Goals and Preferences

Alice ... went on "Would you please tell me, please, which way I ought to go from here?"
"That depends a good deal on where you want to get to," said the Cat.
"I don't much care where --" said Alice.
"Then it doesn't matter which way you go," said the Cat.
Lewis Carroll, 1832-1898
Alice's Adventures in Wonderland, 1865
Chapter 6

Learning Objectives

At the end of the class you should be able to:

- justify the use and semantics of utility
- estimate the utility of an outcome
- build a decision network for a domain
- compute the optimal policy of a decision network

Preferences

- Actions result in outcomes
- Agents have preferences over outcomes

Preferences

- Actions result in outcomes
- Agents have preferences over outcomes
- A rational agent will do the action that has the best outcome for them

Preferences

- Actions result in outcomes
- Agents have preferences over outcomes
- A rational agent will do the action that has the best outcome for them
- Sometimes agents don't know the outcomes of the actions, but they still need to compare actions
- Agents have to act.
(Doing nothing is (often) an action).

Preferences Over Outcomes

If o_{1} and o_{2} are outcomes

- $o_{1} \succeq o_{2}$ means o_{1} is at least as desirable as o_{2}.
- $o_{1} \sim o_{2}$ means $o_{1} \succeq o_{2}$ and $o_{2} \succeq o_{1}$.
- $o_{1} \succ o_{2}$ means $o_{1} \succeq o_{2}$ and $o_{2} \nsucceq o_{1}$

Lotteries

- An agent may not know the outcomes of its actions, but only have a probability distribution of the outcomes.
- A lottery is a probability distribution over outcomes. It is written

$$
\left[p_{1}: o_{1}, p_{2}: o_{2}, \ldots, p_{k}: o_{k}\right]
$$

where the o_{i} are outcomes and $p_{i} \geq 0$ such that

$$
\sum_{i} p_{i}=1
$$

The lottery specifies that outcome o_{i} occurs with probability p_{i}.

- When we talk about outcomes, we will include lotteries.

Properties of Preferences

- Completeness: Agents have to act, so they must have preferences:

$$
\forall o_{1} \forall o_{2} o_{1} \succeq o_{2} \text { or } o_{2} \succeq o_{1}
$$

Properties of Preferences

- Completeness: Agents have to act, so they must have preferences:

$$
\forall o_{1} \forall o_{2} o_{1} \succeq o_{2} \text { or } o_{2} \succeq o_{1}
$$

- Transitivity: Preferences must be transitive:

$$
\text { if } o_{1} \succeq o_{2} \text { and } o_{2} \succ o_{3} \text { then } o_{1} \succ o_{3}
$$

(Similarly for other mixtures of \succ and \succeq.)

Properties of Preferences

- Completeness: Agents have to act, so they must have preferences:

$$
\forall o_{1} \forall o_{2} o_{1} \succeq o_{2} \text { or } o_{2} \succeq o_{1}
$$

- Transitivity: Preferences must be transitive:

$$
\text { if } o_{1} \succeq o_{2} \text { and } o_{2} \succ o_{3} \text { then } o_{1} \succ o_{3}
$$

(Similarly for other mixtures of \succ and \succeq.)
Rationale: otherwise $o_{1} \succeq o_{2}$ and $o_{2} \succ o_{3}$ and $o_{3} \succeq o_{1}$.
If they are prepared to pay to get o_{2} instead of o_{3}, and are happy to have o_{1} instead of o_{2}, and are happy to have o_{3} instead of o_{1}
\longrightarrow money pump.

Properties of Preferences (cont.)

Monotonicity: An agent prefers a larger chance of getting a better outcome than a smaller chance:

- If $o_{1} \succ o_{2}$ and $p>q$ then

$$
\left[p: o_{1}, 1-p: o_{2}\right] \succ\left[q: o_{1}, 1-q: o_{2}\right]
$$

Consequence of axioms

- Suppose $o_{1} \succ o_{2}$ and $o_{2} \succ o_{3}$. Consider whether the agent would prefer
$-\mathrm{O}_{2}$
- the lottery $\left[p: o_{1}, 1-p: o_{3}\right]$
for different values of $p \in[0,1]$.
- Plot which one is preferred as a function of p :

$o_{2}-$		
lottery -		
	0	1

Properties of Preferences (cont.)

