
Agents as Processes

Agents carry out actions:

forever infinite horizon

until some stopping criteria is met indefinite horizon

finite and fixed number of steps finite horizon

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 1 / 30

Decision-theoretic Planning

What should an agent do when

it gets rewards (including punishments) and tries to
maximize its rewards received

actions can be stochastic; the outcome of an action can’t
be fully predicted

there is a model that specifies the (probabilistic) outcome
of actions and the rewards

the world is fully observable

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 2 / 30

Decision-theoretic Planning

What should an agent do when

it gets rewards (including punishments) and tries to
maximize its rewards received

actions can be stochastic; the outcome of an action can’t
be fully predicted

there is a model that specifies the (probabilistic) outcome
of actions and the rewards

the world is fully observable

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 2 / 30

Decision-theoretic Planning

What should an agent do when

it gets rewards (including punishments) and tries to
maximize its rewards received

actions can be stochastic; the outcome of an action can’t
be fully predicted

there is a model that specifies the (probabilistic) outcome
of actions and the rewards

the world is fully observable

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 2 / 30

Decision-theoretic Planning

What should an agent do when

it gets rewards (including punishments) and tries to
maximize its rewards received

actions can be stochastic; the outcome of an action can’t
be fully predicted

there is a model that specifies the (probabilistic) outcome
of actions and the rewards

the world is fully observable

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 2 / 30

Initial Assumptions

flat or modular or hierarchical

explicit states or features or individuals and relations

static or finite stage or indefinite stage or infinite stage

fully observable or partially observable

deterministic or stochastic dynamics

goals or complex preferences

single agent or multiple agents

knowledge is given or knowledge is learned

perfect rationality or bounded rationality

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 3 / 30

Utility and time

Would you prefer $1000 today or $1000 next year?

What price would you pay now to have an eternity of
happiness?

How can you trade off pleasures today with pleasures in
the future?

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 4 / 30

Utility and time

How would you compare the following sequences of
rewards (per week):

A: $1000000, $0, $0, $0, $0, $0,. . .
B: $1000, $1000, $1000, $1000, $1000,. . .
C: $1000, $0, $0, $0, $0,. . .
D: $1, $1, $1, $1, $1,. . .
E: $1, $2, $3, $4, $5,. . .

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 5 / 30

Rewards and Values

Suppose the agent receives a sequence of rewards
r1, r2, r3, r4, . . . in time. What utility should be assigned?
“Return” or “value”

total reward V =
∞∑
i=1

ri

average reward V = lim
n→∞

(r1 + · · ·+ rn)/n

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 6 / 30

Rewards and Values

Suppose the agent receives a sequence of rewards
r1, r2, r3, r4, . . . in time. What utility should be assigned?
“Return” or “value”

total reward V =
∞∑
i=1

ri

average reward V = lim
n→∞

(r1 + · · ·+ rn)/n

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 6 / 30

Average vs Accumulated Rewards

Agent goes on forever?

Agent gets stuck in "absorbing"
state(s) with zero reward?

yes no

yes no

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 7 / 30

Rewards and Values

Suppose the agent receives a sequence of rewards
r1, r2, r3, r4, . . . in time.

discounted return V = r1 + γr2 + γ2r3 + γ3r4 + · · ·
γ is the discount factor 0 ≤ γ ≤ 1.

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 8 / 30

Properties of the Discounted Rewards

The discounted return for rewards r1, r2, r3, r4, . . . is

V = r1 + γr2 + γ2r3 + γ3r4 + · · ·
=

r1 + γ(r2 + γ(r3 + γ(r4 + . . .)))

If Vt is the value obtained from time step t

Vt = rt + γVt+1

How is the infinite future valued compared to immediate
rewards?
1 + γ + γ2 + γ3 + · · · = 1/(1− γ)

Therefore
minimum reward

1− γ
≤ Vt ≤

maximum reward

1− γ
We can approximate V with the first k terms, with error:

V − (r1 + γr2 + · · ·+ γk−1rk) = γkVk+1

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 9 / 30

Properties of the Discounted Rewards

The discounted return for rewards r1, r2, r3, r4, . . . is

V = r1 + γr2 + γ2r3 + γ3r4 + · · ·
= r1 + γ(r2 + γ(r3 + γ(r4 + . . .)))

