Reasoning with Variables

- An instance of an atom or a clause is obtained by uniformly substituting terms for variables.
- A substitution is a finite set of the form $\left\{V_{1} / t_{1}, \ldots, V_{n} / t_{n}\right\}$, where each V_{i} is a distinct variable and each t_{i} is a term.
- The application of a substitution $\sigma=\left\{V_{1} / t_{1}, \ldots, V_{n} / t_{n}\right\}$ to an atom or clause e, written $e \sigma$, is the instance of e with every occurrence of V_{i} replaced by t_{i}.

Application Examples

The following are substitutions:

$$
\begin{aligned}
& \sigma_{1}=\{X / A, Y / b, Z / C, D / e\} \\
& \sigma_{2}=\{A / X, Y / b, C / Z, D / e\} \\
& \sigma_{3}=\{A / V, X / V, Y / b, C / W, Z / W, D / e\}
\end{aligned}
$$

The following shows some applications:

$$
\begin{aligned}
& p(A, b, C, D) \sigma_{1}= \\
& p(X, Y, Z, e) \sigma_{1}= \\
& p(A, b, C, D) \sigma_{2}= \\
& p(X, Y, Z, e) \sigma_{2}= \\
& p(A, b, C, D) \sigma_{3}= \\
& p(X, Y, Z, e) \sigma_{3}=
\end{aligned}
$$

Application Examples

The following are substitutions:

$$
\begin{aligned}
& \sigma_{1}=\{X / A, Y / b, Z / C, D / e\} \\
& \sigma_{2}=\{A / X, Y / b, C / Z, D / e\} \\
& \sigma_{3}=\{A / V, X / V, Y / b, C / W, Z / W, D / e\}
\end{aligned}
$$

The following shows some applications:

$$
\begin{aligned}
& p(A, b, C, D) \sigma_{1}=p(A, b, C, e) \\
& p(X, Y, Z, e) \sigma_{1}= \\
& p(A, b, C, D) \sigma_{2}= \\
& p(X, Y, Z, e) \sigma_{2}= \\
& p(A, b, C, D) \sigma_{3}= \\
& p(X, Y, Z, e) \sigma_{3}=
\end{aligned}
$$

Application Examples

The following are substitutions:

$$
\begin{aligned}
& \sigma_{1}=\{X / A, Y / b, Z / C, D / e\} \\
& \sigma_{2}=\{A / X, Y / b, C / Z, D / e\} \\
& \sigma_{3}=\{A / V, X / V, Y / b, C / W, Z / W, D / e\}
\end{aligned}
$$

The following shows some applications:

$$
\begin{aligned}
& p(A, b, C, D) \sigma_{1}=p(A, b, C, e) \\
& p(X, Y, Z, e) \sigma_{1}=p(A, b, C, e) \\
& p(A, b, C, D) \sigma_{2}= \\
& p(X, Y, Z, e) \sigma_{2}= \\
& p(A, b, C, D) \sigma_{3}= \\
& p(X, Y, Z, e) \sigma_{3}=
\end{aligned}
$$

Application Examples

The following are substitutions:

$$
\begin{aligned}
& \sigma_{1}=\{X / A, Y / b, Z / C, D / e\} \\
& \sigma_{2}=\{A / X, Y / b, C / Z, D / e\} \\
& \sigma_{3}=\{A / V, X / V, Y / b, C / W, Z / W, D / e\}
\end{aligned}
$$

The following shows some applications:

$$
\begin{aligned}
& p(A, b, C, D) \sigma_{1}=p(A, b, C, e) \\
& p(X, Y, Z, e) \sigma_{1}=p(A, b, C, e) \\
& p(A, b, C, D) \sigma_{2}=p(X, b, Z, e) \\
& p(X, Y, Z, e) \sigma_{2}= \\
& p(A, b, C, D) \sigma_{3}= \\
& p(X, Y, Z, e) \sigma_{3}=
\end{aligned}
$$

Application Examples

The following are substitutions:

$$
\begin{aligned}
& \sigma_{1}=\{X / A, Y / b, Z / C, D / e\} \\
& \sigma_{2}=\{A / X, Y / b, C / Z, D / e\} \\
& \sigma_{3}=\{A / V, X / V, Y / b, C / W, Z / W, D / e\}
\end{aligned}
$$