Continuity: Suppose $o_{1} \succ o_{2}$ and $o_{2} \succ o_{3}$, then there exists a $p \in[0,1]$ such that

$$
o_{2} \sim\left[p: o_{1}, 1-p: o_{3}\right]
$$

Properties of Preferences (cont.)

Decomposability: (no fun in gambling). An agent is indifferent between lotteries that have same probabilities and outcomes. This includes lotteries over lotteries. For example:

$$
\begin{aligned}
& {\left[p: o_{1}, 1-p:\left[q: o_{2}, 1-q: o_{3}\right]\right]} \\
& \quad \sim\left[p: o_{1},(1-p) q: o_{2},(1-p)(1-q): o_{3}\right]
\end{aligned}
$$

Properties of Preferences (cont.)

Substitutability: if $o_{1} \sim o_{2}$ then the agent is indifferent between lotteries that only differ by o_{1} and o_{2} :

$$
\left[p: o_{1}, 1-p: o_{3}\right] \sim\left[p: o_{2}, 1-p: o_{3}\right]
$$

Alternative Axiom for Substitutability

Substitutability: if $o_{1} \succeq o_{2}$ then the agent weakly prefers lotteries that contain o_{1} instead of o_{2}, everything else being equal.
That is, for any number p and outcome o_{3} :

$$
\left[p: o_{1},(1-p): o_{3}\right] \succeq\left[p: o_{2},(1-p): o_{3}\right]
$$

What we would like

- We would like a measure of preference that can be combined with probabilities. So that

$$
\begin{aligned}
& \text { value }\left(\left[p: o_{1}, 1-p: o_{2}\right]\right) \\
& \quad=p \times \operatorname{value}\left(o_{1}\right)+(1-p) \times \operatorname{value}\left(o_{2}\right)
\end{aligned}
$$

- Money does not act like this.

What would you prefer

$$
\$ 1,000,000 \text { or }[0.5: \$ 0,0.5: \$ 2,000,000] ?
$$

What we would like

- We would like a measure of preference that can be combined with probabilities. So that

$$
\begin{aligned}
& \text { value }\left(\left[p: o_{1}, 1-p: o_{2}\right]\right) \\
& \quad=p \times \operatorname{value}\left(o_{1}\right)+(1-p) \times \operatorname{value}\left(o_{2}\right)
\end{aligned}
$$

- Money does not act like this.

What would you prefer

$$
\$ 1,000,000 \text { or }[0.5: \$ 0,0.5: \$ 2,000,000] ?
$$

- It may seem that preferences are too complex and muti-faceted to be represented by single numbers.

If preferences follow the preceding properties, then preferences can be measured by a function

$$
\text { utility : outcomes } \rightarrow[0,1]
$$

such that

- $o_{1} \succeq o_{2}$ if and only if utility $\left(o_{1}\right) \geq u$ uility $(o 2)$.
- Utilities are linear with probabilities:

$$
\begin{aligned}
& \text { utility }\left(\left[p_{1}: o_{1}, p_{2}: o_{2}, \ldots, p_{k}: o_{k}\right]\right) \\
& =\sum_{i=1}^{k} p_{i} \times \operatorname{utility}\left(o_{i}\right)
\end{aligned}
$$

Proof

- If all outcomes are equally preferred,

Proof

- If all outcomes are equally preferred, set utility $\left(o_{i}\right)=0$ for all outcomes o_{i}.
- Otherwise, suppose the best outcome is best and the worst outcome is worst.
- For any outcome o_{i}, define utility $\left(o_{i}\right)$ to be the number u_{i} such that

$$
o_{i} \sim\left[u_{i}: \text { best }, 1-u_{i}: \text { worst }\right]
$$

This exists by

Proof

- If all outcomes are equally preferred, set utility $\left(o_{i}\right)=0$ for all outcomes o_{i}.
- Otherwise, suppose the best outcome is best and the worst outcome is worst.
- For any outcome o_{i}, define utility $\left(o_{i}\right)$ to be the number u_{i} such that

$$
o_{i} \sim\left[u_{i}: \text { best }, 1-u_{i}: \text { worst }\right]
$$

This exists by the Continuity property.

Proof (cont.)

