present numerical experiments on various logistic regression models (§5). A widely-
used alternative to logistic regression models are margin-based methods. Rather than seeking to optimize
a regularized likelihood, these methods optimize a regularized convex penalty that upper bounds the mis-
classification error. This penalty is zero if the example is classified correctly by a sufficiently large margin,
and grows as the margin decreases. Thus, penalties of this form have a special sparse structure in terms of
i that we can take advantage of.

Although it applies more generally, we will demonstrate the usage of this sparse structure on the particular
case of smooth support vector machines [2], where a classifier is estimated by solving the optimization problem

min
x∈Rn

M∑
i=1

[max{0, 1− biaTi x}]2 +
λ

2
||x||2.

This problem is once-differentiable with a Lipschitz-continuous gradient, and is strongly-convex. For this
problem, we typically expect the maximum to be zero for many i in the solution x∗. Thus, these instances i
have no influence on the solution, in the sense that if we remove these data samples then x∗ is not changed.
This type of problem structure suggests a certain algorithmic modification to reduce the effective number of
passes through the data set: we keep track of lower bounds on the quantities bia

T
i xk for all i in the current

sample Bk, and on iteration k we ignore the data samples i where we can guarantee that bia
T
i xk ≥ 1. This

combines our growing batch strategy with a shrinking strategy, and if the problem is sparse in terms of i
it allows us to achieve a linear convergence rate without eventually looking at every data sample on every
iteration.

Obtaining a bound on bia
T
i xk is simple, we first consider the case where we evaluated γki , bia

T
i xk on

the previous iteration (and we either pre-compute the norms ||ai|| of the feature vectors or have an upper
bound on them). If we denote the difference between successive iterations by

dk = xk+1 − xk,

then we can simply use

bia
T
i xk+1 = bia

T
i (xk + dk) = γki + bia

T
i dk ≥ γki − |aTi dk| ≥ γki − ||ai|| · ||dk||.

Thus, given the γki for all i we can use this bound to prune the set of training samples that need to be
re-visited on iteration k+ 1 for a cost of O(n+ |Bk+1|), which is small in comparison to the normal iteration
cost of O(n|Bk+1|).

In general we do not want our bound for example i on iteration k+ 1 to depend on γki, since the goal of
the shrinking procedure is to avoid computing γki on every iteration. Fortunately, we can obtain a similar
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Figure 1: Smooth support vector machine experiments for different optimization strategies for spam classi-
fication. The stochastic method is run with 3 different fixed steplengths.

bound based on the latest γji that was computed,

bia
T
i xk+1 = bia

T
i (xj +

k∑
m=j

dm) ≥ γji − ||ai||
k∑

m=j

||dm||. (1)

By keeping track of the sum of the norms
∑k

m=j ||dm||, the cost of deciding which examples to exclude can
again be implemented in O(n+ |Bk+1|).

In Figure 1, we repeat our experiment on the spam data set but using the smooth support vector machine
objective function. The method labeled hybrid-shrink uses the bound (1) to avoid evaluating elements in
the batch where the bound guarantees they will not contribute to the objective function. In this plot we
see that the stochastic method, with a carefully chosen step size, can outperform both the deterministic
and hybrid methods. We expect that this is because the function is only once-differentiable, which may
hurt the performance of methods that use a quasi-Newton Hessian approximation (though the stochastic
method performs poorly without a carefully chosen step size). However, the hybrid-shrink method eventually
outperforms all the other methods. Note that the plot on the right reflects that the shrinking has a greater
effect the longer we run the method, which makes sense because we expect ||dk|| to start getting smaller as
we approach the minimizer.
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Figure 2: Smooth support vector machine experiments for different optimization strategies for spam classi-
fication. The stochastic method is run with 3 different fixed steplengths.

2 Better Bound

Instead of using the bound (1), we could use the bound

bia
T
i xk+1 = bia

T
i (xj +

k∑
m=j

dm) ≥ γji − ||ai|| · ||
k∑

m=j

dm||.

This bound is tighter than (1), but is more expensive to compute because we need to know previous dk
values rather than their norms. In particular, if we need to look back K iterations, then using this bound
costs O(Kn + |Bk+1|). We plot the results when the hybrid method uses this bound above, where we see
that it gives a further small improvement.
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