The following shows some applications:

$$
\begin{aligned}
& p(A, b, C, D) \sigma_{1}=p(A, b, C, e) \\
& p(X, Y, Z, e) \sigma_{1}=p(A, b, C, e) \\
& p(A, b, C, D) \sigma_{2}=p(X, b, Z, e) \\
& p(X, Y, Z, e) \sigma_{2}=p(X, b, Z, e) \\
& p(A, b, C, D) \sigma_{3}= \\
& p(X, Y, Z, e) \sigma_{3}=
\end{aligned}
$$

Application Examples

The following are substitutions:

$$
\begin{aligned}
& \sigma_{1}=\{X / A, Y / b, Z / C, D / e\} \\
& \sigma_{2}=\{A / X, Y / b, C / Z, D / e\} \\
& \sigma_{3}=\{A / V, X / V, Y / b, C / W, Z / W, D / e\}
\end{aligned}
$$

The following shows some applications:

$$
\begin{aligned}
& p(A, b, C, D) \sigma_{1}=p(A, b, C, e) \\
& p(X, Y, Z, e) \sigma_{1}=p(A, b, C, e) \\
& p(A, b, C, D) \sigma_{2}=p(X, b, Z, e) \\
& p(X, Y, Z, e) \sigma_{2}=p(X, b, Z, e) \\
& p(A, b, C, D) \sigma_{3}=p(V, b, W, e) \\
& p(X, Y, Z, e) \sigma_{3}=
\end{aligned}
$$

Application Examples

The following are substitutions:

$$
\begin{aligned}
& \sigma_{1}=\{X / A, Y / b, Z / C, D / e\} \\
& \sigma_{2}=\{A / X, Y / b, C / Z, D / e\} \\
& \sigma_{3}=\{A / V, X / V, Y / b, C / W, Z / W, D / e\}
\end{aligned}
$$

The following shows some applications:

$$
\begin{aligned}
& p(A, b, C, D) \sigma_{1}=p(A, b, C, e) \\
& p(X, Y, Z, e) \sigma_{1}=p(A, b, C, e) \\
& p(A, b, C, D) \sigma_{2}=p(X, b, Z, e) \\
& p(X, Y, Z, e) \sigma_{2}=p(X, b, Z, e) \\
& p(A, b, C, D) \sigma_{3}=p(V, b, W, e) \\
& p(X, Y, Z, e) \sigma_{3}=p(V, b, W, e)
\end{aligned}
$$

Unifiers

- Substitution σ is a unifier of e_{1} and e_{2} if $e_{1} \sigma=e_{2} \sigma$.
- Substitution σ is a most general unifier (mgu) of e_{1} and e_{2} if
- σ is a unifier of e_{1} and e_{2}; and
- if substitution σ^{\prime} also unifies e_{1} and e_{2}, then $e \sigma^{\prime}$ is an instance of $e \sigma$ for all atoms e.
- If two atoms have a unifier, they have a most general unifier.

Unification Example

Which of the following are unifiers of $p(A, b, C, D)$ and $p(X, Y, Z, e)$:

$$
\sigma_{1}=\{X / A, Y / b, Z / C, D / e\}
$$

$$
\sigma_{2}=\{Y / b, D / e\}
$$

$$
\sigma_{3}=\{X / A, Y / b, Z / C, D / e, W / a\}
$$

$$
\sigma_{4}=\{A / X, Y / b, C / Z, D / e\}
$$

$$
\sigma_{5}=\{X / a, Y / b, Z / c, D / e\}
$$

$$
\sigma_{6}=\{A / a, X / a, Y / b, C / c, Z / c, D / e\}
$$

$$
\sigma_{7}=\{A / V, X / V, Y / b, C / W, Z / W, D / e\}
$$

$$
\sigma_{8}=\{X / A, Y / b, Z / A, C / A, D / e\}
$$

Which are most general unifiers?

Unification Example

$p(A, b, C, D)$ and $p(X, Y, Z, e)$ have as unifiers:

$$
\begin{aligned}
& \sigma_{1}=\{X / A, Y / b, Z / C, D / e\} \\
& \sigma_{4}=\{A / X, Y / b, C / Z, D / e\} \\
& \sigma_{7}=\{A / V, X / V, Y / b, C / W, Z / W, D / e\} \\
& \sigma_{6}=\{A / a, X / a, Y / b, C / c, Z / c, D / e\} \\
& \sigma_{8}=\{X / A, Y / b, Z / A, C / A, D / e\} \\
& \sigma_{3}=\{X / A, Y / b, Z / C, D / e, W / a\}
\end{aligned}
$$

