Where do the probabilities come from?

- Probabilities come from:
- Experts
- Data

Learning probabilities - the simplest case

Observe tosses of thumbtack: n_{0} instances of Heads $=$ false n_{1} instances of Heads $=$ true
what should we use as P (heads)?
Tails Heads

Learning probabilities - the simplest case

Observe tosses of thumbtack: n_{0} instances of Heads $=$ false n_{1} instances of Heads $=$ true what should we use as P (heads)?

Tails Heads

- Empirical frequency: $P($ heads $)=\frac{n_{1}}{n_{0}+n_{1}}$

Learning probabilities - the simplest case

Observe tosses of thumbtack: n_{0} instances of Heads $=$ false n_{1} instances of Heads $=$ true what should we use as P (heads)?

Tails Heads

- Empirical frequency: $P($ heads $)=\frac{n_{1}}{n_{0}+n_{1}}$
- Laplace smoothing [1812]: $P($ heads $)=\frac{n_{1}+1}{n_{0}+n_{1}+2}$

Learning probabilities - the simplest case

Observe tosses of thumbtack:
n_{0} instances of Heads $=$ false
n_{1} instances of Heads $=$ true what should we use as P (heads)?

Tails Heads

- Empirical frequency: $P($ heads $)=\frac{n_{1}}{n_{0}+n_{1}}$
- Laplace smoothing [1812]: $P($ heads $)=\frac{n_{1}+1}{n_{0}+n_{1}+2}$
- Informed priors: $P($ heads $)=\frac{n_{1}+c_{1}}{n_{0}+n_{1}+c_{0}+c_{1}}$ for some informed pseudo counts $c_{0}, c_{1}>0$. $c_{0}=1, c_{1}=1$, expressed ignorance (uniform prior)
Pseudo-counts convey prior knowledge. Consider: "how much more would I believe α if I had seen one example with α true than if I has seen no examples with α true?"

Learning probabilities - the simplest case

Observe tosses of thumbtack:
n_{0} instances of Heads $=$ false
n_{1} instances of Heads $=$ true what should we use as P (heads)?

Tails Heads

- Empirical frequency: $P($ heads $)=\frac{n_{1}}{n_{0}+n_{1}}$
- Laplace smoothing [1812]: $P($ heads $)=\frac{n_{1}+1}{n_{0}+n_{1}+2}$
- Informed priors: $P($ heads $)=\frac{n_{1}+c_{1}}{n_{0}+n_{1}+c_{0}+c_{1}}$ for some informed pseudo counts $c_{0}, c_{1}>0$. $c_{0}=1, c_{1}=1$, expressed ignorance (uniform prior)
Pseudo-counts convey prior knowledge. Consider: "how much more would I believe α if I had seen one example with α true than if I has seen no examples with α true?"
- empirical frequency overfits to the data.

Example of Overfitting

- We have a web site where people rate restaurants with 1 to 5 stars.
- We want to report the most liked restaurant(s) - the one predicted to have the best future ratings.
- How can we determine the most liked restaurant?

Example of Overfitting

- We have a web site where people rate restaurants with 1 to 5 stars.
- We want to report the most liked restaurant(s) - the one predicted to have the best future ratings.
- How can we determine the most liked restaurant?
- Are the restaurants with the highest average rating the most liked restaurants?

Example of Overfitting

- We have a web site where people rate restaurants with 1 to 5 stars.
- We want to report the most liked restaurant(s) — the one predicted to have the best future ratings.
- How can we determine the most liked restaurant?
- Are the restaurants with the highest average rating the most liked restaurants?
- Which restaurants have the highest average rating?

Example of Overfitting

- We have a web site where people rate restaurants with 1 to 5 stars.
- We want to report the most liked restaurant(s) - the one predicted to have the best future ratings.
- How can we determine the most liked restaurant?
- Are the restaurants with the highest average rating the most liked restaurants?
- Which restaurants have the highest average rating?
- Which restaurants have a rating of 5 ?

Example of Overfitting

- We have a web site where people rate restaurants with 1 to 5 stars.
- We want to report the most liked restaurant(s) - the one predicted to have the best future ratings.
- How can we determine the most liked restaurant?
- Are the restaurants with the highest average rating the most liked restaurants?
- Which restaurants have the highest average rating?
- Which restaurants have a rating of 5 ?
- Only restaurants with few ratings have an average rating of 5 .

