
Efficient Inference in Large Discrete Domains

Rita Sharma
Department of Computer Science
University of British Columbia

Vancouver, BC V6T 1Z4
rsharma@cs.ubc.ca

David Poole
Department of Computer Science
University of British Columbia

Vancouver, BC V6T 1Z4
poole@cs.ubc.ca

Abstract

In this paper we examine the problem of infer-
ence in Bayesian Networks with discrete random
variables that have very large or even unbounded
domains. For example, in a domain where we
are trying to identify a person, we may have vari-
ables that have as domains, the set of all names,
the set of all postal codes, or the set of all credit
card numbers. We cannot just have big tables of
the conditional probabilities, but need compact
representations. We provide an inference algo-
rithm, based on variable elimination, for belief
networks containing both large domain and nor-
mal discrete random variables. We use inten-
sional (i.e., in terms of procedures) and exten-
sional (in terms of listing the elements) represen-
tations of conditional probabilities and of the in-
termediate factors.

1 Introduction

Bayesian networks [Pearl, 1988] are popular for represent-
ing independencies amongst random variables. They al-
low compact representation of joint probability distribu-
tion, and there are algorithms to exploit the compact rep-
resentations. Recently, there has been much interest in ex-
tending the belief networks by allowing more structured
representations of the conditional probability of a variable,
given its parents (for example, in terms of causal indepen-
dence [Zhang and Poole, 1996] or contextual independence
[Boutilier, Froedman, Goldszmidt and Koller, 1996]). In all
of these approaches, discrete random variables are consid-
ered to have a bounded number of values.

Some real-world problems contain random variables with
large or even unbounded domains, for example, in natu-
ral language processing where outcomes are words drawn
from large vocabularies. Here, we could have a random
variable whose domain is the set of all words (including

those words we have never encountered before). As an-
other example, consider the problem of person identifica-
tion [Gill, 1997; Bell and Sethi, 2001], which is the prob-
lem of comparing a test person’s description with each per-
son’s description in the database. When comparing two
records, we have two hypotheses: both records refer to the
same person, and the records refer to different people. In a
dependence model, where the two descriptions refer to the
same person, random variables such as actual first name,
actual last name, and actual date of birth are large vari-
ables. The domain of actual first name may be the set of
all possible first names, which we may never know in full
extent because people can make up names. In person iden-
tification, we can ask, what is the probability of the actual
name of a person given the name that appears in the de-
scription of the person, or, what is the probability that the
two descriptions refer to the same person.

There has been much work on this problem in the context
of natural language processing. For an N -gram model,
for M words vocabulary, there are MN N-grams and
many of such pairs have negligible probabilities. In lan-
guage processing these models are represented (stored) us-
ing efficient N-gram decoding [Odell, Violative and Wood-
land, 1995] and hash table [Cohen, 1997]. Unfortunately
these approaches do not extend to other domains such as
the person identification problem.

We assume that we have a procedural way for generating
the prior probabilities of the large variables (perhaps con-
ditioned on other variables). This may include looking up
tables. For example, the U.S. Census Bureau1 publishes a
list of all first names, conditioned by gender, together with
probabilities that covers 90% of all first names for both
males and females. This, together with a method for es-
timating the probability of a new name, can be used as the
basis for P (FirstName|Sex). If we have a database of
words and empirical frequencies, we can use this, using, for
example, a Good-Turing estimate [Good, 1953] to compute
P (word). We may also have a model of how postal codes
are generated to give a procedure that estimates the proba-

1http://www.census.gov/genealogy/names/

bility of a given postal code. While we need to reason with
the large variables, we never want to actually enumerate the
values during inference.

The fundamental idea is that in any table, we divide the
possible values of an unbounded variable in disjoint sub-
sets (equivalence classes) for which we have the same con-
ditional probability for particular values (or particular sub-
sets) of other random variables. We construct these subsets
dynamically during inference using the observed states of
other variables, or the partitions of other variables in other
functions. These subsets are described either as extension-
ally (by listing the element) or intensionally (using a pred-
icate).

