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Abstract. Over the last 25 years there has been considerable body of
research into combinations of predicate logic and probability forming
what has become known as (perhaps misleadingly) statistical relational
artificial intelligence (StaR-AI). I overview the foundations of the area,
give some research problems, proposed solutions, outstanding issues, and
clear up some misconceptions that have arisen. I discuss representations,
semantics, inference and learning, and provide some references to the
literature. This is intended to be an overview of foundations, not a survey
of research results.
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1 Introduction

Over the last 25 years there has been a considerable body of research into com-
bining logic and probability, evolving into what has come to be called statistical
relational AI. Rather than giving a survey, I will motivate the issues from the
bottom-up, trying to justify some choices that have been made. Laying bare the
foundations will hopefully inspire others to join us in exploring the frontiers and
unexplored areas.

One of the barriers to understanding this area is that it builds from mul-
tiple traditions, which often use the same vocabulary to mean different things.
Common terms such as “variable”, “domain”, “relation”, and “parameter” have
come to have accepted meanings in mathematics, computing, logic and prob-
ability, but their meanings in each of these areas is different enough to cause
confusion.

Both predicate logic (e.g., the first-order predicate calculus) and Bayesian
probability calculus can be seen as extending the propositional calculus, one by
adding relations, individuals and quantified variables, the other by allowing for



measures over possible worlds and conditional queries. Relational probabilistic
models1, which form the basis of statistical relational AI can be seen as combina-
tions of probability and predicate calculus to allow for individuals and relations
as well as probabilities.

To understand the needs for such a combination, consider learning from the
two datasets in Figure 1 (from [25]). Dataset (a) is the sort used in traditional
supervised and unsupervised learning. Standard textbook supervised learning
algorithms can learn a decision tree, a neural network, or a support vector ma-
chine to predict UserAction. A belief network learning algorithm can be used
to learn a representation of the distribution over the features. Dataset (b), from

Example Author Thread Length WhereRead UserAction

e1 known new long home skips
e2 unknown new short work reads
e3 unknown follow up long work skips
e4 known follow up long home skips
. . . . . . . . . . . . . . . . . .

(a)

Individual Property Value

joe likes resort 14
joe dislikes resort 35
. . . . . . . . .
resort 14 type resort
resort 14 near beach 18
beach 18 type beach
beach 18 covered in ws
ws type sand
ws color white
. . . . . . . . .

(b)

Fig. 1. Two datasets

which we may want to predict what Joe likes, is different. Many of the values
in the table are meaningless names that can’t be used directly in supervised
learning. Instead, it is the relationship among the individuals in the world that
provides the generalizations from which to learn. Learning from such datasets
has been studied under the umbrella of inductive logic programming (ILP) [12,
10] mainly because logic programs provide a good representation for the general-
izations required to make predictions. ILP is one of the foundations of StaR-AI,
as it provides a toolbox of techniques for structure learning.

1 Here we use this term in the broad sense, meaning any models that combine relations
and probabilities.



One confusion about the area stems from the term “relational”; after all most
of the datasets are, or can be, stored in relational databases. The techniques of
relational probabilistic models are applicable to cases where the values in the
database are names of individuals and it is the properties of the individuals and
the relationship between the individuals that are modelled. It is sometimes also
called multi-relational learning, as it is the interrelations that are important. This
is a misnomer because, as can be seen in Figure 1 (b), it not multiple relations
that cause problems (and provide opportunities to exploit structure), as a single
triple relation can store any relational database (in a so-called triple-store).

The term statistical relational AI, comes from not only having probabilities
and relations, but that the models are derived from data and prior knowledge.

2 Motivation

Artificial intelligence (AI) is the study of computational agents that act intel-
ligently [25]. The basic argument for probability as a foundation of AI is that
agents that act under uncertainty are gambling, and probability is the calculus
of gambling in that agents who don’t use probability will lose to those that do
use it [33]. While there are a number of interpretations of probability, the most
suitable is a Bayesian or subjective view of probability: our agents do not en-
counter generic events, but have to make decisions in particular circumstances,
and only have access to their beliefs.

In probability theory, possible worlds are described in terms of so-called ran-
dom variables (although they are neither random nor variable). A random vari-
able has a value in every world. We can either define random variables in terms
of worlds or define worlds in terms of random variables. A random variable
having a particular value is a proposition. Probability is defined in terms of a
non-negative measure over sets of possible worlds that follow some very intuitive
axioms.

