
Natural Language Understanding

We want to communicate with computers using natural
language (spoken and written).

I unstructured natural language — allow any statements, but
make mistakes or failure.

I controlled natural language — only allow unambiguous
statements that can be interpreted (e.g., in supermarkets or for
doctors).

There is a vast amount of information in natural language.

Understanding language to extract information or answering
questions is more difficult than getting extracting gestalt
properties such as topic, or choosing a help page.

Many of the problems of AI are explicit in natural language
understanding. “AI complete”.
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Syntax, Semantics, Pragmatics

Syntax describes the form of language (using a grammar).

Semantics provides the meaning of language.

Pragmatics explains the purpose or the use of language
(how utterances relate to the world).

Examples:

This lecture is about natural language.

The green frogs sleep soundly.

Colorless green ideas sleep furiously.

Furiously sleep ideas green colorless.
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Beyond N-grams

A man with a big hairy cat drank the cold milk.

Who or what drank the milk?

Simple syntax diagram:

s

np vp

pp

np

npa man

with

a big hairy cat

drank

the cold milk
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Context-free grammar

A terminal symbol is a word (perhaps including punctuation).

A non-terminal symbol can be rewritten as a sequence of
terminal and non-terminal symbols, e.g.,

sentence 7−→ noun phrase, verb phrase

verb phrase 7−→ verb, noun phrase

verb 7−→ [drank]

Can be written as a logic program, where a sentence is a
sequence of words:

sentence(S)← noun phrase(N), verb phrase(V ), append(N,V ,S).

To say word “drank” is a verb:

verb([drank]).
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Difference Lists

Non-terminal symbol s becomes a predicate with two
arguments, s(T1,T2), meaning:

I T2 is an ending of the list T1

I all of the words in T1 before T2 form a sequence of words of
the category s.

Lists T1 and T2 together form a difference list.

“the student” is a noun phrase:

noun phrase([the, student, passed , the, course],

[passed , the, course])

The word “drank” is a verb:

verb([drank|W ],W ).
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Definite clause grammar

The grammar rule

sentence 7−→ noun phrase, verb phrase

means that there is a sentence between T0 and T2 if there is a
noun phrase between T0 and T1 and a verb phrase between T1

and T2:

sentence(T0,T2)←
noun phrase(T0,T1) ∧
verb phrase(T1,T2).

sentence︷ ︸︸ ︷
T0︸ ︷︷ ︸

noun phrase

T1︸ ︷︷ ︸
verb phrase

T2
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Definite clause grammar rules

The rewriting rule

h 7−→ b1, b2, . . . , bn

says that h is b1 then b2, . . . , then bn:

h(T0,Tn)←
b1(T0,T1) ∧
b2(T1,T2) ∧
...

bn(Tn−1,Tn).

using the interpretation

h︷ ︸︸ ︷
T0︸ ︷︷ ︸

b1

T1︸ ︷︷ ︸
b2

T2 · · ·Tn−1︸ ︷︷ ︸
bn

Tn
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Terminal Symbols

Non-terminal h gets mapped to the terminal symbols, t1, ..., tn:

h([t1, · · · , tn|T ],T )

using the interpretation

h︷ ︸︸ ︷
t1, · · · , tn T

Thus, h(T1,T2) is true if T1 = [t1, ..., tn|T2].
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Complete Context Free Grammar Example

see
http://artint.info/code/Prolog/ch12/cfg_simple.pl

What will the following query return?

noun phrase([the, student, passed , the, course,with, a, computer ],R).

How many answers does the following query have?

sentence([the, student, passed , the, course,with, a, computer ],R).
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Augmenting the Grammar

Two mechanisms can make the grammar more expressive:
extra arguments to the non-terminal symbols
arbitrary conditions on the rules.

We have a Turing-complete programming language at our disposal!
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Building Structures for Non-terminals

Add an extra argument representing a parse tree:

sentence(T0,T2, s(NP,VP))←
noun phrase(T0,T1,NP) ∧
verb phrase(T1,T2,VP).
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Enforcing Constraints

Add an argument representing the number (singular or plural), as
well as the parse tree:

sentence(T0,T2,Num, s(NP,VP))←
noun phrase(T0,T1,Num,NP) ∧
verb phrase(T1,T2,Num,VP).

The parse tree can return the determiner (definite or indefinite),
number, modifiers (adjectives) and any prepositional phrase:

noun phrase(T ,T ,Num, no np).

noun phrase(T0,T4,Num, np(Det,Num,Mods,Noun,PP))←
det(T0,T1,Num,Det) ∧
modifiers(T1,T2,Mods) ∧
noun(T2,T3,Num,Noun) ∧
pp(T3,T4,PP).
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Complete Example

see
http://artint.info/code/Prolog/ch12/nl_numbera.pl
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Question-answering

How can we get from natural language to a query or to logical
statements?

Goal: map natural language to a query that can be asked of a
knowledge base.

Add arguments representing the individual and the relations
about that individual. E.g.,

noun phrase(T0,T1,O,C0,C1)

means
I T0 − T1 is a difference list forming a noun phrase.
I The noun phrase refers to the individual O.
I C0 is list of previous relations.
I C1 is C0 together with the relations on individual O given by

the noun phrase.
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Example natural language to query

see
http://artint.info/code/Prolog/ch12/nl_interface.pl
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Context and world knowledge

The student took many courses. Two computer science
courses and one mathematics course were particularly
difficult. The mathematics course. . .

Who was the captain of the Titanic?
Was she tall?
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