The remainder of this paper is organized as follows. We
first describe the person identification problem, in brief,
which motivates the need for the efficient inference for
large discrete domains. We then describe the representa-
tion for large conditional probability tables. Next we give
the details of the inference algorithm followed by the con-
clusion.

2 Motivating Example: Person
Identification

Person identification is used for comparing records in one
or more data files, removing duplicates, or in determining if
a new record refers to a person already in the database or to
a new person. The core sub-problem of person identifica-
tion is the problem of comparing a test person’s description
with each other description in the database. Let X and Y
be two records to be compared, and DescX and DescY

denote their corresponding descriptions. There are two hy-
potheses when we compare the two descriptions DescX

and DescY :

• both records refer to the same person (X = Y)

• the records refer to different people (X 6= Y)

Let Psame be the posterior probability that records X and
Y refer to the same person given their descriptions and
Pdiff be the posterior probability that records X and Y
refer to different people given their descriptions. That is,

Psame = P (X = Y |DescX , DescY)

Pdiff = P (X 6= Y |DescX , DescY)

The odds, Odds, for hypotheses X = Y and X 6= Y

Odds =
Psame

Pdiff

=
P (DescX |DescY ∧X = Y) P (X = Y)

P (DescX |DescY ∧X 6= Y) P (X 6= Y)

Traditional methods [Fellegi and Sunter, 1969] treat the at-
tributes as independent given whether the desciptions refer
to the same person or not. We have relaxed this assump-
tion to model how the attributes are interdependent. We
model the dependence/independence between the attributes
for both cases X = Y and X 6= Y using a similarity net-
work representation [Geiger and Heckerman, 1996].

To make this paper readable, we only consider the attributes
first name (Fname) and phone number (Phone). The real
application considers many more attributes.

The simplest Bayesian network of attribute dependence for
the case X 6= Y does not contain any large variables, and
the inference in the network can be done using a standard
Bayesian inference algorithm.

Consider the X = Y case where both records refer to
the same person (the numerator of the Odds formula). If
records X and Y refer to the same person, we expect that
the attributes values should be the same for both X and Y .
However, there may be differences because of attribute er-
rors: typing errors, phonetic errors, nick names, swapping
first and last names, change of address, and so forth.

We assume that the attributes are dependent because the
data entry person could have been sloppy, and because the
person could have moved to a new place of residence be-
tween the times that the records were input. To make this
paper more readable, we consider the following errors2:
copy error3 (ce), single digit/letter error(sde), and the lack
of any errors, or no error(noerr).

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

move

EFx EFy EPHx EPHy
Sex

Fnamex

Afname

Fnamey Phonex Phoney

Aphone

SloppyX SloppyY

Figure 1: Bayesian Network representation of attribute de-
pendency for case X = Y (shaded nodes are observed)

The dependence between attributes is shown in Figure 1.
The unshaded nodes show the hidden variables. The vari-
able SloppyX (SloppyY) represents whether the person who
reported the attribute values of record X (Y) was sloppy or
not. The variable Afname represents the actual first name.
The variable EFx (EFy) represents which error was made
in recording the first name for record X (Y). The variable
move represents whether the person moved to a different
address between the two records.

2Although, the real application consider many more errors.
3An error where a person copies a correct name, but from the

wrong row of a table.

Figure 1 shows the relationship between these variables.
The random variables Fnamex, Fnamey, and Afname
have, as domains, all possible first names.

For the probability P (Afname|Sex), we use the first
name lists from the U.S. Census Bureau 4. There are two
first name lists with associated probabilities: one for fe-
male names, and the other for male names. The probabil-
ity P (Afname|Sex = male) is computed using the male
name file. The probability P (Afname|Sex = female)
is computed using the female name file. We need a differ-
ent mechanism for names that do not appear in these lists.
A number of approaches have been proposed to solve this
problem [Chen and Goodman, 1998; Good, 1953; Fried-
man and Singer, 1998]. In our implementation, we just use
a very small probability5 as the estimate of the probability
of a new word.

