
Making Decisions Under Uncertainty

What an agent should do depends on:

The agent’s ability — what options are available to it.

The agent’s beliefs — the ways the world could be, given the
agent’s knowledge.
Sensing updates the agent’s beliefs.

The agent’s preferences — what the agent wants and
tradeoffs when there are risks.

Decision theory specifies how to trade off the desirability and
probabilities of the possible outcomes for competing actions.
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Decision Variables

Decision variables are like random variables that an agent gets
to choose a value for.

A possible world specifies a value for each decision variable
and each random variable.

For each assignment of values to all decision variables, there is
a probability distribution over random variables.

The probability of a proposition is undefined unless the agent
conditions on the values of all decision variables.
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Decision Tree for Delivery Robot

The robot can choose to wear pads to protect itself or not.
The robot can choose to go the short way past the stairs or a long
way that reduces the chance of an accident.
There is one random variable of whether there is an accident.

wear pads

don’t 
wear 
pads

short way

long way

short way

long way

accident

no accident

accident

no accident

accident

no accident
accident

no accident

w0 - moderate damage

w2 - moderate damage

w4 - severe damage

w6 - severe damage

w1 - quick, extra weight

w3 - slow, extra weight

w5 - quick, no weight

w7 - slow, no weight

Square boxes represent decisions that the robot can make. Circles
represent random variables that the robot can’t observe before
making its decision.
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Single decisions

Single decisions: agent makes all decisions before acting

The agent can choose a value for each decision variable

Lets combine all decision variables into a single variable D

The expected utility of decision D = di is

E(u | D = di ) =
∑
ω∈Ω

P(ω | D = di )× u(ω)

where u(·) is the utility function Ω is the set of all worlds

An optimal single decision is a decision D = dmax whose
expected utility is maximal:

E(u | D = dmax) = max
di∈domain(D)

E(u | D = di ).
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Single-stage decision networks

Extend belief networks with:

Decision nodes that the agent chooses the value for.
Domain is the set of possible actions. Drawn as rectangle.

Utility node, whose parents are the variables on which the
utility depends. Drawn as a diamond.

Which Way
Accident

Utility

Wear Pads

This shows explicitly which nodes affect whether there is an
accident.
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Single-stage decision networks

A single-stage decision network consists of:

DAG with three sorts of nodes: decision, random, utility.
Random nodes are the same as the nodes in a belief network.

A domain for each decision variable and each random variable.

A unique utility node.
The utility node has no children and no domain.

A single-stage decision network has the factors:

A utility function is a factor on the parents of the utility node

A conditional probability for each random variable given its
parents

(No tables associated with the decision nodes.)
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Finding an optimal decision

Suppose the random variables are X1, . . . ,Xn, and
utility depends on Xi1 , . . . ,Xik

E(u | D) =

∑
X1,...,Xn

P(X1, . . . ,Xn | D)× u(Xi1 , . . . ,Xik )

=
∑

X1,...,Xn

n∏
i=1

P(Xi | parents(Xi ))× u(Xi1 , . . . ,Xik )

To find an optimal decision:
I Create a factor for each conditional probability and for the

utility
I Sum out all of the random variables
I This creates a factor on D that gives the expected utility for

each value in the domain of D
I Choose the D with the maximum value in the factor.
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Example Initial Factors

Which Way Accident Value

long true 0.01
long false 0.99
short true 0.2
short false 0.8

Which Way Accident Wear Pads Value

long true true 30
long true false 0
long false true 75
long false false 80
short true true 35
short true false 3
short false true 95
short false false 100
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After summing out Accident

Which Way Wear Pads Value

long true 74.55
long false 79.2
short true 83.0
short false 80.6
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Decision Networks

flat or modular or hierarchical

explicit states or features or individuals and relations

static or finite stage or indefinite stage or infinite stage

fully observable or partially observable

deterministic or stochastic dynamics

goals or complex preferences

single agent or multiple agents

knowledge is given or knowledge is learned

perfect rationality or bounded rationality
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Sequential Decisions

An intelligent agent doesn’t carry out a multi-step plan
ignoring information it receives between actions.

A more typical scenario is where the agent:
observes, acts, observes, acts, . . .

Subsequent actions can depend on what is observed.
What is observed depends on previous actions.

Often the sole reason for carrying out an action is to provide
information for future actions.
For example: diagnostic tests, spying.
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Sequential decision problems

A sequential decision problem consists of a sequence of
decision variables D1, . . . ,Dn.

Each Di has an information set of variables parents(Di ),
whose value will be known at the time decision Di is made.
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Decisions Networks

A decision network is a graphical representation of a finite
sequential decision problem, with 3 types of nodes:

A random variable is drawn as an
ellipse. Arcs into the node represent
probabilistic dependence.

A decision variable is drawn as an
rectangle. Arcs into the node
represent information available when
the decision is make.

A utility node is drawn as a diamond.
Arcs into the node represent variables
that the utility depends on.
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Umbrella Decision Network

Umbrella

Weather

UtilityForecast

The agent has to decide whether to take its umbrella.

