Agents as Processes

Agents carry out actions:

- forever infinite horizon
- until some stopping criteria is met indefinite horizon
- finite and fixed number of steps finite horizon

What should an agent do when

 it gets rewards (including punishments) and tries to maximize its rewards received

What should an agent do when

- it gets rewards (including punishments) and tries to maximize its rewards received
- actions can be stochastic; the outcome of an action can't be fully predicted

What should an agent do when

- it gets rewards (including punishments) and tries to maximize its rewards received
- actions can be stochastic; the outcome of an action can't be fully predicted
- there is a model that specifies the (probabilistic) outcome of actions and the rewards

What should an agent do when

- it gets rewards (including punishments) and tries to maximize its rewards received
- actions can be stochastic; the outcome of an action can't be fully predicted
- there is a model that specifies the (probabilistic) outcome of actions and the rewards
- the world is fully observable

Initial Assumptions

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

Utility and time

- Would you prefer \$1000 today or \$1000 next year?
- What price would you pay now to have an eternity of happiness?
- How can you trade off pleasures today with pleasures in the future?

Utility and time

 How would you compare the following sequences of rewards (per week):

```
A: $1000000, $0, $0, $0, $0, $0, ...
B: $1000, $1000, $1000, $1000, $1000,...
C: $1000, $0, $0, $0, ...
D: $1, $1, $1, $1, ...
E: $1. $2. $3. $4. $5...
```

Rewards and Values

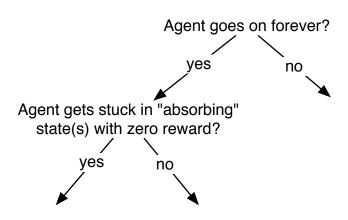
Suppose the agent receives a sequence of rewards $r_1, r_2, r_3, r_4, \ldots$ in time. What utility should be assigned? "Return" or "value"

Rewards and Values

Suppose the agent receives a sequence of rewards $r_1, r_2, r_3, r_4, \ldots$ in time. What utility should be assigned? "Return" or "value"

- total reward $V = \sum_{i=1}^{\infty} r_i$
- average reward $V = \lim_{n \to \infty} (r_1 + \cdots + r_n)/n$

Average vs Accumulated Rewards



7/30

Rewards and Values

Suppose the agent receives a sequence of rewards $r_1, r_2, r_3, r_4, \ldots$ in time.

• discounted return $V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$ γ is the discount factor $0 \le \gamma \le 1$.

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$$
=

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$$

= $r_1 + \gamma (r_2 + \gamma (r_3 + \gamma (r_4 + \dots)))$

• If V_t is the value obtained from time step t

$$V_t =$$

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$$

= $r_1 + \gamma (r_2 + \gamma (r_3 + \gamma (r_4 + \dots)))$

• If V_t is the value obtained from time step t

$$V_t = r_t + \gamma V_{t+1}$$

9/30

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots = r_1 + \gamma (r_2 + \gamma (r_3 + \gamma (r_4 + \dots)))$$

• If V_t is the value obtained from time step t

$$V_t = r_t + \gamma V_{t+1}$$

 How is the infinite future valued compared to immediate rewards?

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots = r_1 + \gamma (r_2 + \gamma (r_3 + \gamma (r_4 + \dots)))$$

• If V_t is the value obtained from time step t

$$V_t = r_t + \gamma V_{t+1}$$

 How is the infinite future valued compared to immediate rewards?

$$1 + \gamma + \gamma^2 + \gamma^3 + \dots = 1/(1 - \gamma)$$
Therefore $\frac{\text{minimum reward}}{1 - \gamma} \leq V_t \leq \frac{\text{maximum reward}}{1 - \gamma}$

• We can approximate V with the first k terms, with error:

$$V - (r_1 + \gamma r_2 + \cdots + \gamma^{k-1} r_k) = \gamma^k V_{k+1}$$

World State

- The world state is the information such that if the agent knew the world state, no information about the past is relevant to the future. Markovian assumption.
- S_i is state at time i, and A_i is the action at time i:

$$P(S_{t+1} | S_0, A_0, \dots, S_t, A_t) =$$

World State

- The world state is the information such that if the agent knew the world state, no information about the past is relevant to the future. Markovian assumption.
- S_i is state at time i, and A_i is the action at time i:

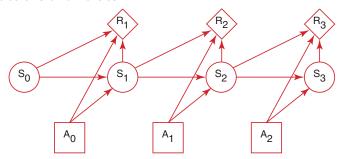
$$P(S_{t+1} \mid S_0, A_0, \dots, S_t, A_t) = P(S_{t+1} \mid S_t, A_t)$$

 $P(s' \mid s, a)$ is the probability that the agent will be in state s' immediately after doing action a in state s.

