Complete Knowledge Assumption

- Often you want to assume that your knowledge is complete.
- Example: assume that a database of what students are enrolled in a course is complete. We don't want to have to state all negative enrolment facts!
- The definite clause language is monotonic: adding clauses can't invalidate a previous conclusion.
- Under the complete knowledge assumption, the system is non-monotonic: adding clauses can invalidate a previous conclusion.

Equality

Equality is a special predicate symbol with a standard domain-independent intended interpretation.

- Suppose interpretation $I=\langle D, \phi, \pi\rangle$.
- t_{1} and t_{2} are ground terms then $t_{1}=t_{2}$ is true in interpretation l if t_{1} and t_{2} denote the same individual. That is, $t_{1}=t_{2}$ if $\phi\left(t_{1}\right)$ is the same as $\phi\left(t_{2}\right)$.
- $t_{1} \neq t_{2}$ when t_{1} and t_{2} denote different individuals.

Equality

Equality is a special predicate symbol with a standard domain-independent intended interpretation.

- Suppose interpretation $I=\langle D, \phi, \pi\rangle$.
- t_{1} and t_{2} are ground terms then $t_{1}=t_{2}$ is true in interpretation l if t_{1} and t_{2} denote the same individual. That is, $t_{1}=t_{2}$ if $\phi\left(t_{1}\right)$ is the same as $\phi\left(t_{2}\right)$.
- $t_{1} \neq t_{2}$ when t_{1} and t_{2} denote different individuals.
- Example:
$D=\{o<, \overrightarrow{\mathbf{c}}, \vec{s}\}$.
$\phi($ phone $)=\mathbf{\Xi}, \phi($ pencil $)=\phi($ telephone $)=\mathbf{\Xi}$
What equalities and inequalities hold?

Equality

Equality is a special predicate symbol with a standard domain-independent intended interpretation.

- Suppose interpretation $I=\langle D, \phi, \pi\rangle$.
- t_{1} and t_{2} are ground terms then $t_{1}=t_{2}$ is true in interpretation l if t_{1} and t_{2} denote the same individual.
That is, $t_{1}=t_{2}$ if $\phi\left(t_{1}\right)$ is the same as $\phi\left(t_{2}\right)$.
- $t_{1} \neq t_{2}$ when t_{1} and t_{2} denote different individuals.
- Example:
$D=\{o<, \mathbf{0}, \overrightarrow{2}\}$.
$\phi($ phone $)=\boldsymbol{\mathbf { Z }}, \phi($ pencil $)=\phi($ telephone $)=\mathbf{\Xi}$
What equalities and inequalities hold?
phone $=$ telephone, phone $=$ phone , pencil $=$ pencil,
telephone $=$ telephone
pencil \neq phone, pencil \neq telephone

Equality

Equality is a special predicate symbol with a standard domain-independent intended interpretation.

- Suppose interpretation $I=\langle D, \phi, \pi\rangle$.
- t_{1} and t_{2} are ground terms then $t_{1}=t_{2}$ is true in interpretation l if t_{1} and t_{2} denote the same individual.
That is, $t_{1}=t_{2}$ if $\phi\left(t_{1}\right)$ is the same as $\phi\left(t_{2}\right)$.
- $t_{1} \neq t_{2}$ when t_{1} and t_{2} denote different individuals.
- Example:
$D=\{s<, \mathbf{0}, 2\}$.
$\phi($ phone $)=\boldsymbol{\mathbf { Z }}, \phi($ pencil $)=\phi($ telephone $)=\mathbf{\Xi}$
What equalities and inequalities hold?
phone $=$ telephone, phone $=$ phone , pencil $=$ pencil,
telephone $=$ telephone
pencil \neq phone, pencil \neq telephone
- Equality does not mean similarity!

Properties of Equality

Equality is:

- Reflexive: $X=X$
- Symmetric: if $X=Y$ then $Y=X$
- Transitive: if $X=Y$ and $Y=Z$ then $X=Z$

For each n-ary function symbol f

$$
f\left(X_{1}, \ldots, X_{n}\right)=f\left(Y_{1}, \ldots, Y_{n}\right) \text { if } X_{1}=Y_{1} \text { and } \cdots \text { and } X_{n}=Y_{n}
$$

For each n-ary predicate symbol p

$$
p\left(X_{1}, \ldots, X_{n}\right) \text { if } p\left(Y_{1}, \ldots, Y_{n}\right) \text { and } X_{1}=Y_{1} \text { and } \cdots \text { and } X_{n}=Y_{n}
$$

Unique Names Assumption

- Suppose the only clauses for enrolled are
enrolled(sam, cs222)
enrolled(chris, cs222)
enrolled(sam, cs873)
To conclude $\neg e n r o l l e d(c h r i s, ~ c s 873)$, what do we need to assume?