If Vt is the value obtained from time step t

Vt =

rt + γVt+1

How is the infinite future valued compared to immediate
rewards?
1 + γ + γ2 + γ3 + · · · = 1/(1− γ)

Therefore
minimum reward

1− γ
≤ Vt ≤

maximum reward

1− γ
We can approximate V with the first k terms, with error:

V − (r1 + γr2 + · · ·+ γk−1rk) = γkVk+1

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 9 / 30

Properties of the Discounted Rewards

The discounted return for rewards r1, r2, r3, r4, . . . is

V = r1 + γr2 + γ2r3 + γ3r4 + · · ·
= r1 + γ(r2 + γ(r3 + γ(r4 + . . .)))

If Vt is the value obtained from time step t

Vt = rt + γVt+1

How is the infinite future valued compared to immediate
rewards?
1 + γ + γ2 + γ3 + · · · = 1/(1− γ)

Therefore
minimum reward

1− γ
≤ Vt ≤

maximum reward

1− γ
We can approximate V with the first k terms, with error:

V − (r1 + γr2 + · · ·+ γk−1rk) = γkVk+1

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 9 / 30

Properties of the Discounted Rewards

The discounted return for rewards r1, r2, r3, r4, . . . is

V = r1 + γr2 + γ2r3 + γ3r4 + · · ·
= r1 + γ(r2 + γ(r3 + γ(r4 + . . .)))

If Vt is the value obtained from time step t

Vt = rt + γVt+1

How is the infinite future valued compared to immediate
rewards?

1 + γ + γ2 + γ3 + · · · = 1/(1− γ)

Therefore
minimum reward

1− γ
≤ Vt ≤

maximum reward

1− γ
We can approximate V with the first k terms, with error:

V − (r1 + γr2 + · · ·+ γk−1rk) = γkVk+1

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 9 / 30

Properties of the Discounted Rewards

The discounted return for rewards r1, r2, r3, r4, . . . is

V = r1 + γr2 + γ2r3 + γ3r4 + · · ·
= r1 + γ(r2 + γ(r3 + γ(r4 + . . .)))

If Vt is the value obtained from time step t

Vt = rt + γVt+1

How is the infinite future valued compared to immediate
rewards?
1 + γ + γ2 + γ3 + · · · = 1/(1− γ)

Therefore
minimum reward

1− γ
≤ Vt ≤

maximum reward

1− γ
We can approximate V with the first k terms, with error:

V − (r1 + γr2 + · · ·+ γk−1rk) = γkVk+1

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 9 / 30

World State

The world state is the information such that if the agent
knew the world state, no information about the past is
relevant to the future. Markovian assumption.

Si is state at time i , and Ai is the action at time i :

P(St+1 | S0,A0, . . . , St ,At) =

P(St+1 | St ,At)

P(s ′ | s, a) is the probability that the agent will be in
state s ′ immediately after doing action a in state s.

The dynamics is stationary if the distribution is the same
for each time point.

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 10 / 30

World State

The world state is the information such that if the agent
knew the world state, no information about the past is
relevant to the future. Markovian assumption.

Si is state at time i , and Ai is the action at time i :

P(St+1 | S0,A0, . . . , St ,At) = P(St+1 | St ,At)

P(s ′ | s, a) is the probability that the agent will be in
state s ′ immediately after doing action a in state s.

The dynamics is stationary if the distribution is the same
for each time point.

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 10 / 30

Decision Processes

A Markov decision process augments a Markov chain with
actions and values:

S0 S1 S3S2

A0 A1 A2

R1 R2 R3

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 11 / 30

Markov Decision Processes

An MDP consists of:

set S of states.

set A of actions.

P(St+1 | St ,At) specifies the dynamics.

R(St ,At , St+1) specifies the reward at time t.
R(s, a, s ′) is the expected reward received when the agent
is in state s, does action a and ends up in state s ′.
Sometimes we use

R(s, a) =
∑
s′

P(s ′ | s, a)R(s, a, s ′)

γ is discount factor.

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 12 / 30

Markov Decision Processes

An MDP consists of:

set S of states.

set A of actions.

