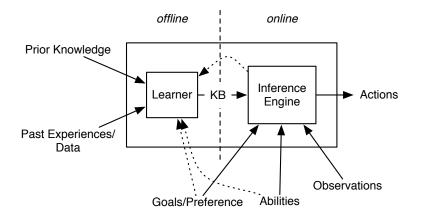
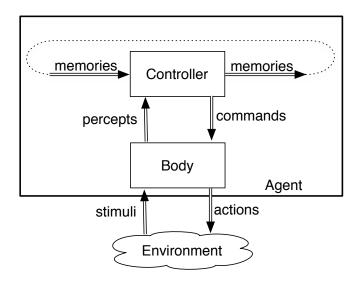

- Agents acting in an environment
- Future and Ethics of AI
- Dimensions of complexity

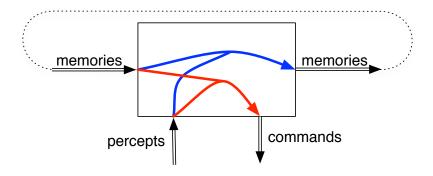

What is Artificial Intelligence?

- Artificial Intelligence is the synthesis and analysis of computational agents that act intelligently.
- An agent is something that acts in an environment.
- An agent acts intelligently if:
 - its actions are appropriate for its goals and circumstances
 - it is flexible to changing environments and goals
 - it learns from experience
 - it makes appropriate choices given perceptual and computational limitations

Agents acting in an environment



< 🗆)


(□)

Controller

< 🗆)

Functions implemented in a controller

For discrete time, a controller implements:

- belief state function returns next belief state / memory. What should it remember?
- command function returns commands to body. What should it do?

• What will super-intelligent AI bring?

- What will super-intelligent AI bring?
 - Automation and unemployment? What if people are not longer needed to make economy work?

- What will super-intelligent AI bring?
 - Automation and unemployment? What if people are not longer needed to make economy work?
 - Smart weapons? Automated terrorists?

- What will super-intelligent AI bring?
 - Automation and unemployment? What if people are not longer needed to make economy work?
 - Smart weapons? Automated terrorists?
- What will a super-intelligent AI be able to do better?

- What will super-intelligent AI bring?
 - Automation and unemployment? What if people are not longer needed to make economy work?
 - Smart weapons? Automated terrorists?
- What will a super-intelligent AI be able to do better?
 - predict the future
 - optimize (constrained optimization)

- What will super-intelligent AI bring?
 - Automation and unemployment? What if people are not longer needed to make economy work?
 - Smart weapons? Automated terrorists?
- What will a super-intelligent AI be able to do better?
 - predict the future
 - optimize (constrained optimization)
- Whose values/goals will they use? (Why?)

- What will super-intelligent AI bring?
 - Automation and unemployment? What if people are not longer needed to make economy work?
 - Smart weapons? Automated terrorists?
- What will a super-intelligent AI be able to do better?
 - predict the future
 - optimize (constrained optimization)
- Whose values/goals will they use? (Why?)
- Will we need a new ethics of AI?

- What will super-intelligent AI bring?
 - Automation and unemployment? What if people are not longer needed to make economy work?
 - Smart weapons? Automated terrorists?
- What will a super-intelligent AI be able to do better?
 - predict the future
 - optimize (constrained optimization)
- Whose values/goals will they use? (Why?)
- Will we need a new ethics of AI?
- Is super-human AI inevitable (wait till computers get faster)? (Singularity)
 - Is there fundamental research to be done?

Is it easy because humans are not as intelligent as we like to think?

Dimensions of Complexity

- Flat or modular or hierarchical
- Explicit states or features or individuals and relations
- Static or finite stage or indefinite stage or infinite stage
- Fully observable or partially observable
- Deterministic or stochastic dynamics
- Goals or complex preferences
- Single-agent or multiple agents
- Knowledge is given or knowledge is learned from experience
- Reason offline or reason while interacting with environment
- Perfect rationality or bounded rationality

State-space Search

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- reason offline or reason while interacting with environment
- perfect rationality or bounded rationality

Classical Planning

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- reason offline or reason while interacting with environment
- perfect rationality or bounded rationality

Decision Networks

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- reason offline or reason while interacting with environment
- perfect rationality or bounded rationality

Markov Decision Processes (MDPs)

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- reason offline or reason while interacting with environment
- perfect rationality or bounded rationality

Decision-theoretic Planning

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- reason offline or reason while interacting with environment
- perfect rationality or bounded rationality

Reinforcement Learning

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- reason offline or reason while interacting with environment
- perfect rationality or bounded rationality

Relational Reinforcement Learning

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- reason offline or reason while interacting with environment
- perfect rationality or bounded rationality

Classical Game Theory

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- reason offline or reason while interacting with environment
- perfect rationality or bounded rationality

Humans

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- reason offline or reason while interacting with environment
- perfect rationality or bounded rationality

	CP	MDPs	IDs	RL	POMDPs	GT
hierarchical	~					
properties	~		~	~		
relational	~					
indefinite stage	~	~		~	~	
stochastic dynamics		~	~	~	~	 ✓
partially observable			~		~	 ✓
values		~	~	~	v	~
dynamics not given				v		
multiple agents						 ✓
bounded rationality						