- Suppose $o_{1} \succeq o_{2}$ and utility $\left(o_{i}\right)=u_{i}$, then by Substitutability,

$$
\begin{aligned}
& {\left[u_{1}: \text { best, } 1-u_{1}: \text { worst }\right]} \\
& \quad \succeq
\end{aligned}
$$

Proof (cont.)

- Suppose $o_{1} \succeq o_{2}$ and $\operatorname{utility}\left(o_{i}\right)=u_{i}$, then by Substitutability,

$$
\begin{aligned}
& {\left[u_{1}: \text { best }, 1-u_{1}: \text { worst }\right]} \\
& \quad \succeq\left[u_{2}: \text { best }, 1-u_{2}: \text { worst }\right]
\end{aligned}
$$

Which, by completeness and monotonicity implies

Proof (cont.)

- Suppose $o_{1} \succeq o_{2}$ and $\operatorname{utility}\left(o_{i}\right)=u_{i}$, then by Substitutability,

$$
\begin{aligned}
& {\left[u_{1}: \text { best }, 1-u_{1}: \text { worst }\right]} \\
& \quad \succeq\left[u_{2}: \text { best }, 1-u_{2}: \text { worst }\right]
\end{aligned}
$$

Which, by completeness and monotonicity implies $u_{1} \geq u_{2}$.

Proof (cont.)

- Suppose $p=\operatorname{utility}\left(\left[p_{1}: o_{1}, p_{2}: o_{2}, \ldots, p_{k}: o_{k}\right]\right)$.
- Suppose utility $\left(o_{i}\right)=u_{i}$. We know:

$$
o_{i} \sim\left[u_{i}: \text { best, } 1-u_{i}: \text { worst }\right]
$$

- By substitutability, we can replace each o_{i} by

$$
\left[u_{i}: \text { best }, 1-u_{i}: \text { worst }\right] \text {, so }
$$

$$
p=\text { utility }\left(\left[\quad p_{1}:\left[u_{1}: \text { best }, 1-u_{1}: \text { worst }\right]\right.\right.
$$

$$
\left.\left.p_{k}:\left[u_{k}: \text { best }, 1-u_{k}: \text { worst }\right]\right]\right)
$$

- By decomposability, this is equivalent to:

$$
\begin{gathered}
p=\operatorname{utility}\left(\quad \left[\quad p_{1} u_{1}+\cdots+p_{k} u_{k}\right.\right. \\
: \text { best } \\
p_{1}\left(1-u_{1}\right)+\cdots+p_{k}\left(1-u_{k}\right) \\
: \text { worst }]])
\end{gathered}
$$

- Thus, by definition of utility,

$$
p=p_{1} \times u_{1}+\cdots+p_{k} \times u_{k}
$$

Utility as a function of money

Possible utility as a function of money

Someone who really wants a toy worth $\$ 30$, but who would also like one worth $\$ 20$:

Factored Representation of Utility

- Suppose the outcomes can be described in terms of features X_{1}, \ldots, X_{n}.
- An additive utility is one that can be decomposed into set of factors:

$$
u\left(X_{1}, \ldots, X_{n}\right)=f_{1}\left(X_{1}\right)+\cdots+f_{n}\left(X_{n}\right)
$$

This assumes additive independence.

Factored Representation of Utility

- Suppose the outcomes can be described in terms of features X_{1}, \ldots, X_{n}.
- An additive utility is one that can be decomposed into set of factors:

$$
u\left(X_{1}, \ldots, X_{n}\right)=f_{1}\left(X_{1}\right)+\cdots+f_{n}\left(X_{n}\right)
$$

This assumes additive independence.

- Strong assumption: contribution of each feature doesn't depend on other features.
- Many ways to represent the same utility:

Factored Representation of Utility

- Suppose the outcomes can be described in terms of features X_{1}, \ldots, X_{n}.
- An additive utility is one that can be decomposed into set of factors:

$$
u\left(X_{1}, \ldots, X_{n}\right)=f_{1}\left(X_{1}\right)+\cdots+f_{n}\left(X_{n}\right)
$$

This assumes additive independence.

- Strong assumption: contribution of each feature doesn't depend on other features.
- Many ways to represent the same utility:
- a number can be added to one factor as long as it is subtracted from others.