To compute the probability P (Aphone) a model for gen-
erating phone numbers can be used. There are rules to gen-
erate the valid phone numbers for a city, province, and so
forth. We use the simple procedure P (Aphone) is 1/P ,
where P is the number of legal phone numbers if Aphone
is a legal phone number and is 0 otherwise.

Inference in the Bayesian network shown in Fig-
ure 1 is complicated because of the variables with
large number of values. We cannot represent
P (Fnamex|Afname ∧ Sex ∧ EFx) in a tabular
form as we do not know all names, and even if we
did, the domains of Afname and Fnamex are very
large (unbounded). The conditional probability table
P (Afname|Sex) is also very large. To represent the
large CPTs we need a compact representation.

3 Representation

We divide the discrete random variables into two categories
small variables (small domain size) and large variables
(large domain size). For small variables we treat each
value separately (i.e., equivalently partition into single el-
ement subsets). For large variables we partition the val-
ues into non-empty disjoint sets (equivalence classes whose
union is the domain of the variable). An element of a par-
tition is referred to as a block.

We use upper case letters to denote random variables (e.g.,
X1, X2, X), and the actual value of these variables by the
small letters (e.g. a, b, x1). The domain of a variable X ,
written dom (X), is a set of values. We use the notation
P (X) to denote the probability distribution for X . We de-
note sets of variables by boldface upper case letters (e.g.
X) and their assignments by the bold lower case letters

4http://www.census.gov/genealogy/names/
5The data available from U.S. Census Bureau is very noisy

and incomplete to apply any of the zero frequency estimation ap-
proaches.

(e.g., x).

Each block of a partition is described either as:

• intensionally as a predicate, but we also assume there
is a procedure to efficiently compute the predicate, and
to count the number of values for which it is true. As
a part of the intensional definition, we assume that we
have an if-then-else stucture, where the condition is a
predicate.

• extensionally by listing the elements.

The probability is described either as:

• a non negative real number

• intensionally as a function, but we also assume there
is a procedure to compute the function.

Let us first consider the representation of the conditional
probability table P (Fnamex|Afname ∧ Sex ∧ EFx)
from BN, shown in Figure 1. We can
represent the conditional probability table
P (Fnamex|Afname ∧ Sex ∧ EFx) by enumerat-
ing the following separate cases (i.e., it is an if-then-else
structure, where the conditions are on the value of EFx):

case 1: EFx = noerr

P (Fnamex|Afname ∧ Sex ∧ EFx = noerr) =
{

1 if equal(Afname, Fnamex)
0 otherwise

where, equal is a predicate to test whether variables
Fnamex and Afname have the same value or not.
If the value of Fnamex is observed, then this im-
plicitly partitions the values of Afname into the ob-
served value and the other values. Note: the probabil-
ity P (Fnamex|Afname ∧ Sex ∧ EFx = noerr) is in-
dependent of Sex.

case 2: EFx = sde

P (Fnamex|Afname ∧ EFx = sde) =
{

prsing(Fnamex) if singlet(Fnamex, Afname)
0 otherwise

where, singlet is a predicate to test whether variables
Fnamex and Afname are a single letter apart or not.
prsing is a function to compute the probability for
EFx = sde. For example, if Fnamex = dave then
prsing(dave) = 1

100 (Note: 100 words can be gen-
erated by Fnamex = dave which are a single let-
ter apart from Fnamex as each letter can be replaced
by 25 possible letters). Note: again the probability
P (Fnamex|Afname ∧ Sex ∧ EFx = sde) is indepen-
dent of Sex.

case 3: EFx = ce.

P (Fnamex|Afname ∧ Sex ∧ EFx = ce) =

{

P (Fnamex|Sex = male) if Sex = male
P (Fnamex|Sex = female) if Sex = female

To compute the probability P (Fnamex|Sex = male)
and P (Fnamex|Sex = female) we use the male name
file and female name file respectively. The predicate
intable (Fnamex, male) tests whether Fnamex is in the
male name file or not. If Fnamex is in the male name file
then function lookup(Fnamex, male) computes the prob-
ability P (Fnamex|Sex = male) by looking in the male
name file. If Fnamex is not in the male name file then we
consider P (Fnamex|Sex = male) as the probability of a
new name, Pnew, a very small probability.

