Where do the probabilities come from?

- Probabilities come from:
 - Experts
 - Data

Observe tosses of thumbtack: n_0 instances of Heads = false n_1 instances of Heads = true what should we use as P(heads)?

Observe tosses of thumbtack: n_0 instances of Heads = false n_1 instances of Heads = true what should we use as P(heads)?

• Empirical frequency: $P(heads) = \frac{n_1}{n_0 + n_1}$

2/6

Observe tosses of thumbtack: n_0 instances of Heads = false n_1 instances of Heads = true what should we use as P(heads)?

- Empirical frequency: $P(heads) = \frac{n_1}{n_0 + n_1}$
- Laplace smoothing [1812]: $P(heads) = \frac{n_1 + 1}{n_0 + n_1 + 2}$

2/6

Observe tosses of thumbtack: n_0 instances of Heads = false n_1 instances of Heads = true what should we use as P(heads)?

- Empirical frequency: $P(heads) = \frac{n_1}{n_0 + n_1}$
- Laplace smoothing [1812]: $P(heads) = \frac{n_1 + 1}{n_0 + n_1 + 2}$
- Informed priors: $P(heads) = \frac{n_1 + c_1}{n_0 + n_1 + c_0 + c_1}$ for some informed pseudo counts $c_0, c_1 > 0$. $c_0 = 1, c_1 = 1$, expressed ignorance (uniform prior)

Pseudo-counts convey prior knowledge. Consider: "how much more would I believe α if I had seen one example with α true than if I has seen no examples with α true?"

Observe tosses of thumbtack: n_0 instances of Heads = false n_1 instances of Heads = true what should we use as P(heads)?

- Empirical frequency: $P(heads) = \frac{n_1}{n_0 + n_1}$
- Laplace smoothing [1812]: $P(heads) = \frac{n_1 + 1}{n_0 + n_1 + 2}$
- Informed priors: $P(heads) = \frac{n_1 + c_1}{n_0 + n_1 + c_0 + c_1}$ for some informed pseudo counts $c_0, c_1 > 0$. $c_0 = 1, c_1 = 1$, expressed ignorance (uniform prior)

Pseudo-counts convey prior knowledge. Consider: "how much more would I believe α if I had seen one example with α true than if I has seen no examples with α true?" — empirical frequency overfits to the data.

- We have a web site where people rate restaurants with 1 to 5 stars.
- We want to report the most liked restaurant(s) the one predicted to have the best future ratings.
- How can we determine the most liked restaurant?

- We have a web site where people rate restaurants with 1 to 5 stars.
- We want to report the most liked restaurant(s) the one predicted to have the best future ratings.
- How can we determine the most liked restaurant?
- Are the restaurants with the highest average rating the most liked restaurants?

- We have a web site where people rate restaurants with 1 to 5 stars.
- We want to report the most liked restaurant(s) the one predicted to have the best future ratings.
- How can we determine the most liked restaurant?
- Are the restaurants with the highest average rating the most liked restaurants?
- Which restaurants have the highest average rating?

- We have a web site where people rate restaurants with 1 to 5 stars.
- We want to report the most liked restaurant(s) the one predicted to have the best future ratings.
- How can we determine the most liked restaurant?
- Are the restaurants with the highest average rating the most liked restaurants?
- Which restaurants have the highest average rating?
- Which restaurants have a rating of 5?

- We have a web site where people rate restaurants with 1 to 5 stars.
- We want to report the most liked restaurant(s) the one predicted to have the best future ratings.
- How can we determine the most liked restaurant?
- Are the restaurants with the highest average rating the most liked restaurants?
- Which restaurants have the highest average rating?
- Which restaurants have a rating of 5?
 - Only restaurants with few ratings have an average rating of 5.