Unique Names Assumption

- Suppose the only clauses for enrolled are
enrolled(sam, cs222)
enrolled(chris, cs222)
enrolled(sam, cs873)
To conclude $\neg e n r o l l e d(c h r i s$, cs873), what do we need to assume?
- All other enrolled facts are false
- Inequalities:

$$
\text { sam } \neq \text { chris } \wedge \text { cs } 873 \neq \text { cs } 222
$$

- The unique names assumption (UNA) is the assumption that distinct ground terms denote different individuals.

Completion of a knowledge base: propositional case

- Suppose the rules for atom a are

$$
a \leftarrow b_{1} .
$$

$$
a \leftarrow b_{n} .
$$

equivalently $a \leftarrow b_{1} \vee \ldots \vee b_{n}$.

- Under the Complete Knowledge Assumption, if a is true, one of the b_{i} must be true:

$$
a \rightarrow b_{1} \vee \ldots \vee b_{n}
$$

- Thus, the clauses for a mean

$$
a \leftrightarrow b_{1} \vee \ldots \vee b_{n}
$$

Clark Normal Form

The Clark normal form of the clause

$$
p\left(t_{1}, \ldots, t_{k}\right) \leftarrow B .
$$

is the clause

$$
p\left(V_{1}, \ldots, V_{k}\right) \leftarrow \exists W_{1} \ldots \exists W_{m} V_{1}=t_{1} \wedge \ldots \wedge V_{k}=t_{k} \wedge B
$$

where

- V_{1}, \ldots, V_{k} are k variables that did not appear in the original clause
- W_{1}, \ldots, W_{m} are the original variables in the clause.

Clark Normal Form

The Clark normal form of the clause

$$
p\left(t_{1}, \ldots, t_{k}\right) \leftarrow B .
$$

is the clause

$$
p\left(V_{1}, \ldots, V_{k}\right) \leftarrow \exists W_{1} \ldots \exists W_{m} V_{1}=t_{1} \wedge \ldots \wedge V_{k}=t_{k} \wedge B
$$

where

- V_{1}, \ldots, V_{k} are k variables that did not appear in the original clause
- W_{1}, \ldots, W_{m} are the original variables in the clause.
- When the clause is an atomic clause, B is true.
- Often can be simplified by replacing $\exists W V=W \wedge p(W)$ with $P(V)$.

Clark normal form

For the clauses
student(mary).
student(sam).
student $(X) \leftarrow$ undergrad (X).
the Clark normal form is
student $(V) \leftarrow V=$ mary.
student $(V) \leftarrow V=$ sam.
student $(V) \leftarrow \exists X \quad V=X \wedge$ undergrad (X).

Clark's Completion

Suppose all of the clauses for p are put into Clark normal form, with the same set of introduced variables, giving

$$
\begin{gathered}
p\left(V_{1}, \ldots, V_{k}\right) \leftarrow B_{1} . \\
\vdots \\
p\left(V_{1}, \ldots, V_{k}\right) \leftarrow B_{n} .
\end{gathered}
$$

which is equivalent to

$$
p\left(V_{1}, \ldots, V_{k}\right) \leftarrow B_{1} \vee \ldots \vee B_{n} .
$$

Clark's completion of predicate p is the equivalence

$$
\forall V_{1} \ldots \forall V_{k} p\left(V_{1}, \ldots, V_{k}\right) \leftrightarrow B_{1} \vee \ldots \vee B_{n}
$$

If there are no clauses for p,

Clark's Completion

Suppose all of the clauses for p are put into Clark normal form, with the same set of introduced variables, giving

$$
\begin{gathered}
p\left(V_{1}, \ldots, V_{k}\right) \leftarrow B_{1} \\
\vdots \\
p\left(V_{1}, \ldots, V_{k}\right) \leftarrow B_{n} .
\end{gathered}
$$

which is equivalent to

$$
p\left(V_{1}, \ldots, V_{k}\right) \leftarrow B_{1} \vee \ldots \vee B_{n} .
$$

Clark's completion of predicate p is the equivalence

$$
\forall V_{1} \ldots \forall V_{k} p\left(V_{1}, \ldots, V_{k}\right) \leftrightarrow B_{1} \vee \ldots \vee B_{n}
$$

If there are no clauses for p, the completion results in

$$
\forall V_{1} \ldots \forall V_{k} p\left(V_{1}, \ldots, V_{k}\right) \leftrightarrow \text { false }
$$

Clark's completion of a knowledge base consists of the completion of every predicate symbol along the unique names assumption.

