Variables

- Variables are universally quantified in the scope of a clause.
- A variable assignment is a function from variables into the domain.
- Given an interpretation and a variable assignment, each term denotes an individual and each clause is either true or false.
- A clause containing variables is true in an interpretation if it is true for all variable assignments.

Queries and Answers

A query is a way to ask if a body is a logical consequence of the knowledge base:

$$
? b_{1} \wedge \cdots \wedge b_{m}
$$

An answer is either

- an instance of the query that is a logical consequence of the knowledge base $K B$, or
- no if no instance is a logical consequence of $K B$.

Example Queries

$$
K B=\left\{\begin{array}{l}
\text { in }(\text { kim, } r 123) . \\
\text { part_of }(r 123, \text { cs_building }) . \\
\text { in }(X, Y) \leftarrow \text { part_of }(Z, Y) \wedge \operatorname{in}(X, Z)
\end{array}\right.
$$

Query	Answer
?part_of $(r 123, B)$.	

Example Queries

$$
K B=\left\{\begin{array}{l}
\text { in }(\text { kim, r123). } \\
\text { part_of }(r 123, \text { cs_building }) . \\
\text { in }(X, Y) \leftarrow \text { part_of }(Z, Y) \wedge \operatorname{in}(X, Z)
\end{array}\right.
$$

Query	Answer
?part_of $(r 123, B) . \quad$ part_of $(r 123$, cs_building $)$	
?part_of $(r 023$, cs_building $)$.	

Example Queries

$$
K B=\left\{\begin{array}{l}
\text { in }(\text { kim, } r 123) . \\
\text { part_of }(r 123, \text { cs_building }) . \\
i n(X, Y) \leftarrow \text { part_of }(Z, Y) \wedge \operatorname{in}(X, Z)
\end{array}\right.
$$

Query	Answer
?part_of $(r 123, B)$.	part_of $(r 123$, cs_building $)$
?part_of $(r 023$, cs_building $)$.	no
?in(kim,r023).	

Example Queries

$$
K B=\left\{\begin{array}{l}
\text { in }(\text { kim, } r 123) . \\
\text { part_of }(r 123, \text { cs_building }) . \\
\text { in }(X, Y) \leftarrow \text { part_of }(Z, Y) \wedge \text { in }(X, Z)
\end{array}\right.
$$

Query	Answer
?part_of $(r 123, B)$.	part_of(r123, cs_building $)$
?part_of(r023, cs_building $).$	no
?in(kim, r023).	no
?in(kim, B).	

Example Queries

$$
K B=\left\{\begin{array}{l}
\text { in }(\text { kim, } r 123) . \\
\text { part_of }(r 123, \text { cs_building }) . \\
\text { in }(X, Y) \leftarrow \text { part_of }(Z, Y) \wedge \operatorname{in}(X, Z)
\end{array}\right.
$$

Query	Answer
?part_of $(r 123, B)$.	part_of $(r 123$, cs_build
?part_of $(r 023$, cs_building $)$.	
?in $($ kim, r023 $)$.	no
?in $(k i m, B)$.	in(kim,r123)
	in(kim, cs_building $)$

Electrical Environment

Axiomatizing the Electrical Environment

$\% \operatorname{light}(L)$ is true if L is a light
$\operatorname{light}\left(I_{1}\right)$. light $\left(I_{2}\right)$.
\% down (S) is true if switch S is down
down $\left(s_{1}\right)$. $u p\left(s_{2}\right)$. $u p\left(s_{3}\right)$.
$\%$ ok(D) is true if D is not broken
$o k\left(I_{1}\right)$. ok (I_{2}). ok (cb1 $)$. ok (cb2 $)$.
? light $\left(I_{1}\right)$.

Axiomatizing the Electrical Environment

$\% \operatorname{light}(L)$ is true if L is a light
$\operatorname{light}\left(I_{1}\right)$. light $\left(I_{2}\right)$.
\% down (S) is true if switch S is down
down $\left(s_{1}\right)$. $u p\left(s_{2}\right)$. $u p\left(s_{3}\right)$.
$\%$ ok(D) is true if D is not broken
$o k\left(I_{1}\right)$. ok (I_{2}). ok (cb1 $)$. ok (cb2 $)$.
?light $\left(I_{1}\right) . \Longrightarrow y e s$
? light $\left(I_{6}\right) . \Longrightarrow$

Axiomatizing the Electrical Environment

$\% \operatorname{light}(L)$ is true if L is a light
$\operatorname{light}\left(I_{1}\right)$. light $\left(I_{2}\right)$.
\% down (S) is true if switch S is down
down $\left(s_{1}\right)$. $u p\left(s_{2}\right)$. $u p\left(s_{3}\right)$.
$\%$ ok(D) is true if D is not broken
$o k\left(I_{1}\right)$. ok (I_{2}). ok (cb1 $)$. ok (cb2 $)$.
$? \operatorname{light}\left(I_{1}\right) . \Longrightarrow$ yes
?light $\left(I_{6}\right) . \Longrightarrow$ no
? $u p(X)$.