• The dynamics is stationary if the distribution is the same for each time point.

Decision Processes

 A Markov decision process augments a Markov chain with actions and values:



- set S of states.
- set A of actions.

- set *S* of states.
- set A of actions.
- $P(S_{t+1} \mid S_t, A_t)$ specifies the dynamics.

- set *S* of states.
- set A of actions.
- $P(S_{t+1} \mid S_t, A_t)$ specifies the dynamics.
- $R(S_t, A_t, S_{t+1})$ specifies the reward at time t. R(s, a, s') is the expected reward received when the agent is in state s, does action a and ends up in state s'.

- set S of states.
- set A of actions.
- $P(S_{t+1} \mid S_t, A_t)$ specifies the dynamics.
- $R(S_t, A_t, S_{t+1})$ specifies the reward at time t. R(s, a, s') is the expected reward received when the agent is in state s, does action a and ends up in state s'. Sometimes we use

$$R(s,a) = \sum_{s'} P(s' \mid s,a) R(s,a,s')$$

An MDP consists of:

- set S of states.
- set A of actions.
- $P(S_{t+1} \mid S_t, A_t)$ specifies the dynamics.
- $R(S_t, A_t, S_{t+1})$ specifies the reward at time t. R(s, a, s') is the expected reward received when the agent is in state s, does action a and ends up in state s'. Sometimes we use

$$R(s,a) = \sum_{s'} P(s' \mid s,a) R(s,a,s')$$

ullet γ is discount factor.

Each week Sam has to decide whether to exercise or not:

```
• States: {fit, unfit}
```

- Actions: { exercise, relax}
- Dynamics:

Each week Sam has to decide whether to exercise or not:

- States: {fit, unfit}
- Actions: { exercise, relax }
- Dynamics:

		P(fit State, Action)
fit	exercise	0.99
fit	relax	0.7
unfit	exercise	0.2
unfit	exercise relax exercise relax	0.0

Each week Sam has to decide whether to exercise or not:

- States: {fit, unfit}
- Actions: { exercise, relax }
- Dynamics:

		P(fit State, Action)
fit	exercise	0.99
fit	relax	0.7
unfit	exercise	0.2
unfit	exercise relax exercise relax	0.0

Reward

Each week Sam has to decide whether to exercise or not:

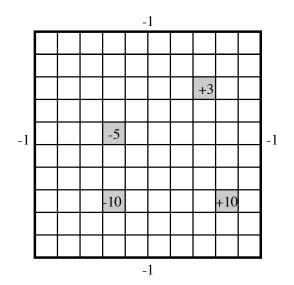
- States: {fit, unfit}
- Actions: { exercise, relax }
- Dynamics:

		P(fit State, Action)	
fit	exercise	0.99	
fit	relax	0.7	
unfit	exercise	0.2	
unfit	exercise relax exercise relax	0.0	

• Reward (does not depend on resulting state):

	•		_	,
	State	Action	Reward	
•	fit	exercise	8	
	fit	relax	10	
	unfit	exercise	0	
	unfit	relax	5	

Example: Simple Grid World



Grid World Model

- Actions: up, down, left, right.
- 100 states corresponding to the positions of the robot.
- Robot goes in the commanded direction with probability 0.7, and one of the other directions with probability 0.1.
- If it crashes into an outside wall, it remains in its current position and has a reward of -1.
- Four special rewarding states; the agent gets the reward when leaving.

Planning Horizons

The planning horizon is how far ahead the planner looks to make a decision.

- The robot gets flung to one of the corners at random after leaving a positive (+10 or +3) reward state.
 - the process never halts
 - ▶ infinite horizon

Planning Horizons

The planning horizon is how far ahead the planner looks to make a decision.

- The robot gets flung to one of the corners at random after leaving a positive (+10 or +3) reward state.
 - the process never halts
 - ▶ infinite horizon
- The robot gets +10 or +3 in the state, then it stays there getting no reward. These are absorbing states.
 - ▶ The robot will eventually reach an absorbing state.
 - indefinite horizon

Information Availability

What information is available when the agent decides what to do?

