
Natural Language Understanding

We want to communicate with computers using natural
language (spoken and written).

I unstructured natural language — allow any statements, but
make mistakes or failure.

I controlled natural language — only allow unambiguous
statements that can be interpreted (e.g., in supermarkets or for
doctors).

There is a vast amount of information in natural language.

Understanding language to extract information or answering
questions is more difficult than getting extracting gestalt
properties such as topic, or choosing a help page.

Many of the problems of AI are explicit in natural language
understanding. “AI complete”.

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 1



Syntax, Semantics, Pragmatics

Syntax describes the form of language (using a grammar).

Semantics provides the meaning of language.

Pragmatics explains the purpose or the use of language
(how utterances relate to the world).

Examples:

This lecture is about natural language.

The green frogs sleep soundly.

Colorless green ideas sleep furiously.

Furiously sleep ideas green colorless.

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 2



Beyond N-grams

A man with a big hairy cat drank the cold milk.

Who or what drank the milk?

Simple syntax diagram:

s

np vp

pp

np

npa man

with

a big hairy cat

drank

the cold milk

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 3



Beyond N-grams

A man with a big hairy cat drank the cold milk.

Who or what drank the milk?

Simple syntax diagram:

s

np vp

pp

np

npa man

with

a big hairy cat

drank

the cold milk

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 4



Context-free grammar

A terminal symbol is a word (perhaps including punctuation).

A non-terminal symbol can be rewritten as a sequence of
terminal and non-terminal symbols, e.g.,

sentence 7−→ noun phrase, verb phrase

verb phrase 7−→ verb, noun phrase

verb 7−→ [drank]

Can be written as a logic program, where a sentence is a
sequence of words:

sentence(S)← noun phrase(N), verb phrase(V ), append(N,V ,S).

To say word “drank” is a verb:

verb([drank]).

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 5



Difference Lists

Non-terminal symbol s becomes a predicate with two
arguments, s(T1,T2), meaning:

I T2 is an ending of the list T1

I all of the words in T1 before T2 form a sequence of words of
the category s.

Lists T1 and T2 together form a difference list.

“the student” is a noun phrase:

noun phrase([the, student, passed , the, course],

[passed , the, course])

The word “drank” is a verb:

verb([drank|W ],W ).

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 6



Difference Lists

Non-terminal symbol s becomes a predicate with two
arguments, s(T1,T2), meaning:

I T2 is an ending of the list T1

I all of the words in T1 before T2 form a sequence of words of
the category s.

Lists T1 and T2 together form a difference list.

“the student” is a noun phrase:

noun phrase([the, student, passed , the, course],

[passed , the, course])

The word “drank” is a verb:

verb([drank|W ],W ).

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 7



Definite clause grammar

The grammar rule

sentence 7−→ noun phrase, verb phrase

means that there is a sentence between T0 and T2 if there is a
noun phrase between T0 and T1 and a verb phrase between T1

and T2:

sentence(T0,T2)←
noun phrase(T0,T1) ∧
verb phrase(T1,T2).

sentence︷ ︸︸ ︷
T0︸ ︷︷ ︸

noun phrase

T1︸ ︷︷ ︸
verb phrase

T2

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 8



Definite clause grammar rules

The rewriting rule

h 7−→ b1, b2, . . . , bn

says that h is b1 then b2, . . . , then bn:

h(T0,Tn)←
b1(T0,T1) ∧
b2(T1,T2) ∧
...

bn(Tn−1,Tn).

using the interpretation

h︷ ︸︸ ︷
T0︸ ︷︷ ︸

b1

T1︸ ︷︷ ︸
b2

T2 · · ·Tn−1︸ ︷︷ ︸
bn

Tn

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 9



Terminal Symbols

Non-terminal h gets mapped to the terminal symbols, t1, ..., tn:

h([t1, · · · , tn|T ],T )

using the interpretation

h︷ ︸︸ ︷
t1, · · · , tn T

Thus, h(T1,T2) is true if T1 = [t1, ..., tn|T2].

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 10



Complete Context Free Grammar Example

see
http://artint.info/code/Prolog/ch12/cfg_simple.pl

What will the following query return?

noun phrase([the, student, passed , the, course,with, a, computer ],R).

How many answers does the following query have?

sentence([the, student, passed , the, course,with, a, computer ],R).

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 11

http://artint.info/code/Prolog/ch12/cfg_simple.pl


Complete Context Free Grammar Example

see
http://artint.info/code/Prolog/ch12/cfg_simple.pl

What will the following query return?

noun phrase([the, student, passed , the, course,with, a, computer ],R).

How many answers does the following query have?

sentence([the, student, passed , the, course,with, a, computer ],R).

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 12

http://artint.info/code/Prolog/ch12/cfg_simple.pl


Augmenting the Grammar

Two mechanisms can make the grammar more expressive:
extra arguments to the non-terminal symbols
arbitrary conditions on the rules.

We have a Turing-complete programming language at our disposal!

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 13



Building Structures for Non-terminals

Add an extra argument representing a parse tree:

sentence(T0,T2, s(NP,VP))←
noun phrase(T0,T1,NP) ∧
verb phrase(T1,T2,VP).

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 14



Enforcing Constraints

Add an argument representing the number (singular or plural), as
well as the parse tree:

sentence(T0,T2,Num, s(NP,VP))←
noun phrase(T0,T1,Num,NP) ∧
verb phrase(T1,T2,Num,VP).

The parse tree can return the determiner (definite or indefinite),
number, modifiers (adjectives) and any prepositional phrase:

noun phrase(T ,T ,Num, no np).

noun phrase(T0,T4,Num, np(Det,Num,Mods,Noun,PP))←
det(T0,T1,Num,Det) ∧
modifiers(T1,T2,Mods) ∧
noun(T2,T3,Num,Noun) ∧
pp(T3,T4,PP).

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 15



Complete Example

see
http://artint.info/code/Prolog/ch12/nl_numbera.pl

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 16

http://artint.info/code/Prolog/ch12/nl_numbera.pl


Question-answering

How can we get from natural language to a query or to logical
statements?

Goal: map natural language to a query that can be asked of a
knowledge base.

Add arguments representing the individual and the relations
about that individual. E.g.,

noun phrase(T0,T1,O,C0,C1)

means
I T0 − T1 is a difference list forming a noun phrase.
I The noun phrase refers to the individual O.
I C0 is list of previous relations.
I C1 is C0 together with the relations on individual O given by

the noun phrase.

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 17



Example natural language to query

see
http://artint.info/code/Prolog/ch12/nl_interface.pl

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 18

http://artint.info/code/Prolog/ch12/nl_interface.pl


Context and world knowledge

The student took many courses. Two computer science
courses and one mathematics course were particularly
difficult. The mathematics course. . .

Who was the captain of the Titanic?
Was she tall?

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 19



Context and world knowledge

The student took many courses. Two computer science
courses and one mathematics course were particularly
difficult. The mathematics course. . .

Who was the captain of the Titanic?
Was she tall?

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 20