The if-then-else structure can also be seen as a decision
tree [Quinlan, 1986]. These representations have been
used to represent context specific independence [Boutilier
et al., 1996]. Generally speaking, the proposed repre-
sentation generalizes the idea of context specific indepen-
dence, because contexts are not only given by expres-
sion such as variablei = value but also by the expres-
sion such as foo(variablei, variablej) = yes. The de-
cision tree representation of conditional probability table
P (Fnamex|Afname ∧ Sex ∧ EFx) is shown in Figure
2.

EFx

singlet(Afname,Fnamex)

sde

equal(Afname,Fnamex)

noerr
ce

prsing(Fnamex)

No
yes

Sex

femalemaleyes
No

intable(Fnamex,male) intable(Fnamex,female)

PnewPnew

yes no yes
no

0

1 0

lookup(Fnamex,female)
lookup(Fnamex,male)

Figure 2: A decision tree representation of the CPT

In Figure 2 values of the leaves represent the probabil-
ity for any world where all the variables in the path
from the root to that leaf have corresponding values.
For example, for the trees in Figure 2 the probability is
prsing(Fnamex) in any world when EFx = sde and
singlet(Afname, Fnamex) = true.

4 Large Domain Variable Elimination

The task of probabilistic inference is: given a Bayesian net-
work with tree structured CPTs and evidence E, answer
some probabilistic query, P (X |E = e) i.e., the probability

distribution over the random variable or variables X given
evidence E = e.

The inference algorithm for BN containing large vari-
ables is based on variable elimination, VE [Zhang and
Poole, 1996]. In VE, a factor is the unit of data used during
computation. A factor is a function over a set of variables.
The factors can be represented as tables, where each row of
the table corresponds to a specific instantiation of the factor
variables. In VE the initial factors are conditional probabil-
ity table. The main operations in this algorithm are:

• conditioning on observations

• multiplying factors

• summing out a variable from a factor

In large-domain VE, we represent the factors as decision
trees, as shown in Figure 2.

Initially, the factors represent the conditional probability ta-
bles. For the intermediate factors that are created by adding
and multiplying factors, we need to find the partitions of
large variables dynamically for each assignment of small
variables and partitions on other large variables.

4.1 Operations on Trees

In this section, we briefly describe two operations on which
we build the operations: multiplying factors, and summing
out variables from a factor.

Tree Pruning (simplification)

Tree pruning is used to remove redundant interior nodes
or redundant subtrees of the interior nodes of a tree. We
prune branches that are incompatible with the ancestors in
the tree. In the simplest case, where we just have equal-
ity, we prune any branch where an ancestor gives a vari-
able a different value. Where there are explicit sets, we
can carry out an intersection to determine the effective con-
straints. We can then prune any branch where the effective
constraint is that a variable is a member of the empty set.
For example, if an ancestor specifies X ∈ {1, 2} and a de-
cendent specifies X ∈ {3}, the decendent can be pruned.
Similarly for the “else” case, we can do set difference to
determine the effective constraints. An example is shown
in Figure 3. The tree on the left contains multiple interior
nodes labelled X along a single branch. The tree can be
simplified to produce a new tree in which the subtree of
the subsequent occurrence of X which are not feasible are
removed.

The correctness of the algorithm does not depend on
whether we do complete pruning. We don’t consider
checking for compatibility of intensional representations
(which may require some theorem proving); whether the

algorithm can be more efficient with such operations is still
an open question.

c

d

e

g

h

b d

h

g

X = {1,2,3,4,5,6}

{1,2}

{2}{1}

Y = {1,2}

{1}

{3}

"else"

{3} "else"

{3}

X = {1,2,3,4,5,6}

{2}{1}

Y = {1,2}

a

b

f

a

f

"else"

{1,4}

X = {1,2,3,4,5,6}

{1,2}

{1}

X={1,2}

"else"

{4}{3}

{2}

X = {1,2,3,4,5,6}

Figure 3: A tree simplified by removal of redundant sub-
trees (triangle denote subtrees)

Merging Trees

In VE, we need to multiply factors and sum out a variable
from a factor. Both of these operations are built upon the
merging trees operation.