The first three are most general unifiers.
The following substitutions are not unifiers:

$$
\begin{aligned}
& \sigma_{2}=\{Y / b, D / e\} \\
& \sigma_{5}=\{X / a, Y / b, Z / c, D / e\}
\end{aligned}
$$

1: procedure unify $\left(t_{1}, t_{2}\right)$
2:
3:
4:
5:
$p\left(y_{1}, \ldots, y_{n}\right)$ then

[^0]return S
$$
E \leftarrow\left\{t_{1}=t_{2}\right\}
$$
$S \leftarrow\}$
while $E \neq\{ \}$ do
\triangleright Returns mgu of t_{1} and t_{2} or \perp.
\triangleright Set of equality statements
\triangleright Substitution
select and remove $x=y$ from E
if y is not identical to x then
if x is a variable then
replace x with y in E and S
$S \leftarrow\{x / y\} \cup S$
else if y is a variable then
replace y with x in E and S
$S \leftarrow\{y / x\} \cup S$
else if x is $p\left(x_{1}, \ldots, x_{n}\right)$ and y is
$E \leftarrow E \cup\left\{x_{1}=y_{1}, \ldots, x_{n}=y_{n}\right\}$
else
return $\perp \triangleright t_{1}$ and t_{2} do not unify
$\triangleright S$ is mgu of t_{1} and t_{2}

Logical Consequence

Atom g is a logical consequence of $K B$ if and only if:

- g is an instance of a fact in $K B$, or
- there is an instance of a rule

$$
g \leftarrow b_{1} \wedge \ldots \wedge b_{k}
$$

in $K B$ such that each b_{i} is a logical consequence of $K B$.

Aside: Debugging false conclusions

To debug answer g that is false in the intended interpretation:

- If g is a fact in $K B$, this fact is wrong.
- Otherwise, suppose g was proved using the rule:

$$
g \leftarrow b_{1} \wedge \ldots \wedge b_{k}
$$

where each b_{i} is a logical consequence of $K B$.

- If each b_{i} is true in the intended interpretation, this clause is false in the intended interpretation.
- If some b_{i} is false in the intended interpretation, debug b_{i}.

Proofs

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, $K B \vdash g$ means g can be derived from knowledge base $K B$.
- Recall $K B \models g$ means g is true in all models of $K B$.
- A proof procedure is sound if $K B \vdash g$ implies $K B \models g$.
- A proof procedure is complete if $K B \models g$ implies $K B \vdash g$.

Bottom-up proof procedure

$K B \vdash g$ if there is g^{\prime} added to C in this procedure where $g=g^{\prime} \theta$:
$C:=\{ \} ;$
repeat
select clause " $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ " in $K B$ such that there is a substitution θ such that for all i, there exists $b_{i}^{\prime} \in C$ and θ_{i}^{\prime} where $b_{i} \theta=b_{i}^{\prime} \theta_{i}^{\prime}$ and there is no $h^{\prime} \in C$ and θ^{\prime} such that $h^{\prime} \theta^{\prime}=h \theta$

$$
C:=C \cup\{h \theta\}
$$

until no more clauses can be selected.

Example

live $(Y) \leftarrow$ connected_to $(Y, Z) \wedge$ live (Z). live(outside). connected_to $\left(w_{6}, w_{5}\right)$. connected_to $\left(w_{5}\right.$, outside $)$.

Example

```
live }(Y)\leftarrow\mathrm{ connected_to(Y,Z )^ live(Z). live(outside).
connected_to( }\mp@subsup{w}{6}{},\mp@subsup{w}{5}{}).\quad\mathrm{ connected_to( }\mp@subsup{w}{5}{}\mathrm{ , outside).
C = {live(outside),
    connected_to(w6, w5),
    connected_to(w
    live(w5),
    live( }\mp@subsup{w}{6}{})
```


Soundness of bottom-up proof procedure

If $K B \vdash g$ then $K B \models g$.

- Suppose there is a g such that $K B \vdash g$ and $K B \not \vDash g$.
- Then there must be a first atom added to C that has an instance that isn't true in every model of $K B$. Call it h.

Soundness of bottom-up proof procedure

If $K B \vdash g$ then $K B \models g$.

- Suppose there is a g such that $K B \vdash g$ and $K B \not \vDash g$.
- Then there must be a first atom added to C that has an instance that isn't true in every model of $K B$. Call it h.
- Suppose h isn't true in model I of $K B$.
- There must be an instance of clause in $K B$ of form

$$
h^{\prime} \leftarrow b_{1} \wedge \ldots \wedge b_{m}
$$

where

Soundness of bottom-up proof procedure

If $K B \vdash g$ then $K B \models g$.