In Bayesian probability, we make explicit assumptions and the conclusions
are logical consequences of the specified knowledge and assumptions. One par-
ticular explicit assumption is the assumption of conditional independence. A
Bayesian network [14] is an acyclic directed graphical model of probabilistic
dependence that encapsulates the independence: a variable is conditionally in-
dependent of other variables (those that are not its descendants in the graph)
given its parents in the graph. This has turned out to be a very useful assump-
tion in practice. Undirected graphical models encapsulate the assumption that
a variable is independent of other variables given its neighbours.

These motivations for probability (and similar motivations for utility) do not
depend on non-relational representations.

3 Representation

Statistical relational models are typically defined in terms of parametrized ran-
dom variables [20] which are often drawn in terms of plates [3]. A parametrized



random variable corresponds to a predicate or a function symbol in logic. It can
include logical variables (which form the parameters). In the following examples,
we will write logical variables (which denote individuals) in upper case, and con-
stants, function and predicate symbols in lower case. We assume that the logical
variables are typed, where the domain of the type, the set of individuals of the
type, is called the population.

Parametrized random variables are best described in terms of an example.
Consider the case of diagnosing students’ performance in adding multi-digit num-
bers of the form

x1 x0

+ y1 y0
z2 z1 z0

A student, given values for the x’s and the y’s, provides values for the z’s.
Whether a student gets the correct answer for zi depends on xi, yi, the value

carried in and whether she knows addition. Whether a student gets the correct
carry depends on the previous x, y and carry, and whether she knowns how to
carry. This dependency can be seen in Figure 2. Here x(D,P ) is a parametrized

x(D,P)

y(D,P) z(D,P,S,T)

c(D,P,S,T)

knows_carry(S,T) knows_add(S,T)

D,P

S,T

Fig. 2. Belief network with plates for multidigit addition

random variable. There is a random variable for each digit D and each prob-
lem P . A ground instance, such as x(d3, problem57), is a random variable that
may represent the third digit of problem 57. Similarly, there is a z-variable for
each digit D, problem P , student S, and time T . The plate notation can be
read as duplicating the random variable for each tuple of individual the plate is
parametrized by.

The basic principle used by all methods is that of parameter sharing : the in-
stances of the parametrized random created by substituting constants for logical
variables share the same probabilistic parameters. The various languages differ
in how to specify the conditional probabilities of the variables variable given its
parents, or the other parameters of the probabilistic model.

The first such languages (e.g., [8]), described the conditional probabilities
directly in term of tables, and require a combination function (such as noisy-



and or noisy-or) when there is a random variable parametrized by a logical
variable that is a parent of a random variable that is not parametrized by the
logical variable. Tables with combination functions turn out to be not a very
flexible representation as they cannot represent the subtleties involved in how
one random variable can depend on others.

In the above example, c(D,P, S, T ) depends, in part, on c(D − 1, P, S, T ),
that is, on the carry from the previous digit (and there is some other case for the
first digit). A more complex example is to determine the probability that two
authors are collaborators, which depends on whether they have written papers
in common, or even whether they have written papers apart from each other.

To represent such examples, it is useful to be able to specify how the logical
variables interact, as is done in logic programs. The independent choice logic
(ICL) [18, 22] (originally called probabilistic Horn abduction [15, 17]) allows for
arbitrary (acyclic) logic programs (including negation as failure) to be used to
represent the dependency. The conditional probability tables are represented
as independent probabilistic inputs to the logic program. A logic program that
represents the above example is in Chapter 14 of [25]. This idea also forms
the foundation for Prism [29, 30], which has concentrated on learning, and for
Problog [4], a project to build an efficient and flexible language.

There is also work on undirected models, exemplified by Markov logic net-
works [26], which have a similar notion of parametrized random variables, but
the probabilities are represented as weights of first-order clauses. Such models
have the advantage that they can represent cyclic dependencies, but there is
no local interpretation of the parameters, as probabilistic inference relies on a
global normalization.

4 Inference

Inference in these models refers to computing the posterior distribution of some
variables given some evidence.