Two trees T1 and T2 can be merged using operation Op
to form a single tree that makes all the distinctions made
in any of T1 and T2, and with Op applied to the leaves.
When we merge T1 and T2, we replace the leaves of tree
T1 by the structure of tree T2. The new leaves of the
merged tree are labelled with the function, Op, of the label
of the leaf in T1 and the label of the leaf in T2. We write
merge2 (T1, T2, Op) to denote the resulting tree. If the
labels of the leaves are constant, the leaf value of the new
merged tree can be evaluated while merging the trees. If
the leaf labels are intensional functions, one of the choices
is when to evaluate the intensional function. When to eval-
uate the intentional functions can be considered as a sec-
ondary optimization problem. We always apply the prun-
ing operation to the merged tree.

For example, Figure 4 shows tree T2 being merged to tree
T1 with the addition (+) operator being applied. When
we merge two trees and the Op is a multiplication function
then if the value at any leaf of T1 is zero, we keep that leaf
of T1 unchanged in the merged tree. We do not put the
structure of T2 at that leaf (as shown in Figure 5).

T1

T2

X

W

f1

5

X

W

Z Z

8

Z

3

52 Z

7

10

5

merging T1 and T2

f1+5f1+2

Figure 4: Merging tree T1 and T2 and leaf labels are com-
bined using the plus function merge2(T1, T2, +)

We can extend the merge2 operator to a set of trees. We
can define merge(Ts, Op) where, Ts is a set of trees and
Op is an operator, as follows. We choose a total order of
the set, and carry out the following recursive procedure:

T1

T2

X

W

7

0

X

W

10

Y

2

52

4

merging T1 and T2
0

14 35

Y Y

Figure 5: Merging tree T1 and T2 and leaf la-
bels are combined using the multiplication function
merge2(T1, T2,×)

merge({T0, . . . , Tn}, Op)

= T0 if n = 0

= merge2(merge({T0, . . . , Tn−1}, Op), Tn, Op) if n > 0

4.2 Conditioning on Observations

When we observe the values taken by certain variables, we
need to incorporate the observation into the factors. If a
node is split on the values of the observed variable, the ob-
served value of a variable is incorporated in the tree repre-
sentation by replacing that node by its subtree that corre-
sponds to the observed value. If a node split on an inten-
sional function of the observed variable, the observed value
of a variable is incorporated by replacing the occurrence of
the variable by its observed value.

For example, when we observe Fnamex = david, then
factor f (EFx, Fnamex = david, Afname) becomes a
function of EFx, and Afname. The tree representation
of the new factor f(EFx, Afname) is shown in Figure 6.

EFx
sde

equal(Afname,david)

noerr
ce

No
yes

femalemaleyes
No

intable(david,female)

PnewPnew

yes no yes
no

1 0

lookup(david,female)

singlet(Afname,david)

intable(david,male)

prsing(david)

Sex

0

0.02363

Figure 6: A Tree structured representation of
new factor f (EFx, Afname), i.e., the factor
f (EFx, Fnamex, Afname) after conditioning on
Fnamex = david

In Figure 6, the predicate equal gives us the possible value
for Afname which is equal to david. That is, in the

context of EFx = noerr, we are implicitly partitioning
Afname into {david} and all of the other names. Sim-
ilarly, for EFx = sde, we are implicitly partitioning the
values of Afname into those names which are a single let-
ter apart from david, and all of the other names.