- Suppose there is a g such that $K B \vdash g$ and $K B \not \vDash g$.
- Then there must be a first atom added to C that has an instance that isn't true in every model of $K B$. Call it h.
- Suppose h isn't true in model $/$ of $K B$.
- There must be an instance of clause in $K B$ of form

$$
h^{\prime} \leftarrow b_{1} \wedge \ldots \wedge b_{m}
$$

where $h=h^{\prime} \theta$ and $b_{i} \theta$ is an instance of an element of C.

- Each $b_{i} \theta$ is true in I.
- h is false in l.
- So an instance of this clause is false in I.
- Therefore I isn't a model of $K B$.
- Contradiction.

Fixed Point

- The C generated by the bottom-up algorithm is called a fixed point.
- C can be infinite; we require the selection to be fair.
- Herbrand interpretation: The domain is the set of constants. We invent a constant if the KB or query doesn't contain one. Each constant denotes itself.

Fixed Point

- The C generated by the bottom-up algorithm is called a fixed point.
- C can be infinite; we require the selection to be fair.
- Herbrand interpretation: The domain is the set of constants. We invent a constant if the KB or query doesn't contain one. Each constant denotes itself.
- Let I be the Herbrand interpretation in which every ground instance of every element of the fixed point is true and every other atom is false.

Fixed Point

- The C generated by the bottom-up algorithm is called a fixed point.
- C can be infinite; we require the selection to be fair.
- Herbrand interpretation: The domain is the set of constants. We invent a constant if the KB or query doesn't contain one. Each constant denotes itself.
- Let I be the Herbrand interpretation in which every ground instance of every element of the fixed point is true and every other atom is false.
- I is a model of $K B$.

Proof:

Fixed Point

- The C generated by the bottom-up algorithm is called a fixed point.
- C can be infinite; we require the selection to be fair.
- Herbrand interpretation: The domain is the set of constants. We invent a constant if the KB or query doesn't contain one. Each constant denotes itself.
- Let I be the Herbrand interpretation in which every ground instance of every element of the fixed point is true and every other atom is false.
- I is a model of $K B$.

Proof: suppose $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ in $K B$ is false in I. Then h is false and each b_{i} is true in I. Thus h can be added to C. Contradiction to C being the fixed point.

- I is called a Minimal Model.

Completeness

If $K B \models g$ then $K B \vdash g$.

- Suppose $K B \models g$. Then g is true in all models of $K B$.

Completeness

If $K B \models g$ then $K B \vdash g$.

- Suppose $K B \models g$. Then g is true in all models of $K B$.
- Thus g is true in the minimal model.

Completeness

If $K B \models g$ then $K B \vdash g$.

- Suppose $K B \models g$. Then g is true in all models of $K B$.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.

Completeness

If $K B \models g$ then $K B \vdash g$.

- Suppose $K B \models g$. Then g is true in all models of $K B$.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.
- Thus g is generated by the bottom up algorithm.

Completeness

If $K B \models g$ then $K B \vdash g$.

- Suppose $K B \models g$. Then g is true in all models of $K B$.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.
- Thus g is generated by the bottom up algorithm.
- Thus $K B \vdash g$.

Top-down Proof procedure

- A generalized answer clause is of the form

$$
\operatorname{yes}\left(t_{1}, \ldots, t_{k}\right) \leftarrow a_{1} \wedge a_{2} \wedge \ldots \wedge a_{m}
$$

where t_{1}, \ldots, t_{k} are terms and a_{1}, \ldots, a_{m} are atoms.

Top-down Proof procedure

- A generalized answer clause is of the form

$$
\operatorname{yes}\left(t_{1}, \ldots, t_{k}\right) \leftarrow a_{1} \wedge a_{2} \wedge \ldots \wedge a_{m}
$$

where t_{1}, \ldots, t_{k} are terms and a_{1}, \ldots, a_{m} are atoms.

