Learning Objectives

At the end of the class you should be able to:

- derive Bayesian learning from first principles
- explain how the Beta and Dirichlet distributions are used for Bayesian learning.

Model Averaging (Bayesian Learning)

We want to predict the output Y of a new case that has input X = x given the training examples \mathbf{e} :

$$p(Y \mid x \land \mathbf{e}) = \sum_{m \in M} P(Y \land m \mid x \land \mathbf{e})$$

Model Averaging (Bayesian Learning)

We want to predict the output Y of a new case that has input X = x given the training examples \mathbf{e} :

$$p(Y \mid x \land \mathbf{e}) = \sum_{m \in M} P(Y \land m \mid x \land \mathbf{e})$$

$$= \sum_{m \in M} P(Y \mid m \land x \land \mathbf{e}) P(m \mid x \land \mathbf{e})$$

$$=$$

Model Averaging (Bayesian Learning)

We want to predict the output Y of a new case that has input X = x given the training examples \mathbf{e} :

$$p(Y \mid x \land \mathbf{e}) = \sum_{m \in M} P(Y \land m \mid x \land \mathbf{e})$$

$$= \sum_{m \in M} P(Y \mid m \land x \land \mathbf{e}) P(m \mid x \land \mathbf{e})$$

$$= \sum_{m \in M} P(Y \mid m \land x) P(m \mid \mathbf{e})$$

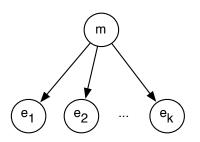
M is a set of mutually exclusive and covering models (hypotheses).

• What assumptions are made here?

Learning Under Uncertainty

• The posterior probability of a model m given examples e:

$$P(m \mid \mathbf{e}) = \frac{P(\mathbf{e} \mid m) \times P(m)}{P(\mathbf{e})}$$


- The likelihood, $P(\mathbf{e} \mid m)$, is the probability that model m would have produced examples \mathbf{e} .
- The prior, P(m), encodes the learning bias
- P(e) is a normalizing constant so the probabilities of the models sum to 1.

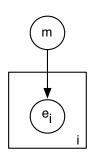


Plate Notation

• Examples $\mathbf{e} = [e_1, \dots, e_k]$ are independent and identically distributed (i.i.d.) given m if

$$P(\mathbf{e} \mid m) = \prod_{i=1}^k P(e_i \mid m)$$

Bayesian Learning of Probabilities

- Y has two outcomes y and $\neg y$. We want the probability of y given training examples **e**.
- We can treat the probability of y as a real-valued random variable on the interval [0,1], called ϕ . Bayes' rule gives:

$$P(\phi=p \mid \mathbf{e}) =$$

Bayesian Learning of Probabilities

- Y has two outcomes y and $\neg y$. We want the probability of y given training examples **e**.
- We can treat the probability of y as a real-valued random variable on the interval [0,1], called ϕ . Bayes' rule gives:

$$P(\phi=p \mid \mathbf{e}) = \frac{P(\mathbf{e} \mid \phi=p) \times P(\phi=p)}{P(\mathbf{e})}$$

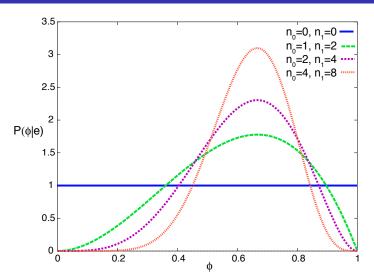
• Suppose **e** is a sequence of n_1 instances of y and n_0 instances of $\neg y$:

$$P(\mathbf{e} \mid \phi = p) =$$

Bayesian Learning of Probabilities

- Y has two outcomes y and $\neg y$. We want the probability of y given training examples **e**.
- We can treat the probability of y as a real-valued random variable on the interval [0,1], called ϕ . Bayes' rule gives:

$$P(\phi=p \mid \mathbf{e}) = \frac{P(\mathbf{e} \mid \phi=p) \times P(\phi=p)}{P(\mathbf{e})}$$


• Suppose **e** is a sequence of n_1 instances of y and n_0 instances of $\neg y$:

$$P(\mathbf{e} \mid \phi = p) = p^{n_1} \times (1-p)^{n_0}$$

• Uniform prior: $P(\phi=p)=1$ for all $p \in [0,1]$.

Posterior Probabilities for Different Training Examples (beta distribution)

MAP model

• The maximum a posteriori probability (MAP) model is the model m that maximizes $P(m \mid \mathbf{e})$. That is, it maximizes:

$$P(\mathbf{e} \mid m) \times P(m)$$

Thus it minimizes:

$$(-\log P(\mathbf{e}\mid m)) + (-\log P(m))$$

which is the number of bits to send the examples, e, given the model m plus the number of bits to send the model m.

Averaging Over Models

- Idea: Rather than choosing the most likely model, average over all models, weighted by their posterior probabilities given the examples.
- If you have observed a sequence of n_1 instances of y and n_0 instances of $\neg y$, with uniform prior:
 - the most likely value (MAP) is $\frac{n_1}{n_0 + n_1}$
 - ▶ the expected value is $\frac{n_1 + 1}{n_0 + n_1 + 2}$

Beta Distribution

$$extit{Beta}^{lpha_0,lpha_1}(
ho)=rac{1}{K}
ho^{lpha_1-1} imes (1-
ho)^{lpha_0-1}$$

where K is a normalizing constant. $\alpha_i > 0$.

- The uniform distribution on [0,1] is $Beta^{1,1}$.
- The expected value is $\alpha_1/(\alpha_0 + \alpha_1)$.

If the prior probability of a Boolean variable is $Beta^{\alpha_0,\alpha_1}$, the posterior distribution after observing n_1 true cases and n_0 false cases is:

Beta Distribution

$$extit{Beta}^{lpha_0,lpha_1}(
ho)=rac{1}{K}
ho^{lpha_1-1} imes (1-
ho)^{lpha_0-1}$$

where K is a normalizing constant. $\alpha_i > 0$.

- The uniform distribution on [0,1] is Beta^{1,1}.
- The expected value is $\alpha_1/(\alpha_0 + \alpha_1)$.

If the prior probability of a Boolean variable is $Beta^{\alpha_0,\alpha_1}$, the posterior distribution after observing n_1 true cases and n_0 false cases is:

Beta
$$^{\alpha_0+n_0,\alpha_1+n_1}$$

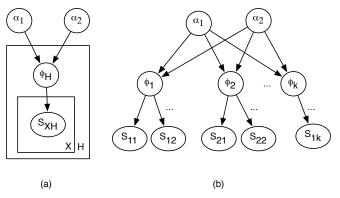
Dirichlet distribution

- Suppose Y has k values.
- The Dirichlet distribution has two sorts of parameters,
 - **p** positive counts $\alpha_1, \ldots, \alpha_k$ α_i is one more than the count of the *i*th outcome.
 - probability parameters p_1, \ldots, p_k p_i is the probability of the *i*th outcome

$$extit{Dirichlet}^{lpha_1,...,lpha_k}(p_1,\ldots,p_k) = rac{1}{K} \prod_{j=1}^k p_j^{lpha_j-1}$$

where K is a normalizing constant

• The expected value of *i*th outcome is


$$\frac{\alpha_i}{\sum_j \alpha_j}$$

Hierarchical Bayesian Model

Where do the priors come from?

Example: S_{XH} is true when patient X is sick in hospital H. We want to learn the probability of Sick for each hospital. Where do the prior probabilities for the hospitals come from?