The computation of predicates equal and singlet is de-
layed until we sum out the variable Afname. We
can now compute the predicate intable(david, male)
and intable(david, female) to simplify the tree after
conditioning on observation Fnamex = david. As
david appears in the male name file, the subtree at
node intable(david, male) is replaced by the value of
lookup(david, male) which is 0.02363. As david doesn’t
appear in the female name file, the subtree at node
intable(david, female) is replaced by the probability of
new name, Pnew.

4.3 Multiplication of Factors

In variable elimination, to eliminate Y , we multiply all of
the factors that contain Y , then sum out Y from the re-
sulting factor. In this section we describe how to multiply
factors represented as trees.

Suppose T is the set of trees that represent the factors that
involve Y . We need to form the product merge (T,×),
from which we will sum Y . We always apply the pruning
operation to the resulting tree.

For example, suppose that we have observed
Fnamex = david and Fnamey = davig and we
want to eliminate the variable Afname from Figure
1. To eliminate variable Afname we need to multi-
ply all the factors that contain variable Afname. The
factors f1 (Fnamex = david, EFx, Sex, Afname),
f2 (Fnamey = davig, EFy, Sex, Afname), and
f3 (Afname, Sex) contain variable Afname. As
shown in Figure 7, T1, T2 and T3 are the decision tree
representation of f1, f2, and f3 respectively. After
multiplying factors f1, f2, and f3 we get a new factor
f (EFx, EFy, Sex, Afname) of variables Efx, EFy,
Sex, and Afname. Part of the tree representation, T , of
the new factor, f , is shown in Figure 7.

4.4 Summing Out Variable Y

Suppose T is the tree representation for the factor resulting
from multiplying all trees that contain variable Y . Now, we
need to sum out the variable Y from T in order to get the
tree representation, T ′, of the new factor.

In large domain VE, summing out a variable is complicated
because we can have intensional functions at the nodes as
well as on the leaves of the tree. To sum out a variable Y
from tree T , at each leaf we need to compute the probability
mass for all the values of Y that end up at each leaf.

Sex

yes

intable(Afname,male) intable(Afname,female)

no

Pnew

lookup(Afname,female)
Pnew

yes no

male female

equal(Afname,david)

lookup(Afname,male)

EFx

ce

femalemale

0.02363 Pnew

noerrsde

singlet(Afname,david)

prsing(david)

0

yes no
Sex

yes no

1 0

EFx

Sex

intable(Afname,male)

sde

no

sde

noerr
ce

singlet(Afname,davig)

ce
noerr

singlet(Afname,david)

EFy

yes

EFy

ce

femalemale

0.02363 Pnew

noerrsde

singlet(Afname,davig)

prsing(david)

0

yes no
Sex

yes no

1 0

equal(Afname,davig)

yes

yes

male female

no

no

0

0

p1 p2

p1 = prsing(david)*prsing(davig)*lookup(Afname,male)

p2 = prsing(david)*prsing(davig)*Pnew

T3T1

T2

T

merge({T1,T2,T3},*)

Figure 7: A decision tree representation, T , of new factor
f , after multiplying factors f1, f2, and f3 (∗ represents
multiplication operator)

If the label at the leaf is a constant, the probability mass of
a leaf is the product of the label and the number of values
of Y which satisfies all the predicates from the root to this
leaf. If the label at the leaf is a function, the probability
mass of a leaf is computed by summing the value of the leaf
for each value of Y that satisfies all the predicates from the
root to this leaf. How to evaluate this depends on the actual
function.

Once we have the probability mass at each leaf, we need to
sum the subtrees that correspond to different blocks (sub-
sets) for a partition of Y . We need to do this for every
context (i.e., for every assignment of ancestors).

These two steps, for computing T ′ from T , are combined
in the algorithm shown in Figure 8. We traverse the tree T
in a top-down manner. At each internal node, we determine
if the test for the split depends on the summing variable. If
so, we sum out Y from each subtree recursively and then
merge them together using plus opeartor. If not, we recur-
sivly call each subtree. In order to determine the probability
mass at the leaves, we keep track of all the predicates that
refer to Y during the recursion. If a node is a leaf, we com-
pute the probability mass of the leaf for all the values of Y ,
which satisfy all the predicates from the root to this leaf.