• fully-observable MDP the agent gets to observe S_t when deciding on action A_t .

Information Availability

What information is available when the agent decides what to do?

- fully-observable MDP the agent gets to observe S_t when deciding on action A_t .
- partially-observable MDP (POMDP) the agent has some noisy sensor of the state. It is a mix of a hidden Markov model and MDP. It needs to remember (some function of) its sensing and acting history.

Information Availability

What information is available when the agent decides what to do?

- fully-observable MDP the agent gets to observe S_t when deciding on action A_t .
- partially-observable MDP (POMDP) the agent has some noisy sensor of the state. It is a mix of a hidden Markov model and MDP. It needs to remember (some function of) its sensing and acting history.

[This lecture only considers FOMDPs]

Policies

• A stationary policy is a function:

$$\pi: S \to A$$

Given a state s, $\pi(s)$ specifies what action the agent who is following π will do.

Policies

• A stationary policy is a function:

$$\pi: S \to A$$

Given a state s, $\pi(s)$ specifies what action the agent who is following π will do.

 An optimal policy is one with maximum expected discounted reward.

Policies

• A stationary policy is a function:

$$\pi: S \to A$$

Given a state s, $\pi(s)$ specifies what action the agent who is following π will do.

- An optimal policy is one with maximum expected discounted reward.
- For a fully-observable MDP with stationary dynamics and rewards with infinite or indefinite horizon, there is always an optimal stationary policy.

Example: to exercise or not?

Each week Sam has to decide whether to exercise or not:

- States: { fit, unfit }
- Actions: { exercise, relax }

How many stationary policies are there?

Example: to exercise or not?

Each week Sam has to decide whether to exercise or not:

- States: {fit, unfit}
- Actions: {exercise, relax}

How many stationary policies are there?

What are they?

Example: to exercise or not?

Each week Sam has to decide whether to exercise or not:

- States: {fit, unfit}
- Actions: { exercise, relax }

How many stationary policies are there? What are they?

For the grid world with 100 states and 4 actions, how many stationary policies are there?

Value of a Policy

Given a policy π :

• $Q^{\pi}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following policy π .

Value of a Policy

Given a policy π :

- $Q^{\pi}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following policy π .
- $V^{\pi}(s)$, where s is a state, is the expected value of following policy π in state s.

Value of a Policy

Given a policy π :

- $Q^{\pi}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following policy π .
- $V^{\pi}(s)$, where s is a state, is the expected value of following policy π in state s.
- Q^{π} and V^{π} can be defined mutually recursively:

$$Q^{\pi}(s,a) = V^{\pi}(s) =$$

Q, V, π, R

$$egin{aligned} Q^{\pi}(s,a) &= \sum_{s'} P(s' \mid a,s) \left(R(s,a,s') + \gamma V^{\pi}(s')
ight) \ &= R(s,a) + \gamma \sum_{s'} P(s' \mid a,s) V^{\pi}(s') \ V^{\pi}(s) &= Q^{\pi}(s,\pi(a)) \end{aligned}$$

where

$$R(s,a) = \sum_{s'} P(s' \mid a,s) R(s,a,s')$$

21/30

Value of the Optimal Policy

• $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.

Value of the Optimal Policy

- Q*(s, a), where a is an action and s is a state, is the
 expected value of doing a in state s, then following the
 optimal policy.
- V*(s), where s is a state, is the expected value of following the optimal policy in state s.

Value of the Optimal Policy

- $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- V*(s), where s is a state, is the expected value of following the optimal policy in state s.
- Q^* and V^* can be defined mutually recursively:

$$Q^*(s, a) = V^*(s) = \pi^*(s) =$$

Q, V, π, R

$$Q^{*}(s, a) = \sum_{s'} P(s' \mid a, s) (R(s, a, s') + \gamma V^{*}(s'))$$

$$= R(s, a) + \gamma \sum_{s'} P(s' \mid a, s) V^{*}(s')$$

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$\pi^{*}(s) = argmax_{a}Q^{*}(s, a)$$

where

$$R(s,a) = \sum_{s'} P(s' \mid a,s) R(s,a,s')$$

23 / 30

• Let V_k and Q_k be k-step lookahead value and Q functions.

- Let V_k and Q_k be k-step lookahead value and Q functions.
- Idea: Given an estimate of the k-step lookahead value function, determine the k+1 step lookahead value function.

