- An instance of an atom or a clause is obtained by uniformly substituting terms for variables.
- A substitution is a finite set of the form $\{V_1/t_1, \ldots, V_n/t_n\}$, where each V_i is a distinct variable and each t_i is a term.
- The application of a substitution $\sigma = \{V_1/t_1, \dots, V_n/t_n\}$ to an atom or clause *e*, written $e\sigma$, is the instance of *e* with every occurrence of V_i replaced by t_i .

$$\sigma_1 = \{X/A, Y/b, Z/C, D/e\}$$

$$\sigma_2 = \{A/X, Y/b, C/Z, D/e\}$$

$$\sigma_3 = \{A/V, X/V, Y/b, C/W, Z/W, D/e\}$$

The following shows some applications:

$$p(A, b, C, D)\sigma_{1} = p(X, Y, Z, e)\sigma_{1} = p(A, b, C, D)\sigma_{2} = p(X, Y, Z, e)\sigma_{2} = p(A, b, C, D)\sigma_{3} = p(X, Y, Z, e)\sigma_{3} =$$

$$\begin{aligned} \sigma_1 &= \{X/A, Y/b, Z/C, D/e\} \\ \sigma_2 &= \{A/X, Y/b, C/Z, D/e\} \\ \sigma_3 &= \{A/V, X/V, Y/b, C/W, Z/W, D/e\} \end{aligned}$$

The following shows some applications:

$$p(A, b, C, D)\sigma_{1} = p(A, b, C, e)$$

$$p(X, Y, Z, e)\sigma_{1} =$$

$$p(A, b, C, D)\sigma_{2} =$$

$$p(X, Y, Z, e)\sigma_{2} =$$

$$p(A, b, C, D)\sigma_{3} =$$

$$p(X, Y, Z, e)\sigma_{3} =$$

$$\begin{aligned} \sigma_1 &= \{X/A, Y/b, Z/C, D/e\} \\ \sigma_2 &= \{A/X, Y/b, C/Z, D/e\} \\ \sigma_3 &= \{A/V, X/V, Y/b, C/W, Z/W, D/e\} \end{aligned}$$

The following shows some applications:

$$p(A, b, C, D)\sigma_{1} = p(A, b, C, e)$$

$$p(X, Y, Z, e)\sigma_{1} = p(A, b, C, e)$$

$$p(A, b, C, D)\sigma_{2} =$$

$$p(X, Y, Z, e)\sigma_{2} =$$

$$p(A, b, C, D)\sigma_{3} =$$

$$p(X, Y, Z, e)\sigma_{3} =$$

$$\begin{aligned} \sigma_1 &= \{X/A, Y/b, Z/C, D/e\} \\ \sigma_2 &= \{A/X, Y/b, C/Z, D/e\} \\ \sigma_3 &= \{A/V, X/V, Y/b, C/W, Z/W, D/e\} \end{aligned}$$

The following shows some applications:

$$p(A, b, C, D)\sigma_1 = p(A, b, C, e) p(X, Y, Z, e)\sigma_1 = p(A, b, C, e) p(A, b, C, D)\sigma_2 = p(X, b, Z, e) p(X, Y, Z, e)\sigma_2 = p(A, b, C, D)\sigma_3 = p(X, Y, Z, e)\sigma_3 =$$

$$\begin{aligned} \sigma_1 &= \{X/A, Y/b, Z/C, D/e\} \\ \sigma_2 &= \{A/X, Y/b, C/Z, D/e\} \\ \sigma_3 &= \{A/V, X/V, Y/b, C/W, Z/W, D/e\} \end{aligned}$$

The following shows some applications:

$$p(A, b, C, D)\sigma_1 = p(A, b, C, e) p(X, Y, Z, e)\sigma_1 = p(A, b, C, e) p(A, b, C, D)\sigma_2 = p(X, b, Z, e) p(X, Y, Z, e)\sigma_2 = p(X, b, Z, e) p(A, b, C, D)\sigma_3 = p(X, Y, Z, e)\sigma_3 =$$

$$\begin{aligned} \sigma_1 &= \{X/A, Y/b, Z/C, D/e\} \\ \sigma_2 &= \{A/X, Y/b, C/Z, D/e\} \\ \sigma_3 &= \{A/V, X/V, Y/b, C/W, Z/W, D/e\} \end{aligned}$$

The following shows some applications:

$$p(A, b, C, D)\sigma_1 = p(A, b, C, e) p(X, Y, Z, e)\sigma_1 = p(A, b, C, e) p(A, b, C, D)\sigma_2 = p(X, b, Z, e) p(X, Y, Z, e)\sigma_2 = p(X, b, Z, e) p(A, b, C, D)\sigma_3 = p(V, b, W, e) p(X, Y, Z, e)\sigma_3 =$$

$$\begin{aligned} \sigma_1 &= \{X/A, Y/b, Z/C, D/e\} \\ \sigma_2 &= \{A/X, Y/b, C/Z, D/e\} \\ \sigma_3 &= \{A/V, X/V, Y/b, C/W, Z/W, D/e\} \end{aligned}$$

The following shows some applications:

$$p(A, b, C, D)\sigma_1 = p(A, b, C, e) p(X, Y, Z, e)\sigma_1 = p(A, b, C, e) p(A, b, C, D)\sigma_2 = p(X, b, Z, e) p(X, Y, Z, e)\sigma_2 = p(X, b, Z, e) p(A, b, C, D)\sigma_3 = p(V, b, W, e) p(X, Y, Z, e)\sigma_3 = p(V, b, W, e)$$

- Substitution σ is a unifier of e_1 and e_2 if $e_1\sigma = e_2\sigma$.
- Substitution σ is a most general unifier (mgu) of e_1 and e_2 if
 - σ is a unifier of e_1 and e_2 ; and
 - if substitution σ' also unifies e₁ and e₂, then eσ' is an instance of eσ for all atoms e.
- If two atoms have a unifier, they have a most general unifier.

Which of the following are unifiers of p(A, b, C, D) and p(X, Y, Z, e): $\sigma_1 = \{X/A, Y/b, Z/C, D/e\}$ $\sigma_2 = \{Y/b, D/e\}$ $\sigma_3 = \{X/A, Y/b, Z/C, D/e, W/a\}$ $\sigma_4 = \{A/X, Y/b, C/Z, D/e\}$ $\sigma_5 = \{X/a, Y/b, Z/c, D/e\}$ $\sigma_6 = \{A/a, X/a, Y/b, C/c, Z/c, D/e\}$ $\sigma_7 = \{A/V, X/V, Y/b, C/W, Z/W, D/e\}$ $\sigma_8 = \{X/A, Y/b, Z/A, C/A, D/e\}$ Which are most general unifiers?

$$p(A, b, C, D) \text{ and } p(X, Y, Z, e) \text{ have as unifiers:}$$

$$\sigma_1 = \{X/A, Y/b, Z/C, D/e\}$$

$$\sigma_4 = \{A/X, Y/b, C/Z, D/e\}$$

$$\sigma_7 = \{A/V, X/V, Y/b, C/W, Z/W, D/e\}$$

$$\sigma_6 = \{A/a, X/a, Y/b, C/c, Z/c, D/e\}$$

$$\sigma_8 = \{X/A, Y/b, Z/A, C/A, D/e\}$$

$$\sigma_3 = \{X/A, Y/b, Z/C, D/e, W/a\}$$
The fact the second variable if the

The first three are most general unifiers. The following substitutions are not unifiers:

$$\sigma_2 = \{Y/b, D/e\}$$

$$\sigma_5 = \{X/a, Y/b, Z/c, D/e\}$$

1:	procedure $unify(t_1, t_2)$	\triangleright Returns mgu of t_1 and t_2 or \perp .
2:	$E \leftarrow \{t_1 = t_2\}$	Set of equality statements
3:	$\mathcal{S} \leftarrow \{\}$	Substitution
4:	while $E \neq \{\}$ do	
5:	select and rer	move $x = y$ from E
6:	if y is not ide	entical to x then
7:	if <i>x</i> is	a variable then
8:		replace x with y in E and S
9:		$S \leftarrow \{x/y\} \cup S$
10:	else if	<i>y</i> is a variable then
11:		replace y with x in E and S
12:		$S \leftarrow \{y/x\} \cup S$
13:	else if	$f x$ is $p(x_1, \ldots, x_n)$ and y is
	$p(y_1,\ldots,y_n)$ then	
14:		$E \leftarrow E \cup \{x_1 = y_1, \ldots, x_n = y_n\}$
15:	else	
16:		return $\perp \triangleright t_1$ and t_2 do not unify
17:	return S	$\triangleright S$ is mgu of t_1 and t_2

Atom g is a logical consequence of KB if and only if:

- g is an instance of a fact in KB, or
- there is an instance of a rule

 $g \leftarrow b_1 \land \ldots \land b_k$

in KB such that each b_i is a logical consequence of KB.

