Local Search

Local Search (Greedy Descent):
@ Maintain an assignment of a value to each variable.
@ Repeat:

» Select a variable to change
» Select a new value for that variable

@ Until a satisfying assignment is found
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Local Search for CSPs

@ Aim: find an assignment with zero unsatisfied constraints.

@ Given an assignment of a value to each variable, a conflict is
an unsatisfied constraint.

@ The goal is an assignment with zero conflicts.

@ Heuristic function to be minimized: the number of conflicts.
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Greedy Descent Variants

To choose a variable to change and a new value for it:
e Find a variable-value pair that minimizes the number of
conflicts
@ Select a variable that participates in the most conflicts.
Select a value that minimizes the number of conflicts.
@ Select a variable that appears in any conflict.
Select a value that minimizes the number of conflicts.

Select a variable at random.
Select a value that minimizes the number of conflicts.

Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.2, Page 3



Complex Domains

@ When the domains are small or unordered, the neighbors of an
assignment can correspond to choosing another value for one
of the variables.

@ When the domains are large and ordered, the neighbors of an
assignment are the adjacent values for one of the variables.

@ If the domains are continuous, Gradient descent changes
each variable proportional to the gradient of the heuristic
function in that direction.

The value of variable X; goes from v; to
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Complex Domains

@ When the domains are small or unordered, the neighbors of an
assignment can correspond to choosing another value for one
of the variables.

@ When the domains are large and ordered, the neighbors of an
assignment are the adjacent values for one of the variables.

@ If the domains are continuous, Gradient descent changes
each variable proportional to the gradient of the heuristic
function in that direction.

The value of variable X; goes from v; to v; — ng—)’(’i.
7 is the step size.
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Problems with Greedy Descent

@ a local minimum that is
not a global minimum

@ a plateau where the
heuristic values are
uninformative

@ a ridge is a local
minimum where n-step
look-ahead might help
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Randomized Algorithms

@ Consider two methods to find a minimum value:

» Greedy descent, starting from some position, keep moving
down & report minimum value found
» Pick values at random & report minimum value found

@ Which do you expect to work better to find a global
minimum?

@ Can a mix work better?
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Randomized Greedy Descent

As well as downward steps we can allow for:

@ Random steps: move to a random neighbor.

@ Random restart: reassign random values to all variables.

Which is more expensive computationally?
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1-Dimensional Ordered Examples

Two 1-dimensional search spaces; step right or left:

(a) (b)

@ Which method would most easily find the global minimum?
@ What happens in hundreds or thousands of dimensions?

@ What if different parts of the search space have different
structure?
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Stochastic Local Search

Stochastic local search is a mix of:
o Greedy descent: move to a lowest neighbor
@ Random walk: taking some random steps

@ Random restart: reassigning values to all variables
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Random Walk

Variants of random walk:

@ When choosing the best variable-value pair, randomly
sometimes choose a random variable-value pair.
@ When selecting a variable then a value:

» Sometimes choose any variable that participates in the most
conflicts.

» Sometimes choose any variable that participates in any conflict
(a red node).

» Sometimes choose any variable.

@ Sometimes choose the best value and sometimes choose a
random value.
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Comparing Stochastic Algorithms

@ How can you compare three algorithms when

» one solves the problem 30% of the time very quickly but
doesn't halt for the other 70% of the cases

» one solves 60% of the cases reasonably quickly but doesn't
solve the rest

» one solves the problem in 100% of the cases, but slowly?
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Comparing Stochastic Algorithms

@ How can you compare three algorithms when
» one solves the problem 30% of the time very quickly but
doesn’t halt for the other 70% of the cases
» one solves 60% of the cases reasonably quickly but doesn't
solve the rest
» one solves the problem in 100% of the cases, but slowly?

@ Summary statistics, such as mean run time, median run time,
and mode run time don't make much sense.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.2, Page 13



Runtime Distribution

@ Plots runtime (or number of steps) and the proportion (or
number) of the runs that are solved within that runtime.

0.7¢ i
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Variant: Simulated Annealing

@ Pick a variable at random and a new value at random.

e If it is an improvement, adopt it.

o If it isn’t an improvement, adopt it probabilistically depending
on a temperature parameter, T.
» With current assignment n and proposed assignment n’ we
move to n’ with probability e(f(n)=h(n)/T

@ Temperature can be reduced.
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Variant: Simulated Annealing

@ Pick a variable at random and a new value at random.

e If it is an improvement, adopt it.

o If it isn’t an improvement, adopt it probabilistically depending
on a temperature parameter, T.

» With current assignment n and proposed assignment n’ we
move to n’ with probability e(h(")=h(n)/T

@ Temperature can be reduced.

Probability of accepting a change:

Temperature 1l-worse 2-worse 3-worse

10 0.91 0.81 0.74
1 0.37 0.14 0.05
0.25 0.02 0.0003 0.000006
0.1 0.00005 2x107° 9x 10~
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@ To prevent cycling we can maintain a tabu list of the k last
assignments.

@ Don't allow an assignment that is already on the tabu list.

o If k=1, we don't allow an assignment of to the same value
to the variable chosen.

@ We can implement it more efficiently than as a list of
complete assignments.

@ It can be expensive if k is large.
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Parallel Search

A total assignment is called an individual .
@ Idea: maintain a population of k individuals instead of one.
@ At every stage, update each individual in the population.
@ Whenever an individual is a solution, it can be reported.

@ Like k restarts, but uses k times the minimum number of
steps.
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o Like parallel search, with k individuals, but choose the k best
out of all of the neighbors.

@ When k =1, it is greedy descent.
@ When k = oo, it is breadth-first search.

@ The value of k lets us limit space and parallelism.
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Stochastic Beam Search

@ Like beam search, but it probabilistically chooses the k
individuals at the next generation.

The probability that a neighbor is chosen is proportional to its
heuristic value.

This maintains diversity amongst the individuals.

The heuristic value reflects the fitness of the individual.

Like asexual reproduction: each individual mutates and the
fittest ones survive.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.2, Page 20



Genetic Algorithms

@ Like stochastic beam search, but pairs of individuals are
combined to create the offspring:
@ For each generation:

» Randomly choose pairs of individuals where the fittest
individuals are more likely to be chosen.

» For each pair, perform a cross-over: form two offspring each
taking different parts of their parents:

» Mutate some values.

@ Stop when a solution is found.
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Crossover

@ Given two individuals:
X1 = al,Xz = 32,...,Xm = am

X1=b1,X%=5br,....,Xn = bm
@ Select / at random.

@ Form two offspring:
X1 = al,...,X; = a,',X,'+1 = b,'+1,...,Xm = bm

X1 == bl,...,X,': b,',X,'_H :a,-+1,...,Xm:am

@ The effectiveness depends on the ordering of the variables.

@ Many variations are possible.
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