- The SLD resolution of this generalized answer clause on a_{i} with the clause

$$
a \leftarrow b_{1} \wedge \ldots \wedge b_{p}
$$

where a_{i} and a have most general unifier θ, is

$$
\begin{aligned}
& \left(y \operatorname{yes}\left(t_{1}, \ldots, t_{k}\right) \leftarrow\right. \\
& \left.\quad a_{1} \wedge \ldots \wedge a_{i-1} \wedge b_{1} \wedge \ldots \wedge b_{p} \wedge a_{i+1} \wedge \ldots \wedge a_{m}\right) \theta .
\end{aligned}
$$

Top-down Proof Procedure

To solve query ? B with variables V_{1}, \ldots, V_{k} :
Set $a c$ to generalized answer clause yes $\left(V_{1}, \ldots, V_{k}\right) \leftarrow B$ while ac is not an answer do

Suppose $a c$ is yes $\left(t_{1}, \ldots, t_{k}\right) \leftarrow a_{1} \wedge a_{2} \wedge \ldots \wedge a_{m}$
select atom a_{i} in the body of $a c$
choose clause $a \leftarrow b_{1} \wedge \ldots \wedge b_{p}$ in $K B$
Rename all variables in $a \leftarrow b_{1} \wedge \ldots \wedge b_{p}$
Let θ be the most general unifier of a_{i} and a.
Fail if they don't unify
Set $a c$ to $\left(y e s\left(t_{1}, \ldots, t_{k}\right) \leftarrow a_{1} \wedge \ldots \wedge a_{i-1} \wedge\right.$

$$
\left.b_{1} \wedge \ldots \wedge b_{p} \wedge a_{i+1} \wedge \ldots \wedge a_{m}\right) \theta
$$

end while.
Answer is $V_{1}=t_{1}, \ldots, V_{k}=t_{k}$
where ac is yes $\left(t_{1}, \ldots, t_{k}\right) \leftarrow$

Example

live $(Y) \leftarrow$ connected_to $(Y, Z) \wedge$ live (Z). live(outside). connected_to($\left.w_{6}, w_{5}\right)$. connected_to(w_{5}, outside). ?live (A).

Example

live $(Y) \leftarrow$ connected_to $(Y, Z) \wedge$ live (Z). live(outside). connected_to $\left(w_{6}, w_{5}\right)$. connected_to(w_{5}, outside).
?live (A).

```
yes (A)}\leftarrow\operatorname{live}(A)
yes }(A)\leftarrow\mathrm{ connected_to (A, Z Z ) ^live (Z Z ).
yes(w6) \leftarrow live( (w5).
yes ( }\mp@subsup{w}{6}{})\leftarrow\mathrm{ connected_to ( }\mp@subsup{w}{5}{},\mp@subsup{Z}{2}{})\wedge\mathrm{ live ( }\mp@subsup{Z}{2}{})
yes(\mp@subsup{w}{6}{})\leftarrow live(outside).
yes(w6)}\leftarrow
```


Function Symbols

- Often we want to refer to individuals in terms of components.
- Examples: 4:55 p.m. English sentences. A classlist.
- We extend the notion of term. So that a term can be $f\left(t_{1}, \ldots, t_{n}\right)$ where f is a function symbol and the t_{i} are terms.
- In an interpretation and with a variable assignment, term $f\left(t_{1}, \ldots, t_{n}\right)$ denotes an individual in the domain.
- One function symbol and one constant can refer to infinitely many individuals.

Lists

- A list is an ordered sequence of elements.
- Let's use the constant nil to denote the empty list, and the function cons (H, T) to denote the list with first element H and rest-of-list T. These are not built-in.
- The list containing sue, kim and randy is
cons(sue, cons(kim, cons(randy, nil)))
- append (X, Y, Z) is true if list Z contains the elements of X followed by the elements of Y

```
append(nil, Z, Z).
append}(\operatorname{cons}(A,X),Y,\operatorname{cons}(A,Z))\leftarrow\operatorname{append}(X,Y,Z)
```


Unification with function symbols

- Consider a knowledge base consisting of one fact:

$$
I t(X, s(X))
$$

- Should the following query succeed?

$$
\text { ask } I t(Y, Y)
$$

Unification with function symbols

- Consider a knowledge base consisting of one fact:

$$
\operatorname{lt}(X, s(X))
$$

- Should the following query succeed?

$$
\text { ask } \operatorname{lt}(Y, Y)
$$

- What does the top-down proof procedure give?

Unification with function symbols

- Consider a knowledge base consisting of one fact:

$$
\operatorname{lt}(X, s(X))
$$

- Should the following query succeed?

$$
\text { ask } \operatorname{lt}(Y, Y)
$$

- What does the top-down proof procedure give?
- Solution: variable X should not unify with a term that contains X inside.
E.g., X should not unify with $s(X)$.

Simple modification of the unification algorithm, which Prolog does not do!

[^0]: 17:

