Ask-the-user meta-interpreter

\% aprove (G) is true if G is a logical consequence of the base-level $K B$ and yes/no answers provided by the user.

```
aprove(true).
\(\operatorname{aprove}((A \& B)) \leftarrow \operatorname{aprove}(A) \wedge \operatorname{aprove}(B)\).
aprove \((H) \leftarrow \operatorname{askable}(H) \wedge \operatorname{answered}(H\), yes \()\).
aprove \((H) \leftarrow\)
    askable \((H) \wedge\) unanswered \((H) \wedge \operatorname{ask}(H, A n s) \wedge\)
    \(\operatorname{record}(\operatorname{answered}(H, A n s)) \wedge A n s=y e s\).
aprove \((H) \leftarrow(H \Leftarrow B) \wedge\) aprove \((B)\).
```


Meta-interpreter to collect rules for WHY

$\%$ wprove (G, A) is true if G follows from base-level KB , and A is a list of ancestor rules for G.
wprove(true, Anc).
wprove $((A \& B), A n c) \leftarrow$
wprove $(A, A n c) \wedge$
wprove $(B, A n c)$.
wprove $(H, A n c) \leftarrow$
$(H \Leftarrow B) \wedge$
wprove $(B,[(H \Leftarrow B) \mid A n c])$.

Delaying Goals

Some goals, rather than being proved, can be collected in a list.

- To delay subgoals with variables, in the hope that subsequent calls will ground the variables.
- To delay assumptions, so that you can collect assumptions that are needed to prove a goal.
- To create new rules that leave out intermediate steps.
- To reduce a set of goals to primitive predicates.

Delaying Meta-interpreter

\% dprove (G, D_{0}, D_{1}) is true if D_{0} is an ending of list of delayable atoms D_{1} and $K B \wedge\left(D_{1}-D_{0}\right) \models G$.

```
dprove(true, D,D).
dprove((A & B), D1, D3)}
    dprove}(A,\mp@subsup{D}{1}{},\mp@subsup{D}{2}{})\wedgedprove (B, D2, D 的)
dprove(G,D,[G|D])\leftarrowdelay (G).
dprove}(H,\mp@subsup{D}{1}{},\mp@subsup{D}{2}{})
    (H\LeftarrowB)\wedgedprove(B, D1, D D ).
```


Example base-level KB

$\operatorname{live}(W) \Leftarrow$ connected_to $\left(W, W_{1}\right) \&$ live $\left(W_{1}\right)$.
live (outside) \Leftarrow true.
connected_to $\left(w_{6}, w_{5}\right) \Leftarrow o k\left(c b_{2}\right)$.
connected_to $\left(w_{5}\right.$, outside $) \Leftarrow o k$ (outside_connection). delay(ok(X)).
?dprove(live $\left.\left(w_{6}\right),[], D\right)$.

Meta-interpreter that builds a proof tree

\% hprove(G, T) is true if G can be proved from the base-level KB, with proof tree T.

```
hprove(true, true).
hprove}((A&B),(L&R))
    hprove(A,L)^
    hprove( }B,R)
hprove}(H,if(H,T))
    (H\LeftarrowB)^
    hprove(B,T).
```