To debug answer g that is false in the intended interpretation:

- If g is a fact in KB, this fact is wrong.
- Otherwise, suppose g was proved using the rule:

 $g \leftarrow b_1 \land \ldots \land b_k$

where each b_i is a logical consequence of KB.

- ▶ If each *b_i* is true in the intended interpretation, this clause is false in the intended interpretation.
- If some b_i is false in the intended interpretation, debug b_i .

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, KB ⊢ g means g can be derived from knowledge base KB.
- Recall $KB \models g$ means g is true in all models of KB.
- A proof procedure is sound if $KB \vdash g$ implies $KB \models g$.
- A proof procedure is complete if $KB \models g$ implies $KB \vdash g$.

 $\begin{array}{l} \mathcal{KB} \vdash g \text{ if there is } g' \text{ added to } C \text{ in this procedure where } g = g'\theta \text{:} \\ \mathcal{C} := \{\}; \\ \textbf{repeat} \\ \textbf{select clause } ``h \leftarrow b_1 \land \ldots \land b_m" \text{ in } \mathcal{KB} \text{ such that} \\ \text{ there is a substitution } \theta \text{ such that} \\ \text{ for all } i, \text{ there exists } b'_i \in C \text{ and } \theta'_i \text{ where } b_i\theta = b'_i\theta'_i \text{ and} \\ \text{ there is no } h' \in C \text{ and } \theta' \text{ such that } h'\theta' = h\theta \\ \mathcal{C} := \mathcal{C} \cup \{h\theta\} \end{array}$

until no more clauses can be selected.

 $live(Y) \leftarrow connected_to(Y, Z) \land live(Z).$ live(outside). $connected_to(w_6, w_5).$ $connected_to(w_5, outside).$
$$\begin{split} & live(Y) \leftarrow connected_to(Y,Z) \land live(Z). \ live(outside). \\ & connected_to(w_6,w_5). \quad connected_to(w_5,outside). \\ & C = \{live(outside), \\ & connected_to(w_6,w_5), \\ & connected_to(w_5,outside), \\ & live(w_5), \\ & live(w_6)\} \end{split}$$

If $KB \vdash g$ then $KB \models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to C that has an instance that isn't true in every model of KB. Call it h.

If $KB \vdash g$ then $KB \models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to C that has an instance that isn't true in every model of KB. Call it h.
- Suppose h isn't true in model I of KB.
- There must be an instance of clause in KB of form

$$h' \leftarrow b_1 \land \ldots \land b_m$$

where

If $KB \vdash g$ then $KB \models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to C that has an instance that isn't true in every model of KB. Call it h.
- Suppose h isn't true in model I of KB.
- There must be an instance of clause in KB of form

 $h' \leftarrow b_1 \land \ldots \land b_m$

where $h = h'\theta$ and $b_i\theta$ is an instance of an element of C.

- Each $b_i \theta$ is true in *I*.
- h is false in I.
- So an instance of this clause is false in *I*.
- Therefore I isn't a model of KB.
- Contradiction.

- The *C* generated by the bottom-up algorithm is called a fixed point.
- C can be infinite; we require the selection to be fair.
- Herbrand interpretation: The domain is the set of constants. We invent a constant if the KB or query doesn't contain one. Each constant denotes itself.

- The *C* generated by the bottom-up algorithm is called a fixed point.
- C can be infinite; we require the selection to be fair.
- Herbrand interpretation: The domain is the set of constants. We invent a constant if the KB or query doesn't contain one. Each constant denotes itself.
- Let *I* be the Herbrand interpretation in which every ground instance of every element of the fixed point is true and every other atom is false.

- The *C* generated by the bottom-up algorithm is called a fixed point.
- C can be infinite; we require the selection to be fair.
- Herbrand interpretation: The domain is the set of constants. We invent a constant if the KB or query doesn't contain one. Each constant denotes itself.
- Let *I* be the Herbrand interpretation in which every ground instance of every element of the fixed point is true and every other atom is false.
- *I* is a model of *KB*. Proof:

- The *C* generated by the bottom-up algorithm is called a fixed point.
- C can be infinite; we require the selection to be fair.
- Herbrand interpretation: The domain is the set of constants. We invent a constant if the KB or query doesn't contain one. Each constant denotes itself.
- Let *I* be the Herbrand interpretation in which every ground instance of every element of the fixed point is true and every other atom is false.
- *I* is a model of *KB*. Proof: suppose $h \leftarrow b_1 \land \ldots \land b_m$ in *KB* is false in *I*. Then *h*

is false and each b_i is true in *I*. Thus *h* can be added to *C*. Contradiction to *C* being the fixed point.