Axiomatizing the Electrical Environment

$\% \operatorname{light}(L)$ is true if L is a light
$\operatorname{light}\left(I_{1}\right)$. light $\left(I_{2}\right)$.
\% down (S) is true if switch S is down
down $\left(s_{1}\right)$. $u p\left(s_{2}\right)$. $u p\left(s_{3}\right)$.
$\%$ ok(D) is true if D is not broken
$o k\left(I_{1}\right)$. ok (I_{2}). ok(cb1 $)$. ok($\left.c b_{2}\right)$.
?light $\left(I_{1}\right) . \Longrightarrow$ yes
?light $\left(I_{6}\right) . \Longrightarrow$ no
?up $(X) \quad \Longrightarrow \quad u p\left(s_{2}\right), u p\left(s_{3}\right)$
connected_to (X, Y) is true if component X is connected to Y

$$
\begin{aligned}
& \text { connected_to }\left(w_{0}, w_{1}\right) \leftarrow u p\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{0}, w_{2}\right) \leftarrow d o w n\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{1}, w_{3}\right) \leftarrow u p\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{2}, w_{3}\right) \leftarrow d o w n\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{4}, w_{3}\right) \leftarrow u p\left(s_{3}\right) . \\
& \text { connected_to }\left(p_{1}, w_{3}\right) .
\end{aligned}
$$

connected_to (X, Y) is true if component X is connected to Y

$$
\begin{aligned}
& \text { connected_to }\left(w_{0}, w_{1}\right) \leftarrow u p\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{0}, w_{2}\right) \leftarrow d o w n\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{1}, w_{3}\right) \leftarrow u p\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{2}, w_{3}\right) \leftarrow d o w n\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{4}, w_{3}\right) \leftarrow u p\left(s_{3}\right) . \\
& \text { connected_to }\left(p_{1}, w_{3}\right) .
\end{aligned}
$$

?connected_to $\left(w_{0}, W\right) . \quad \Longrightarrow \quad W=w_{1}$
?connected_to $\left(w_{1}, W\right) . \Longrightarrow$
connected_to (X, Y) is true if component X is connected to Y

$$
\begin{aligned}
& \text { connected_to }\left(w_{0}, w_{1}\right) \leftarrow u p\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{0}, w_{2}\right) \leftarrow d o w n\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{1}, w_{3}\right) \leftarrow u p\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{2}, w_{3}\right) \leftarrow d o w n\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{4}, w_{3}\right) \leftarrow u p\left(s_{3}\right) . \\
& \text { connected_to }\left(p_{1}, w_{3}\right) .
\end{aligned}
$$

?connected_to $\left(w_{0}, W\right) . \Longrightarrow W=w_{1}$
?connected_to $\left(w_{1}, W\right) \Longrightarrow$ no
?connected_to($\left.Y, w_{3}\right)$.
connected_to (X, Y) is true if component X is connected to Y

$$
\begin{aligned}
& \text { connected_to }\left(w_{0}, w_{1}\right) \leftarrow u p\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{0}, w_{2}\right) \leftarrow d o w n\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{1}, w_{3}\right) \leftarrow u p\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{2}, w_{3}\right) \leftarrow d o w n\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{4}, w_{3}\right) \leftarrow u p\left(s_{3}\right) . \\
& \text { connected_to }\left(p_{1}, w_{3}\right) .
\end{aligned}
$$

?connected_to $\left(w_{0}, W\right) . \Longrightarrow W=w_{1}$
?connected_to $\left(w_{1}, W\right) . \Longrightarrow$ no
?connected_to $\left(Y, w_{3}\right) . \Longrightarrow Y=w_{2}, Y=w_{4}, Y=p_{1}$
?connected_to (X, W).
connected_to (X, Y) is true if component X is connected to Y

$$
\begin{aligned}
& \text { connected_to }\left(w_{0}, w_{1}\right) \leftarrow u p\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{0}, w_{2}\right) \leftarrow d o w n\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{1}, w_{3}\right) \leftarrow u p\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{2}, w_{3}\right) \leftarrow d o w n\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{4}, w_{3}\right) \leftarrow u p\left(s_{3}\right) . \\
& \text { connected_to }\left(p_{1}, w_{3}\right) .
\end{aligned}
$$

?connected_to $\left(w_{0}, W\right) \quad \Longrightarrow \quad W=w_{1}$
?connected_to $\left(w_{1}, W\right) . \Longrightarrow$ no
?connected_to $\left(Y, w_{3}\right) . \Longrightarrow Y=w_{2}, Y=w_{4}, Y=p_{1}$
?connected_to $(X, W) \quad \Longrightarrow \quad X=w_{0}, W=w_{1}, \ldots$
$\% \operatorname{lit}(L)$ is true if the light L is lit $\operatorname{lit}(L) \leftarrow \operatorname{light}(L) \wedge \operatorname{ok}(L) \wedge \operatorname{live}(L)$.
\% live (C) is true if there is power coming into C

```
live}(Y)
    connected_to(Y,Z)^
    live(Z).
live(outside).
```

This is a recursive definition of live.

Recursion and Mathematical Induction

$$
\begin{aligned}
& \operatorname{above}(X, Y) \leftarrow \text { on }(X, Y) \\
& \text { above }(X, Y) \leftarrow \text { on }(X, Z) \wedge \operatorname{above}(Z, Y) .
\end{aligned}
$$

This can be seen as:

- Recursive definition of above: prove above in terms of a base case (on) or a simpler instance of itself; or
- Way to prove above by mathematical induction: the base case is when there are no blocks between X and Y, and if you can prove above when there are n blocks between them, you can prove it when there are $n+1$ blocks.

Limitations

- Suppose you had a database using the relation:
enrolled (S, C)
which is true when student S is enrolled in course C.
- Can you define the relation:

$$
\text { empty_course (} C \text {) }
$$

which is true when course C has no students enrolled in it?

- Why? or Why not?

Limitations

- Suppose you had a database using the relation:

$$
\text { enrolled }(S, C)
$$

which is true when student S is enrolled in course C.

- Can you define the relation:

$$
\text { empty_course(} C \text {) }
$$

which is true when course C has no students enrolled in it?

- Why? or Why not?
empty_course (C) doesn't logically follow from a set of enrolled relation because there are always models where someone is enrolled in a course!