- Let V_k and Q_k be k-step lookahead value and Q functions.
- Idea: Given an estimate of the k-step lookahead value function, determine the k+1 step lookahead value function.
- Set V_0 arbitrarily.

- Let V_k and Q_k be k-step lookahead value and Q functions.
- Idea: Given an estimate of the k-step lookahead value function, determine the k+1 step lookahead value function.
- Set V_0 arbitrarily.
- Compute Q_{i+1} , V_{i+1} from V_i .

- Let V_k and Q_k be k-step lookahead value and Q functions.
- Idea: Given an estimate of the k-step lookahead value function, determine the k+1 step lookahead value function.
- Set V_0 arbitrarily.
- Compute Q_{i+1} , V_{i+1} from V_i .
- This converges exponentially fast (in k) to the optimal value function.

- Let V_k and Q_k be k-step lookahead value and Q functions.
- Idea: Given an estimate of the k-step lookahead value function, determine the k+1 step lookahead value function.
- Set V_0 arbitrarily.
- Compute Q_{i+1} , V_{i+1} from V_i .
- This converges exponentially fast (in *k*) to the optimal value function.

The error reduces proportionally to $\frac{\gamma^k}{1-\gamma}$

 The agent doesn't need to sweep through all the states, but can update the value functions for each state individually.

- The agent doesn't need to sweep through all the states, but can update the value functions for each state individually.
- This converges to the optimal value functions, if

- The agent doesn't need to sweep through all the states, but can update the value functions for each state individually.
- This converges to the optimal value functions, if each state and action is visited infinitely often in the limit.

- The agent doesn't need to sweep through all the states, but can update the value functions for each state individually.
- This converges to the optimal value functions, if each state and action is visited infinitely often in the limit.
- It can either store V[s] or Q[s, a].

Asynchronous VI: storing V[s]

- Repeat forever:
 - ► Select state *s*
 - V[s] ←

Asynchronous VI: storing V[s]

- Repeat forever:
 - ► Select state s

$$V[s] \leftarrow \max_{a} \left(R(s, a) + \gamma \sum_{s'} P(s' \mid s, a) V[s'] \right)$$

Asynchronous VI: storing Q[s, a]

- Repeat forever:
 - ► Select state s, action a
 - $ightharpoonup Q[s,a] \leftarrow$

Asynchronous VI: storing Q[s, a]

- Repeat forever:
 - ► Select state s, action a

$$P[s,a] \leftarrow R(s,a) + \gamma \sum_{s'} P(s' \mid s,a) \left(\max_{a'} Q[s',a'] \right)$$

Policy Iteration

- Set π_0 arbitrarily, let i=0
- Repeat:
 - ightharpoonup evaluate $Q^{\pi_i}(s,a)$
 - $\blacktriangleright \text{ let } \pi_{i+1}(s) = \operatorname{argmax}_{a} Q^{\pi_{i}}(s, a)$
 - ▶ set i = i + 1
- until $\pi_i(s) = \pi_{i-1}(s)$

Policy Iteration

- Set π_0 arbitrarily, let i=0
- Repeat:
 - ightharpoonup evaluate $Q^{\pi_i}(s,a)$
 - $\blacktriangleright \text{ let } \pi_{i+1}(s) = \operatorname{argmax}_{a} Q^{\pi_{i}}(s, a)$
 - ▶ set i = i + 1
- until $\pi_i(s) = \pi_{i-1}(s)$

Evaluating $Q^{\pi_i}(s,a)$ means finding a solution to a set of $|S| \times |A|$ linear equations with $|S| \times |A|$ unknowns.

It can also be approximated iteratively.

Modified Policy Iteration

Set $\pi[s]$ arbitrarily Set Q[s, a] arbitrarily Repeat forever:

- Repeat for a while:
 - ► Select state s, action a
- $\pi[s] \leftarrow argmax_aQ[s, a]$

Q, V, π, R

$$Q^{*}(s, a) = \sum_{s'} P(s' \mid a, s) (R(s, a, s') + \gamma V^{*}(s'))$$

$$= R(s, a) + \gamma \sum_{s'} P(s' \mid a, s) V^{*}(s')$$

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$\pi^{*}(s) = argmax_{a}Q^{*}(s, a)$$

where

$$R(s,a) = \sum_{s'} P(s' \mid a,s) R(s,a,s')$$

30 / 30