• I is called a Minimal Model.

• Suppose $KB \models g$. Then g is true in all models of KB.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.
- Thus g is generated by the bottom up algorithm.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.
- Thus g is generated by the bottom up algorithm.
- Thus $KB \vdash g$.

• A generalized answer clause is of the form

 $yes(t_1,\ldots,t_k) \leftarrow a_1 \wedge a_2 \wedge \ldots \wedge a_m,$

where t_1, \ldots, t_k are terms and a_1, \ldots, a_m are atoms.

• A generalized answer clause is of the form

 $yes(t_1,\ldots,t_k) \leftarrow a_1 \wedge a_2 \wedge \ldots \wedge a_m,$

where t_1, \ldots, t_k are terms and a_1, \ldots, a_m are atoms.

• The SLD resolution of this generalized answer clause on *a_i* with the clause

$$a \leftarrow b_1 \wedge \ldots \wedge b_p,$$

where a_i and a have most general unifier θ , is

$$(yes(t_1,\ldots,t_k) \leftarrow a_1 \wedge \ldots \wedge a_{i-1} \wedge b_1 \wedge \ldots \wedge b_p \wedge a_{i+1} \wedge \ldots \wedge a_m) \theta.$$

To solve query B with variables V_1, \ldots, V_k :

Set *ac* to generalized answer clause $yes(V_1, \ldots, V_k) \leftarrow B$ while *ac* is not an answer **do**

> Suppose *ac* is $yes(t_1, ..., t_k) \leftarrow a_1 \land a_2 \land ... \land a_m$ select atom a_i in the body of *ac* choose clause $a \leftarrow b_1 \land ... \land b_p$ in *KB* Rename all variables in $a \leftarrow b_1 \land ... \land b_p$ Let θ be the most general unifier of a_i and a. Fail if they don't unify Set *ac* to $(yes(t_1, ..., t_k) \leftarrow a_1 \land ... \land a_{i-1} \land b_1 \land ... \land b_p \land a_{i+1} \land ... \land a_m)\theta$

end while.

Answer is $V_1 = t_1, \ldots, V_k = t_k$ where *ac* is *yes*(t_1, \ldots, t_k) \leftarrow

 $live(Y) \leftarrow connected_to(Y, Z) \land live(Z).$ live(outside). $connected_to(w_6, w_5).$ $connected_to(w_5, outside).$?live(A). $live(Y) \leftarrow connected_to(Y, Z) \land live(Z).$ live(outside). $connected_to(w_6, w_5).$ $connected_to(w_5, outside).$?live(A).

$$yes(A) \leftarrow live(A).$$

 $yes(A) \leftarrow connected_to(A, Z_1) \land live(Z_1).$
 $yes(w_6) \leftarrow live(w_5).$
 $yes(w_6) \leftarrow connected_to(w_5, Z_2) \land live(Z_2).$
 $yes(w_6) \leftarrow live(outside).$
 $yes(w_6) \leftarrow .$

- Often we want to refer to individuals in terms of components.
- Examples: 4:55 p.m. English sentences. A classlist.
- We extend the notion of term. So that a term can be $f(t_1, \ldots, t_n)$ where f is a function symbol and the t_i are terms.
- In an interpretation and with a variable assignment, term $f(t_1, \ldots, t_n)$ denotes an individual in the domain.
- One function symbol and one constant can refer to infinitely many individuals.

- A list is an ordered sequence of elements.
- Let's use the constant *nil* to denote the empty list, and the function cons(H, T) to denote the list with first element H and rest-of-list T. These are not built-in.
- The list containing sue, kim and randy is

cons(sue, cons(kim, cons(randy, nil)))

append(X, Y, Z) is true if list Z contains the elements of X followed by the elements of Y append(nil, Z, Z).
 append(cons(A, X), Y, cons(A, Z)) ← append(X, Y, Z).

Unification with function symbols

• Consider a knowledge base consisting of one fact:

lt(X, s(X)).

• Should the following query succeed?

ask lt(Y, Y).

Unification with function symbols

• Consider a knowledge base consisting of one fact:

lt(X, s(X)).

• Should the following query succeed?

ask lt(Y, Y).

• What does the top-down proof procedure give?

Unification with function symbols

• Consider a knowledge base consisting of one fact:

lt(X, s(X)).

• Should the following query succeed?

ask lt(Y, Y).

- What does the top-down proof procedure give?
- Solution: variable X should not unify with a term that contains X inside.

E.g., X should not unify with s(X).

Simple modification of the unification algorithm, which Prolog does not do!