Note: When we sum out a small variable and the nodes in
the tree split on the values of the small summing variable,
the algorithm shown in Figure 8 is simple because in this
case the probability mass of a leaf is the same as the label
on the leaf.

As an example, suppose we want to sum out the vari-
able Afname from factor f (EFx, EFy, Sex, Afname)

Function Sum (T,Y,Context) returns a decision
tree T’
Input : T , the root of the decision tree, Y , the summing
variable
initially Context is true

if T is an internal node then
fun← function at which T is tested
if Y ∈ fun then

T0, . . . , Tn ← subtrees of T
C0, . . . , Cn ← values of fun for T0, . . . , Tn

T ′
i ← Sum (Ti, Y, Context ∧ (fun = Ci))

TT ← merge ({T ′
0, . . . , T

′
n} , +)

return TT
else

T ′← a new node with test on fun
T0, . . . , Tn ← subtrees of T
T ′

i ← Sum (Ti, Y, Context)
add T ′

0, . . . , T
′
n to T ′

return T ′

end if
else if T is leafnode then

let p← leaf label
p′ ←

∑

∀y∈dom(Y),Context=true p

leaf label← p′

Return T
end if

Figure 8: Algorithm for computing decison tree T ′ after
summing out variable Y from the decison tree T

as computed in Section 4.3. The tree representation T of
f is shown in Figure 7. After we sum out the variable
Afname from f we get a new factor f ′ (EFx, EFy, Sex)
of variables EFx, EFy, and Sex. The tree representation
T ′ of new factor f ′ is shown in Figure 9.

In the next section we show how probability masses p1′ and
p2′ can be computed efficiently without actually enumerat-
ing the values of Afname.

4.4.1 Evaluation of p1′ and p2′

Let us first consider the computation of the probability
mass, p1′.

p1′ =
∑

∀Afname=afname∈dom(Afname)(C1∧C2∧C3=true)

p1

where, C1 = (singlet(Afname, david) = yes),
C2 = (singlet(Afname, davig) = yes), and C3 =
(intable(Afname, male) = yes)

As shown in Figure 9, p1 is a function of Afname, to com-
pute the value of p1′ we need to compute p1 for all values of
Afname that satisfy the predicates C1, C2, and C3. That
is, those values of Afname which exist in the male name
file and single letter apart from both Afname = david

EFx

Sex

sde

EFy

sde

T’

female

ce
noerr

ce

noerr

p1’ = probability mass of the leaf corresponding to p1

p2’ = probability mass of the leaf corresponding to p2
intable(Afname,male)

yes

Sex
male

p1 p2

EFy

sde

EFx

yes no

sde
ce noerr

noerr
ce

male

singlet(Afname,davig)

female

no

Summing out Afname

T

p2 = prsing(david)*prsing(davig)*Pnew

p1 = prsing(david)*prsing(davig)*lookup(Afname,male)

p1’+p2’

0

0

yes no

singlet(Afname,david)

Figure 9: A decision tree representation, T ′, of new factor
f ′ after summing out the variable Afname from factor f
(∗ represents multiplication operator)

and Afname = davig. We can compute these values
of Afname without actually enumerating the values of
Afname by using an efficient data structure for represent-
ing the male name file and the female name file. Now, we
can query to the male name file representation to get the
values of Afname that are single letter apart from both
david and davig, we get Afname = {davis}. Thus,

p1′ =
∑

Afname={davis}

p1

= prsing(david)× prsing(davig)× Pdavis

where, Pdavis is the probability of name davis from male
name file

Let us now consider the computation of probability mass,
p2′.

p2′ =
∑

∀Afname=afname∈dom(Afname)(C1∧C2∧C4=true)

p2

where, C4 = (intable(Afname, male) = no)

As shown in Figure 9, p2 is a not a function of Afname,
to compute the value of p2′ we don’t need the values of
Afname that satisfy the predicates C1, C2, and C4. But,
we need the count of the values of Afame.