P(St+1 | St ,At) specifies the dynamics.

R(St ,At , St+1) specifies the reward at time t.
R(s, a, s ′) is the expected reward received when the agent
is in state s, does action a and ends up in state s ′.
Sometimes we use

R(s, a) =
∑
s′

P(s ′ | s, a)R(s, a, s ′)

γ is discount factor.

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 12 / 30

Markov Decision Processes

An MDP consists of:

set S of states.

set A of actions.

P(St+1 | St ,At) specifies the dynamics.

R(St ,At , St+1) specifies the reward at time t.
R(s, a, s ′) is the expected reward received when the agent
is in state s, does action a and ends up in state s ′.

Sometimes we use

R(s, a) =
∑
s′

P(s ′ | s, a)R(s, a, s ′)

γ is discount factor.

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 12 / 30

Markov Decision Processes

An MDP consists of:

set S of states.

set A of actions.

P(St+1 | St ,At) specifies the dynamics.

R(St ,At , St+1) specifies the reward at time t.
R(s, a, s ′) is the expected reward received when the agent
is in state s, does action a and ends up in state s ′.
Sometimes we use

R(s, a) =
∑
s′

P(s ′ | s, a)R(s, a, s ′)

γ is discount factor.

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 12 / 30

Markov Decision Processes

An MDP consists of:

set S of states.

set A of actions.

P(St+1 | St ,At) specifies the dynamics.

R(St ,At , St+1) specifies the reward at time t.
R(s, a, s ′) is the expected reward received when the agent
is in state s, does action a and ends up in state s ′.
Sometimes we use

R(s, a) =
∑
s′

P(s ′ | s, a)R(s, a, s ′)

γ is discount factor.

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 12 / 30

Example: to exercise or not?

Each week Sam has to decide whether to exercise or not:

States: {fit, unfit}
Actions: {exercise, relax}
Dynamics:

State Action P(fit | State,Action)
fit exercise 0.99
fit relax 0.7
unfit exercise 0.2
unfit relax 0.0

Reward (does not depend on resulting state):
State Action Reward
fit exercise 8
fit relax 10
unfit exercise 0
unfit relax 5

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 13 / 30

Example: to exercise or not?

Each week Sam has to decide whether to exercise or not:

States: {fit, unfit}
Actions: {exercise, relax}
Dynamics:

State Action P(fit | State,Action)
fit exercise 0.99
fit relax 0.7
unfit exercise 0.2
unfit relax 0.0

Reward (does not depend on resulting state):
State Action Reward
fit exercise 8
fit relax 10
unfit exercise 0
unfit relax 5

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 13 / 30

Example: to exercise or not?

Each week Sam has to decide whether to exercise or not:

States: {fit, unfit}
Actions: {exercise, relax}
Dynamics:

State Action P(fit | State,Action)
fit exercise 0.99
fit relax 0.7
unfit exercise 0.2
unfit relax 0.0

Reward

(does not depend on resulting state):
State Action Reward
fit exercise 8
fit relax 10
unfit exercise 0
unfit relax 5

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 13 / 30

Example: to exercise or not?

Each week Sam has to decide whether to exercise or not:

States: {fit, unfit}
Actions: {exercise, relax}
Dynamics:

State Action P(fit | State,Action)
fit exercise 0.99
fit relax 0.7
unfit exercise 0.2
unfit relax 0.0

Reward (does not depend on resulting state):
State Action Reward
fit exercise 8
fit relax 10
unfit exercise 0
unfit relax 5

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 13 / 30

Example: Simple Grid World

+10-10

-5-1

-1

-1

-1

+3

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 14 / 30

Grid World Model

Actions: up, down, left, right.

100 states corresponding to the positions of the robot.

Robot goes in the commanded direction with probability
0.7, and one of the other directions with probability 0.1.

If it crashes into an outside wall, it remains in its current
position and has a reward of −1.

Four special rewarding states; the agent gets the reward
when leaving.

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 15 / 30

Planning Horizons

The planning horizon is how far ahead the planner looks to
make a decision.

The robot gets flung to one of the corners at random
after leaving a positive (+10 or +3) reward state.
I the process never halts
I infinite horizon

The robot gets +10 or +3 in the state, then it stays
there getting no reward. These are absorbing states.
I The robot will eventually reach an absorbing state.
I indefinite horizon

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 16 / 30

Planning Horizons

The planning horizon is how far ahead the planner looks to
make a decision.

The robot gets flung to one of the corners at random
after leaving a positive (+10 or +3) reward state.
I the process never halts
I infinite horizon

The robot gets +10 or +3 in the state, then it stays
there getting no reward. These are absorbing states.
I The robot will eventually reach an absorbing state.
I indefinite horizon

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 16 / 30

Information Availability

What information is available when the agent decides what to
do?

fully-observable MDP the agent gets to observe St when
deciding on action At .

partially-observable MDP (POMDP) the agent has some
noisy sensor of the state. It is a mix of a hidden Markov
model and MDP. It needs to remember (some function
of) its sensing and acting history.

[This lecture only considers FOMDPs]

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 17 / 30

Information Availability

What information is available when the agent decides what to
do?

fully-observable MDP the agent gets to observe St when
deciding on action At .

partially-observable MDP (POMDP) the agent has some
noisy sensor of the state. It is a mix of a hidden Markov
model and MDP. It needs to remember (some function
of) its sensing and acting history.

[This lecture only considers FOMDPs]

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 17 / 30

Information Availability

What information is available when the agent decides what to
do?

fully-observable MDP the agent gets to observe St when
deciding on action At .

partially-observable MDP (POMDP) the agent has some
noisy sensor of the state. It is a mix of a hidden Markov
model and MDP. It needs to remember (some function
of) its sensing and acting history.

[This lecture only considers FOMDPs]

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 17 / 30

Policies

A stationary policy is a function:

π : S → A

Given a state s, π(s) specifies what action the agent who
is following π will do.

An optimal policy is one with maximum expected
discounted reward.

For a fully-observable MDP with stationary dynamics and
rewards with infinite or indefinite horizon, there is always
an optimal stationary policy.

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 18 / 30

Policies

A stationary policy is a function:

π : S → A

Given a state s, π(s) specifies what action the agent who
is following π will do.

An optimal policy is one with maximum expected
discounted reward.

For a fully-observable MDP with stationary dynamics and
rewards with infinite or indefinite horizon, there is always
an optimal stationary policy.

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 18 / 30

Policies

A stationary policy is a function:

π : S → A

Given a state s, π(s) specifies what action the agent who
is following π will do.

An optimal policy is one with maximum expected
discounted reward.

For a fully-observable MDP with stationary dynamics and
rewards with infinite or indefinite horizon, there is always
an optimal stationary policy.

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 18 / 30

Example: to exercise or not?

Each week Sam has to decide whether to exercise or not:

States: {fit, unfit}
Actions: {exercise, relax}

How many stationary policies are there?

What are they?

For the grid world with 100 states and 4 actions,
how many stationary policies are there?

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 19 / 30

Example: to exercise or not?

Each week Sam has to decide whether to exercise or not:

States: {fit, unfit}
Actions: {exercise, relax}

How many stationary policies are there?
What are they?

For the grid world with 100 states and 4 actions,
how many stationary policies are there?

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 19 / 30

Example: to exercise or not?

Each week Sam has to decide whether to exercise or not:

States: {fit, unfit}
Actions: {exercise, relax}

How many stationary policies are there?
What are they?

For the grid world with 100 states and 4 actions,
how many stationary policies are there?

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 19 / 30

Value of a Policy

Given a policy π:

Qπ(s, a), where a is an action and s is a state, is the
expected value of doing a in state s, then following policy
π.

V π(s), where s is a state, is the expected value of
following policy π in state s.

Qπ and V π can be defined mutually recursively:

Qπ(s, a) =

V π(s) =

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 20 / 30

Value of a Policy

Given a policy π:

Qπ(s, a), where a is an action and s is a state, is the
expected value of doing a in state s, then following policy
π.

V π(s), where s is a state, is the expected value of
following policy π in state s.

Qπ and V π can be defined mutually recursively:

Qπ(s, a) =

V π(s) =

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 20 / 30

Value of a Policy

Given a policy π:

Qπ(s, a), where a is an action and s is a state, is the
expected value of doing a in state s, then following policy
π.

V π(s), where s is a state, is the expected value of
following policy π in state s.

Qπ and V π can be defined mutually recursively:

Qπ(s, a) =

V π(s) =

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 20 / 30

Q, V , π, R

Qπ(s, a) =
∑
s′

P(s ′ | a, s) (R(s, a, s ′) + γV π(s ′))

= R(s, a) + γ
∑
s′

P(s ′ | a, s)V π(s ′)

V π(s) = Qπ(s, π(a))

where

R(s, a) =
∑
s′

P(s ′ | a, s)R(s, a, s ′)

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 21 / 30

Value of the Optimal Policy

Q∗(s, a), where a is an action and s is a state, is the
expected value of doing a in state s, then following the
optimal policy.

V ∗(s), where s is a state, is the expected value of
following the optimal policy in state s.

Q∗ and V ∗ can be defined mutually recursively:

Q∗(s, a) =

V ∗(s) =

π∗(s) =

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 22 / 30

Value of the Optimal Policy

Q∗(s, a), where a is an action and s is a state, is the
expected value of doing a in state s, then following the
optimal policy.

V ∗(s), where s is a state, is the expected value of
following the optimal policy in state s.

Q∗ and V ∗ can be defined mutually recursively:

Q∗(s, a) =

V ∗(s) =

π∗(s) =

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 22 / 30

Value of the Optimal Policy

Q∗(s, a), where a is an action and s is a state, is the
expected value of doing a in state s, then following the
optimal policy.

V ∗(s), where s is a state, is the expected value of
following the optimal policy in state s.

Q∗ and V ∗ can be defined mutually recursively:

Q∗(s, a) =

V ∗(s) =

π∗(s) =

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 22 / 30

Q, V , π, R

Q∗(s, a) =
∑
s′

P(s ′ | a, s) (R(s, a, s ′) + γV ∗(s ′))

= R(s, a) + γ
∑
s′

P(s ′ | a, s)V ∗(s ′)

V ∗(s) = max
a

Q∗(s, a)

π∗(s) = argmaxaQ∗(s, a)

where

R(s, a) =
∑
s′

P(s ′ | a, s)R(s, a, s ′)

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 23 / 30

Value Iteration

Let Vk and Qk be k-step lookahead value and Q
functions.

Idea: Given an estimate of the k-step lookahead value
function, determine the k + 1 step lookahead value
function.

Set V0 arbitrarily.

Compute Qi+1, Vi+1 from Vi .

This converges exponentially fast (in k) to the optimal
value function.

The error reduces proportionally to
γk

1− γ

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 24 / 30

Value Iteration

Let Vk and Qk be k-step lookahead value and Q
functions.

Idea: Given an estimate of the k-step lookahead value
function, determine the k + 1 step lookahead value
function.

Set V0 arbitrarily.

Compute Qi+1, Vi+1 from Vi .

This converges exponentially fast (in k) to the optimal
value function.

The error reduces proportionally to
γk

1− γ

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 24 / 30

Value Iteration

Let Vk and Qk be k-step lookahead value and Q
functions.

Idea: Given an estimate of the k-step lookahead value
function, determine the k + 1 step lookahead value
function.

Set V0 arbitrarily.

Compute Qi+1, Vi+1 from Vi .

This converges exponentially fast (in k) to the optimal
value function.

The error reduces proportionally to
γk

1− γ

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 24 / 30

Value Iteration

Let Vk and Qk be k-step lookahead value and Q
functions.

Idea: Given an estimate of the k-step lookahead value
function, determine the k + 1 step lookahead value
function.

Set V0 arbitrarily.

Compute Qi+1, Vi+1 from Vi .

This converges exponentially fast (in k) to the optimal
value function.

The error reduces proportionally to
γk

1− γ

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 24 / 30

Value Iteration

Let Vk and Qk be k-step lookahead value and Q
functions.

Idea: Given an estimate of the k-step lookahead value
function, determine the k + 1 step lookahead value
function.

Set V0 arbitrarily.

Compute Qi+1, Vi+1 from Vi .

This converges exponentially fast (in k) to the optimal
value function.

The error reduces proportionally to
γk

1− γ

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 24 / 30

Value Iteration

Let Vk and Qk be k-step lookahead value and Q
functions.

Idea: Given an estimate of the k-step lookahead value
function, determine the k + 1 step lookahead value
function.

Set V0 arbitrarily.

Compute Qi+1, Vi+1 from Vi .

This converges exponentially fast (in k) to the optimal
value function.

The error reduces proportionally to
γk

1− γ

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 24 / 30

Asynchronous Value Iteration

The agent doesn’t need to sweep through all the states,
but can update the value functions for each state
individually.

This converges to the optimal value functions, if each
state and action is visited infinitely often in the limit.

It can either store V [s] or Q[s, a].

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 25 / 30

Asynchronous Value Iteration

The agent doesn’t need to sweep through all the states,
but can update the value functions for each state
individually.

This converges to the optimal value functions, if

each
state and action is visited infinitely often in the limit.

It can either store V [s] or Q[s, a].

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 25 / 30

Asynchronous Value Iteration

The agent doesn’t need to sweep through all the states,
but can update the value functions for each state
individually.

This converges to the optimal value functions, if each
state and action is visited infinitely often in the limit.

It can either store V [s] or Q[s, a].

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 25 / 30

Asynchronous Value Iteration

The agent doesn’t need to sweep through all the states,
but can update the value functions for each state
individually.

This converges to the optimal value functions, if each
state and action is visited infinitely often in the limit.

It can either store V [s] or Q[s, a].

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 25 / 30

Asynchronous VI: storing V [s]

Repeat forever:
I Select state s

I V [s]←

max
a

(
R(s, a) + γ

∑
s′

P(s ′ | s, a)V [s ′]

)

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 26 / 30

Asynchronous VI: storing V [s]

Repeat forever:
I Select state s

I V [s]← max
a

(
R(s, a) + γ

∑
s′

P(s ′ | s, a)V [s ′]

)

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 26 / 30

Asynchronous VI: storing Q[s, a]

Repeat forever:
I Select state s, action a

I Q[s, a]←

R(s, a) + γ
∑
s′

P(s ′ | s, a)

(
max
a′

Q[s ′, a′]

)

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 27 / 30

Asynchronous VI: storing Q[s, a]

Repeat forever:
I Select state s, action a

I Q[s, a]← R(s, a) + γ
∑
s′

P(s ′ | s, a)

(
max
a′

Q[s ′, a′]

)

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 27 / 30

Policy Iteration

Set π0 arbitrarily, let i = 0

Repeat:
I evaluate Qπi (s, a)
I let πi+1(s) = argmaxaQ

πi (s, a)
I set i = i + 1

until πi(s) = πi−1(s)

Evaluating Qπi (s, a) means finding a solution to a set of
|S | × |A| linear equations with |S | × |A| unknowns.

It can also be approximated iteratively.

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 28 / 30

Policy Iteration

Set π0 arbitrarily, let i = 0

Repeat:
I evaluate Qπi (s, a)
I let πi+1(s) = argmaxaQ

πi (s, a)
I set i = i + 1

until πi(s) = πi−1(s)

Evaluating Qπi (s, a) means finding a solution to a set of
|S | × |A| linear equations with |S | × |A| unknowns.

It can also be approximated iteratively.

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 28 / 30

Modified Policy Iteration

Set π[s] arbitrarily
Set Q[s, a] arbitrarily
Repeat forever:

Repeat for a while:
I Select state s, action a
I Q[s, a]←

∑
s′

P(s ′ | s, a)
(
R(s, a, s ′) + γQ[s ′, π[s ′]]

)
π[s]← argmaxaQ[s, a]

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 29 / 30

Q, V , π, R

Q∗(s, a) =
∑
s′

P(s ′ | a, s) (R(s, a, s ′) + γV ∗(s ′))

= R(s, a) + γ
∑
s′

P(s ′ | a, s)V ∗(s ′)

V ∗(s) = max
a

Q∗(s, a)

π∗(s) = argmaxaQ∗(s, a)

where

R(s, a) =
∑
s′

P(s ′ | a, s)R(s, a, s ′)

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.3 30 / 30