Completion example

$$
\begin{aligned}
& p \leftarrow q \wedge \sim r \\
& p \leftarrow s \\
& q \leftarrow \sim s \\
& r \leftarrow \sim t \\
& t \\
& s \leftarrow w
\end{aligned}
$$

Completion Example

Consider the recursive definition:

$$
\begin{aligned}
& \text { passed_each }([], \text { St, MinPass }) . \\
& \text { passed_each }([C \mid R], S t, \text { MinPass }) \leftarrow \\
& \quad \text { passed }(S t, C, \text { MinPass }) \wedge \\
& \quad \text { passed_each }(R, \text { St, MinPass }) .
\end{aligned}
$$

In Clark normal form, this can be written as

Completion Example

Consider the recursive definition:

$$
\begin{aligned}
& \text { passed_each }([], \text { St, MinPass }) . \\
& \text { passed_each }([C \mid R], S t, \text { MinPass }) \leftarrow \\
& \quad \text { passed }(S t, C, \text { MinPass }) \wedge \\
& \quad \text { passed_each }(R, \text { St, MinPass }) .
\end{aligned}
$$

In Clark normal form, this can be written as

$$
\begin{aligned}
& \text { passed_each }(L, S, M) \leftarrow L=[] . \\
& \text { passed_each }(L, S, M) \leftarrow
\end{aligned}
$$

$$
\exists C \exists R L=[C \mid R] \wedge \text { passed }(S, C, M) \wedge \text { passed_each }(R, S, M)
$$

Here we renamed the variables as appropriate. Thus, Clark's completion of passed_each is

Completion Example

Consider the recursive definition:

$$
\begin{aligned}
& \text { passed_each }([], \text { St, MinPass }) . \\
& \text { passed_each }([C \mid R], \text { St, MinPass }) \leftarrow \\
& \quad \text { passed }(S t, C, \text { MinPass }) \wedge \\
& \quad \text { passed_each }(R, \text { St, MinPass }) .
\end{aligned}
$$

In Clark normal form, this can be written as

$$
\begin{aligned}
& \text { passed_each }(L, S, M) \leftarrow L=[] . \\
& \text { passed_each }(L, S, M) \leftarrow
\end{aligned}
$$

$$
\exists C \exists R L=[C \mid R] \wedge \text { passed }(S, C, M) \wedge \text { passed_each }(R, S, M)
$$

Here we renamed the variables as appropriate. Thus, Clark's completion of passed_each is

$$
\begin{aligned}
& \forall L \forall S \forall M \text { passed_each }(L, S, M) \leftrightarrow L=[] \vee \\
& \quad \exists C \exists R L=[C \mid R] \wedge \operatorname{passed}(S, C, M) \wedge \text { passed_each }(R, S, M)
\end{aligned}
$$

Clark's Completion of a KB

- Clark's completion of a knowledge base consists of the completion of every predicate.
- The completion of an n-ary predicate p with no clauses is $p\left(V_{1}, \ldots, V_{n}\right) \leftrightarrow$ false.
- You can interpret negations in the body of clauses. \sim a means a is false under the complete knowledge assumption. $\sim a$ is replaced by $\neg a$ in the completion. This is negation as failure.

Defining empty_course

Given database of:

- course (C) that is true if C is a course
- enrolled (S, C) that is true if student S is enrolled in course C. Define empty_course (C) that is true if there are no students enrolled in course C.

Defining empty_course

Given database of:

- course (C) that is true if C is a course
- enrolled (S, C) that is true if student S is enrolled in course C. Define empty_course (C) that is true if there are no students enrolled in course C.
- Using negation as failure, empty_course(C) can be defined by

$$
\begin{aligned}
& \text { empty_course }(C) \leftarrow \text { course }(C) \wedge \sim \text { has_enrollment }(C) \text {. } \\
& \text { has_enrollment }(C) \leftarrow \text { enrolled }(S, C) .
\end{aligned}
$$

Defining empty_course

Given database of:

- course (C) that is true if C is a course
- enrolled (S, C) that is true if student S is enrolled in course C.