To count efficiently the number of values of Afname
that are single letter apart from both david and davig,
we first generate the patterns of names that are a sin-
gle letter apart from david. For example, ?avid, where
? is any letter except d. After generating these pat-
terns we test which of these patterns makes the predicate
singlet(Afname, davig) = yes. Here, the pattern davi?
makes the predicate yes if ? 6= d∧? 6= g. Thus, the possible
number of values for Afname is 24 that are a single letter
apart from both david and davig6 . Out of these 24 values

6As there are 26 letters.

of Afname we have already found that one value exist in
male name file (during the computation of p1′). Thus, there
are only 23 values of Afname that satisfy C1∧C2∧C4.
Thus,

p2′ = 23× prsing(david)× prsing(davig)× Pnew

4.5 Computing Posterior

To compute the posterior we first condition on the observed
variables and then sum out all non-observed, non-query
variables one by one. We can compute the posterior by
multiplying the remaining factors and normalizing the re-
maining factor.

When we query a large variable, we would typically return
an intensional representation of the distribution, which we
can use to answer queries about the distribution.

5 Conclusion

In this paper we present an inference algorithm for a be-
lief network that contains random variables with large or
even unbounded domains. Our inference algorithm, large
domain variable elimination, is based on the variable elim-
ination algorithm. The main idea is to partition the do-
main of a large variable in equivalence classes for which
we have the same conditional probability for particular val-
ues (or particular subset) of other random variables. We
construct these subsets dynamically during the inference.
These equivalence classes can be described extensionally
and intensionally. Intensional representation allows us to
compute the query in terms of parameters and then the an-
swer to specific queries are computed by plugging the val-
ues of the parameters.

Acknowledgements

This work was supported by NSERC Research Grant OG-
POO44121 and The Institute for Robotics and Intelligent
Systems. Thanks to Valerie McRae for providing the use-
ful comments.

References

Bell, G. B. and Sethi, A. [2001]. Matching records in a
national medical patient index, Communication of the
ACM, Vol. 44.

Boutilier, C., Froedman, N., Goldszmidt, M. and Koller, D.
[1996]. Context-specific independence in Bayesian
networks, In Proceeding of Thirteenth Conf. on Un-
certainity in Artificial Intelligence (UAI-96), pp. 115–
123.

Chen, S. F. and Goodman, J. T. [1998]. An empirical
study of smoothing techniques for language model-
ing, Technical Report TR-10-98, Computer Science
Group, Harvard University.

Cohen, J. D. [1997]. Recursive hashing functions for n-
grams, ACM Transactions on Information Systems,
Vol. 15(3), pp. 291–320.

Fellegi, I. and Sunter, A. [1969]. A theory for record link-
age, Journal of the American Statistical Association,
pp. 1183–1210.

Friedman, N. and Singer, Y. [1998]. Efficient Bayesian
parameter estimation in large discrete domains, Pro-
ceedings of Neural information Processing Systems.

Geiger, D. and Heckerman, D. [1996]. Knowledge rep-
resentation and inference in similarity networks and
Bayesian multinets, Journal of the Artificial Intelli-
gence, Vol. 82, pp. 45–74.

Gill, L. [1997]. Ox-link: The Oxford medical record
linkage system, Record Linkage Techniques, National
Academy Press, pp. 15–33.

Good, I. [1953]. The population frequencies of species and
the estimation of population parameters, Journal of
the American Statistical Association, pp. 237–264.

Odell, J., Violative, V. and Woodland, P. [1995]. A one pass
decoder design for large vocabulary recognition, Pro-
ceedings of the DARPA Human Language Technology
Workshop.

Pearl, J. [1988]. Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference, Morgan Kauf-
mann Publishers Inc.

Quinlan, J. [1986]. Induction of decision trees, Machine
Learning, Vol. 1, pp. 81–106.

Zhang, N. L. and Poole, D. [1996]. Exploiting causal in-
dependence in Bayesian network inference, Artificial
Intelligence, Vol. 5, pp. 301–328.