- We have a web site where people rate restaurants with 1 to 5 stars.
- We want to report the most liked restaurant(s) the one predicted to have the best future ratings.
- How can we determine the most liked restaurant?
- Are the restaurants with the highest average rating the most liked restaurants?
- Which restaurants have the highest average rating?
- Which restaurants have a rating of 5?
 - Only restaurants with few ratings have an average rating of 5.
- Solution: add some "average" ratings for each restaurant!

Bayesian Learning

aispace: http://artint.info/code/aispace/beta.xml

- *Probablity_of_Heads* is a random variable representing the probability of heads.
- Range is $\{0.0, 0.1, 0.2, \dots, 0.9, 1.0\}$ or interval [0, 1].
- $P(Toss\#n=Heads \mid Probablity_of_Heads=v) =$

4/6

Bayesian Learning

aispace: http://artint.info/code/aispace/beta.xml

- *Probablity_of_Heads* is a random variable representing the probability of heads.
- Range is $\{0.0, 0.1, 0.2, \dots, 0.9, 1.0\}$ or interval [0, 1].
- $P(Toss\#n=Heads \mid Probablity_of_Heads=v) = v$
- Toss#i is independent of Toss#j (for $i \neq j$) given $Probablity_of_Heads$
- i.i.d. or independent and identically distributed.

H is the help page the user is interested in. We observe the words in the query.

H is the help page the user is interested in.

We observe the words in the query.

What probabilities are required?

H is the help page the user is interested in.

We observe the words in the query.

What probabilities are required?

What counts are required?

H is the help page the user is interested in.

We observe the words in the query.

What probabilities are required?

What counts are required?

- number of times each help page h_i is the best one
- number of times word w_j is used when h_i is the help page.

H is the help page the user is interested in.

We observe the words in the query.

What probabilities are required?

What counts are required?

- number of times each help page h_i is the best one
- number of times word w_i is used when h_i is the help page.

When can the counts be updated?

H is the help page the user is interested in.

We observe the words in the query.

What probabilities are required?

What counts are required?

- number of times each help page h_i is the best one
- number of times word w_i is used when h_i is the help page.

When can the counts be updated?

When the correct page is found.

5/6

H is the help page the user is interested in.

We observe the words in the query.

What probabilities are required?

What counts are required?

- number of times each help page h_i is the best one
- number of times word w_i is used when h_i is the help page.

When can the counts be updated?

When the correct page is found.

What prior counts should be used? Can they be zero?

If you were designing such a system, many issues arise such as:

• What if the most likely page isn't the correct page?

- What if the most likely page isn't the correct page?
- What if the user can't find the correct page?

- What if the most likely page isn't the correct page?
- What if the user can't find the correct page?
- What if the user mistakenly thinks they have the correct page?

- What if the most likely page isn't the correct page?
- What if the user can't find the correct page?
- What if the user mistakenly thinks they have the correct page?
- Can some pages never be found?

- What if the most likely page isn't the correct page?
- What if the user can't find the correct page?
- What if the user mistakenly thinks they have the correct page?
- Can some pages never be found?
- What about common words?

- What if the most likely page isn't the correct page?
- What if the user can't find the correct page?
- What if the user mistakenly thinks they have the correct page?
- Can some pages never be found?
- What about common words?
- What about words that affect other words, e.g. "not"?

- What if the most likely page isn't the correct page?
- What if the user can't find the correct page?
- What if the user mistakenly thinks they have the correct page?
- Can some pages never be found?
- What about common words?
- What about words that affect other words, e.g. "not"?
- What about new words?

- What if the most likely page isn't the correct page?
- What if the user can't find the correct page?
- What if the user mistakenly thinks they have the correct page?
- Can some pages never be found?
- What about common words?
- What about words that affect other words, e.g. "not"?
- What about new words?
- What do we do with new help pages?

- What if the most likely page isn't the correct page?
- What if the user can't find the correct page?
- What if the user mistakenly thinks they have the correct page?
- Can some pages never be found?
- What about common words?
- What about words that affect other words, e.g. "not"?
- What about new words?
- What do we do with new help pages?
- How can we transfer the language model to a new help system?