It observes

the forecast.

It doesn’t observe the weather directly.

The forecast is a noisy sensor of the weather.

The utility depends on the weather and whether the agent
takes the umbrella.
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Decision Network for the Alarm Problem

Tampering Fire

Alarm

Leaving

Report

Smoke

SeeSmokeCheck
Smoke

Call

Utility
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No-forgetting

A No-forgetting decision network is a decision network where:

The decision nodes are totally ordered. This is the order the
actions will be taken.

All decision nodes that come before Di are parents of decision
node Di . Thus the agent remembers its previous actions.

Any parent of a decision node is a parent of subsequent
decision nodes. Thus the agent remembers its previous
observations.
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What should an agent do?

What an agent should do at any time depends on what it will
do in the future.

What an agent does in the future depends on what it did
before.
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Policies

A decision function for decision node Di is a function πi that
specifies what the agent does for each assignment of values to
the parents of Di .
When it observes O, it does πi (O).

A policy is a sequence of decision functions; one for each
decision node.
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Umbrella Decision Network

Umbrella

Weather

UtilityForecast

domain(Forecast) = {sunny , cloudy , rainy}
domain(Umbbrella) = {take, leave}
Some policies:

take if cloudy else leave

always take

always leave

There are

23 = 8

policies
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Decision Network for the Alarm Problem

Tampering Fire

Alarm

Leaving

Report

Smoke

SeeSmokeCheck
Smoke

Call

Utility

All variables are Boolean. Some policies:

Never check. Call iff report.

Check iff report. Call iff report and see smoke.

Always check. Always call.

There are

22 ∗ 28 = 1024

policies.
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Expected Utility of a Policy

Possible world ω satisfies policy π if ω assigns the value to
each decision node that the policy specifies.

The expected utility of policy π is

E(u | π) =
∑

ω satisfies π

u(ω)× P(ω)

An optimal policy is one with the highest expected utility.
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Finding an optimal policy

Create a factor for each conditional probability table and a
factor for the utility.

Repeat:
I Sum out random variables that are not parents of a decision

node.
I Let D be last variable

— D is only in a factor f with (some of) its parents.
I Eliminate D by maximizing. This returns:

I an optimal decision function for D: argmaxD f
I a new factor: maxD f

until there are no more decision nodes.

Sum out the remaining random variables. Multiply the
factors: this is the expected utility of an optimal policy.
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Initial factors for the Umbrella Decision

Weather Value

norain 0.7
rain 0.3

Weather Fcast Value

norain sunny 0.7
norain cloudy 0.2
norain rainy 0.1
rain sunny 0.15
rain cloudy 0.25
rain rainy 0.6

Weather Umb Value

norain take 20
norain leave 100
rain take 70
rain leave 0
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Eliminating By Maximizing

f :

Fcast Umb Val

sunny take 12.95
sunny leave 49.0
cloudy take 8.05
cloudy leave 14.0
rainy take 14.0
rainy leave 7.0

maxUmb f :

Fcast Val

sunny 49.0
cloudy 14.0
rainy 14.0

arg maxUmb f :

Fcast Umb

sunny leave
cloudy leave
rainy take
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Exercise

Disease

Symptoms

Test Result
Test

Treatment

Utility

Outcome

What are the factors?

Which random variables get summed out first?
Which decision variable is eliminated? What factor is created?
Then what is eliminated (and how)?
What factors are created after maximization?
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Complexity of finding an optimal policy

Decision D has k binary parents, and has b possible actions:

there are

2k

assignments of values to the parents.

there are

b2k

different decision functions.

To optimize D, the algorithm does

2k

optimizations.
The time complexity to optimize D is O(

b ∗ 2k

).

If the decision variables are Di , . . . ,Dn and decision Di has ki
binary parents and bi possible actions:

there are

n∏
i=1

b2ki
i

policies.

optimizing in the variable elimination algorithm takes

O

(

n∑
i=1

bi ∗ 2ki

)
time

The dynamic programming algorithm is much more efficient
than searching through policy space.
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Value of Information

The value of information X for decision D is the utility of the
network with an arc from X to D (+ no-forgetting arcs)
minus the utility of the network without the arc.

The value of information is always

non-negative.

It is positive only if the agent changes its action depending on
X .

The value of information provides a bound on how much an
agent should be prepared to pay for a sensor. How much is a
better weather forecast worth?

We need to be careful when adding an arc would create a
cycle. E.g., how much would it be worth knowing whether the
fire truck will arrive quickly when deciding whether to call
them?
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Value of Control

The value of control of a variable X is the value of the network
when X is a decision variable (and add no-forgetting arcs)
minus the value of the network when X is a random variable.

You need to be explicit about what information is available
when you control X .

If you control X without observing, controlling X can be
worse than observing X . E.g., controlling a thermometer.

If you keep the parents the same, the value of control is
always non-negative.
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