A standard way to carry out inference in such models is to try to generate and
ground as few of the parametrized random variables as possible. In the ICL, the
relevant ground instances can be carried out using abduction [16]. More recently,
there has been work on lifted probabilistic inference [20, 5, 31, 11], where the idea
is to carry out probabilistic reasoning at the lifted level, without grounding out
the parametrized random variables. Instead, we count how many of the probabil-
ities we need, and when we need to multiply a number of identical probabilities,
we can take the probability to the power of the number of individuals. Lifted
inference turns out to be a very difficult problem, as the possible interactions
between parametrized random variables can be very complicated.

5 Learning

The work on learning in relational probabilistic models has followed two, quite
different, paths.



From a Bayesian point of view, learning is just a case of inference: we con-
dition on all of the observations (all of the data), and determine the posterior
distribution over some hypotheses or any query of interest. Starting from the
work of Buntine [3], there has been considerable work in using relational mod-
els for Bayesian learning [9]. This work uses parametrized random variables (or
the equivalent plates) and the probabilistic parameters are real-valued random
variables (perhaps parametrized). Dealing with real-valued variables requires
sophisticated reasoning techniques often in terms of MCMC and stochastic pro-
cesses. Although these methods use relational probabilistic models for learning,
the representations learned are typically not relational probabilistic models.

There is a separate body of work about learning relational probabilistic mod-
els [29, 7]. These typically use non-Bayesian techniques, to find the most likely
models given the data (whereas the Bayesian technique is to average over all
models). What is important about learning is that we want to learn general the-
ories that can be learned before the agent know the individuals, and so before
the agent knows the random variables.

It is still an open challenge to bring these two threads together, mainly be-
cause of the difficulty of inference in these complex models.

6 Actions

There is also a large body of work on representing actions. The initial work
in this area was on representations, in terms of the event calculus [18] or the
situation calculus [19, 1]2. This is challenging because to plan, an agent needs to
be concerned about what information will be available for future decision. These
models combined perception, action and utility to form first-order variants of
fully-observable and partially-observable Markov decision processes.

Later work has concentrated on how to do planning with such representations
either for the fully observable case [2, 27] or the partially observable case [35, 28].
The promise of being able to carry out lifted inference much more efficiently is
slowly being realized. There is also work on relational reinforcement learning [32,
34], where an agent learns what to do before knowing what individuals will be
encountered, and so before it knows what random variables exist.

7 Identity and Existence Uncertainty

The previously outlined work assumes that an agent knows which individuals
exist and can identify them. The problem of knowing whether two descriptions
refer to the same individual is known as identity uncertainty [13]. This arises

2 These two papers are interesting because they make the opposite design decisions
on almost all of the design choices. For example, whether an agent knowns what
situation it is in, and whether a situation implies what is true: we can’t have both
for a non-omniscient agent.



in citation matching when we need to distinguish whether two references re-
fer to the same paper and in record linkage, where the aim is to determine if
two hospital records refer to the same person (e.g., whether the current patient
who is requesting drugs been at the hospital before). To solve this, we have the
hypotheses of which terms refer to which individuals, which becomes combina-
torially difficult.

The problem of knowing whether some individual exists is known as existence
uncertainty [21]. This is challenging because when existence is false, there is no
individual to refer to, and when existence is true, there may be many individuals
that fit a description. We may have to know which individual a description is
referring to. In general, determining the probability of an observation requires
knowing the protocol for how observations were made. For example, if an agent
considers a house and declares that there is a green room, the probability of this
observation depends on what protocol they were using: did they go looking for a
green room, did they report the colour of the first room found, did they report
the type of the first green thing found, or did they report on the colour of the
first thing they perceived?

8 Ontologies and Semantic Science

Data that are reliable and people care about, particularly in the sciences, are
being reported using the vocabulary defined in formal ontologies [6]. The next
stage in this line of research is to represent scientific hypotheses that also refer
to formal ontologies and are able to make probabilistic predictions that can
be judged against data [23]. This work combines all of the issues of relational
probabilistic modelling as well as the problems of describing the world at multiple
level of abstraction and detail, and handling multiple heterogenous data sets. It
also requires new ways to think about ontologies [24], and new ways to think
about the relationships beween data, hypotheses and decisions.

9 Conclusions

Real agents need to deal with their uncertainty and reason about individuals and
relations. They need to learn how the world works before they have encountered
all the individuals they need to reason about. If we accept these premises, then
we need to get serious about relational probabilistic models. There is a growing
community under the umbrella of statistical relational learning that is tackling
the problems of decision making with models that refer to individuals and re-
lations. While there have been considerable advances in the last two decades,
there are more than enough problems to go around!
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