Define empty_course (C) that is true if there are no students enrolled in course C.

- Using negation as failure, empty_course(C) can be defined by

$$
\begin{aligned}
& \text { empty_course }(C) \leftarrow \text { course }(C) \wedge \sim \text { has_enrollment }(C) \text {. } \\
& \text { has_enrollment }(C) \leftarrow \text { enrolled }(S, C) .
\end{aligned}
$$

- The completion of this is:

Defining empty_course

Given database of:

- course (C) that is true if C is a course
- enrolled (S, C) that is true if student S is enrolled in course C. Define empty_course (C) that is true if there are no students enrolled in course C.
- Using negation as failure, empty_course(C) can be defined by empty_course $(C) \leftarrow$ course $(C) \wedge \sim$ has_enrollment (C). has_enrollment $(C) \leftarrow \operatorname{enrolled}(S, C)$.
- The completion of this is:
$\forall C$ empty_course $(C) \Longleftrightarrow$ course $(C) \wedge \neg$ has_enrollment (C).
$\forall C$ has_enrollment $(C) \Longleftrightarrow \exists S$ enrolled (S, C).

Bottom-up negation as failure interpreter

$C:=\{ \} ;$
repeat
either
select $r \in K B$ such that

$$
\begin{aligned}
& r \text { is " } h \leftarrow b_{1} \wedge \ldots \wedge b_{m} " \\
& b_{i} \in C \text { for all } i, \text { and } \\
& h \notin C ; \\
C:= & C \cup\{h\}
\end{aligned}
$$

or
select h such that for every rule " $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ " $\in K B$ either for some $b_{i}, \sim b_{i} \in C$ or some $b_{i}=\sim g$ and $g \in C$
$C:=C \cup\{\sim h\}$
until no more selections are possible

Negation as failure example

$$
\begin{aligned}
& p \leftarrow q \wedge \sim r \\
& p \leftarrow s \\
& q \leftarrow \sim s \\
& r \leftarrow \sim t \\
& t \\
& s \leftarrow w
\end{aligned}
$$

Top-Down negation as failure proof procedure

- If the proof for a fails, you can conclude $\sim a$.
- Failure can be defined recursively:

Suppose you have rules for atom a :

$$
a \leftarrow b_{1}
$$

$$
a \leftarrow b_{n}
$$

If each body b_{i} fails, a fails.

- A body fails if one of the conjuncts in the body fails.
- Note that you need finite failure. Example $p \leftarrow p$.

Floundering

$$
\begin{aligned}
& p(X) \leftarrow \sim q(X) \wedge r(X) . \\
& q(a) . \\
& q(b) . \\
& r(d) . \\
& \text { ask } p(X) .
\end{aligned}
$$

- What is the answer to the query?

Floundering

$$
\begin{aligned}
& p(X) \leftarrow \sim q(X) \wedge r(X) . \\
& q(a) . \\
& q(b) . \\
& r(d) . \\
& \text { ask } p(X) .
\end{aligned}
$$

- What is the answer to the query?
- How can a top-down proof procedure find the answer?

Floundering

$$
\begin{aligned}
& p(X) \leftarrow \sim q(X) \wedge r(X) . \\
& q(a) . \\
& q(b) . \\
& r(d) . \\
& \text { ask } p(X) .
\end{aligned}
$$

- What is the answer to the query?
- How can a top-down proof procedure find the answer?
- Delay the subgoal until it is bound enough.

Sometimes it never gets bound enough - "floundering".

Problematic Cases

$$
\begin{aligned}
& p(X) \leftarrow \sim q(X) \\
& q(X) \leftarrow \sim r(X) \\
& r(a) \\
& \text { ask } p(X) .
\end{aligned}
$$

- What is the answer?

Problematic Cases

$$
\begin{aligned}
& p(X) \leftarrow \sim q(X) \\
& q(X) \leftarrow \sim r(X) \\
& r(a) \\
& \text { ask } p(X) .
\end{aligned}
$$

- What is the answer?
- What does delaying do?

Problematic Cases

$$
\begin{aligned}
& p(X) \leftarrow \sim q(X) \\
& q(X) \leftarrow \sim r(X) \\
& r(a) \\
& \text { ask } p(X) .
\end{aligned}
$$

- What is the answer?
- What does delaying do?
- How can this be implemented?