Example of Overfitting

- We have a web site where people rate restaurants with 1 to 5 stars.
- We want to report the most liked restaurant(s) - the one predicted to have the best future ratings.
- How can we determine the most liked restaurant?
- Are the restaurants with the highest average rating the most liked restaurants?
- Which restaurants have the highest average rating?
- Which restaurants have a rating of 5 ?
- Only restaurants with few ratings have an average rating of 5 .
- Solution: add some "average" ratings for each restaurant!

Bayesian Learning

aispace: http://artint.info/code/aispace/beta.xml

- Probablity_of_Heads is a random variable representing the probability of heads.
- Range is $\{0.0,0.1,0.2, \ldots, 0.9,1.0\}$ or interval $[0,1]$.
- $P($ Toss $\# n=$ Heads \mid Probablity_of_Heads=v)=

Bayesian Learning

aispace: http://artint.info/code/aispace/beta.xml

- Probablity_of_Heads is a random variable representing the probability of heads.
- Range is $\{0.0,0.1,0.2, \ldots, 0.9,1.0\}$ or interval $[0,1]$.
- $P($ Toss $\# n=$ Heads \mid Probablity_of_Heads=v) $=v$
- Toss\#i is independent of Toss\#j (for $i \neq j$) given Probablity_of_Heads
- i.i.d. or independent and identically distributed.

Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
We observe the words in the query.

Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
We observe the words in the query.
What probabilities are required?

Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
We observe the words in the query.
What probabilities are required?
What counts are required?

Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
We observe the words in the query.
What probabilities are required?
What counts are required?

- number of times each help page h_{i} is the best one
- number of times word w_{j} is used when h_{i} is the help page.

Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
We observe the words in the query.
What probabilities are required?
What counts are required?

- number of times each help page h_{i} is the best one
- number of times word w_{j} is used when h_{i} is the help page. When can the counts be updated?

Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
We observe the words in the query.
What probabilities are required?
What counts are required?

- number of times each help page h_{i} is the best one
- number of times word w_{j} is used when h_{i} is the help page.

When can the counts be updated?

- When the correct page is found.

Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
We observe the words in the query.
What probabilities are required?
What counts are required?

- number of times each help page h_{i} is the best one
- number of times word w_{j} is used when h_{i} is the help page.

When can the counts be updated?

- When the correct page is found.

What prior counts should be used? Can they be zero?

Issues

If you were designing such a system, many issues arise such as:

- What if the most likely page isn't the correct page?

Issues

If you were designing such a system, many issues arise such as:

- What if the most likely page isn't the correct page?
- What if the user can't find the correct page?

Issues

If you were designing such a system, many issues arise such as:

- What if the most likely page isn't the correct page?
- What if the user can't find the correct page?
- What if the user mistakenly thinks they have the correct page?

Issues

If you were designing such a system, many issues arise such as:

- What if the most likely page isn't the correct page?
- What if the user can't find the correct page?
- What if the user mistakenly thinks they have the correct page?
- Can some pages never be found?

Issues

If you were designing such a system, many issues arise such as:

- What if the most likely page isn't the correct page?
- What if the user can't find the correct page?
- What if the user mistakenly thinks they have the correct page?
- Can some pages never be found?
- What about common words?

Issues

If you were designing such a system, many issues arise such as:

- What if the most likely page isn't the correct page?
- What if the user can't find the correct page?
- What if the user mistakenly thinks they have the correct page?
- Can some pages never be found?
- What about common words?
- What about words that affect other words, e.g. "not"?

Issues

If you were designing such a system, many issues arise such as:

- What if the most likely page isn't the correct page?
- What if the user can't find the correct page?
- What if the user mistakenly thinks they have the correct page?
- Can some pages never be found?
- What about common words?
- What about words that affect other words, e.g. "not"?
- What about new words?

Issues

If you were designing such a system, many issues arise such as:

- What if the most likely page isn't the correct page?
- What if the user can't find the correct page?
- What if the user mistakenly thinks they have the correct page?
- Can some pages never be found?
- What about common words?
- What about words that affect other words, e.g. "not"?
- What about new words?
- What do we do with new help pages?

Issues

If you were designing such a system, many issues arise such as:

- What if the most likely page isn't the correct page?
- What if the user can't find the correct page?
- What if the user mistakenly thinks they have the correct page?
- Can some pages never be found?
- What about common words?
- What about words that affect other words, e.g. "not"?
- What about new words?
- What do we do with new help pages?
- How can we transfer the language model to a new help system?