Additive Utility

- An additive utility has a canonical representation:

$$
u\left(X_{1}, \ldots, X_{n}\right)=w_{1} \times u_{1}\left(X_{1}\right)+\cdots+w_{n} \times u_{n}\left(X_{n}\right)
$$

- If best $_{i}$ is the best value of $X_{i}, u_{i}\left(X_{i}=\right.$ best $\left._{i}\right)=1$. If worst $_{i}$ is the worst value of $X_{i}, u_{i}\left(X_{i}=\right.$ worst $\left._{i}\right)=0$.
- w_{i} are weights, $\sum_{i} w_{i}=1$.

The weights reflect the relative importance of features.

- We can determine weights by comparing outcomes.

$$
w_{1}=
$$

Additive Utility

- An additive utility has a canonical representation:

$$
u\left(X_{1}, \ldots, X_{n}\right)=w_{1} \times u_{1}\left(X_{1}\right)+\cdots+w_{n} \times u_{n}\left(X_{n}\right)
$$

- If best $_{i}$ is the best value of $X_{i}, u_{i}\left(X_{i}=\right.$ best $\left._{i}\right)=1$. If worst $_{i}$ is the worst value of $X_{i}, u_{i}\left(X_{i}=\right.$ worst $\left._{i}\right)=0$.
- w_{i} are weights, $\sum_{i} w_{i}=1$.

The weights reflect the relative importance of features.

- We can determine weights by comparing outcomes.

$$
w_{1}=u\left(\text { best }_{1}, x_{2}, \ldots, x_{n}\right)-u\left(\text { worst }_{1}, x_{2}, \ldots, x_{n}\right)
$$

for any values x_{2}, \ldots, x_{n} of X_{2}, \ldots, X_{n}.

General Setup for Additive Utility

Suppose there are:

- multiple users
- multiple alternatives to choose among, e.g., hotel1,...
- multiple criteria upon which to judge, e.g., rate, location
- utility is a function of

General Setup for Additive Utility

Suppose there are:

- multiple users
- multiple alternatives to choose among, e.g., hotel1,...
- multiple criteria upon which to judge, e.g., rate, location
- utility is a function of users and alternatives

General Setup for Additive Utility

Suppose there are:

- multiple users
- multiple alternatives to choose among, e.g., hotel $1, \ldots$
- multiple criteria upon which to judge, e.g., rate, location
- utility is a function of users and alternatives
- fact(crit, alt) is the fact about the domain value of criteria crit for alternative alt.
E.g., fact(rate, hotel1) is the room rate for hotel\#1, which is $\$ 125$ per night.

General Setup for Additive Utility

Suppose there are:

- multiple users
- multiple alternatives to choose among, e.g., hotel1,...
- multiple criteria upon which to judge, e.g., rate, location
- utility is a function of users and alternatives
- fact(crit, alt) is the fact about the domain value of criteria crit for alternative alt.
E.g., fact(rate, hotel1) is the room rate for hotel\#1, which is $\$ 125$ per night.
- score(val, user, crit) gives the score of the domain value for user on criteria crit.

General Setup for Additive Utility

Suppose there are:

- multiple users
- multiple alternatives to choose among, e.g., hotel1,...
- multiple criteria upon which to judge, e.g., rate, location
- utility is a function of users and alternatives
- fact(crit, alt) is the fact about the domain value of criteria crit for alternative alt.
E.g., fact(rate, hotel1) is the room rate for hotel\#1, which is $\$ 125$ per night.
- score(val, user, crit) gives the score of the domain value for user on criteria crit.

$$
\text { utility }(\text { user, alt })=\sum_{\text {crit }} \begin{aligned}
& \text { weight }(\text { user }, \text { crit }) \times \\
& \operatorname{score}(\text { fact }(c r i t, \text { alt }), \text { user, crit })
\end{aligned}
$$

for user, alternative alt, criteria crit

Complements and Substitutes

- Often additive independence is not a good assumption.
- Values x_{1} of feature X_{1} and x_{2} of feature X_{2} are complements if having both is better than the sum of the two.
- Values x_{1} of feature X_{1} and x_{2} of feature X_{2} are substitutes if having both is worse than the sum of the two.

Complements and Substitutes

- Often additive independence is not a good assumption.
- Values x_{1} of feature X_{1} and x_{2} of feature X_{2} are complements if having both is better than the sum of the two.
- Values x_{1} of feature X_{1} and x_{2} of feature X_{2} are substitutes if having both is worse than the sum of the two.
- Example: on a holiday
- An excursion for 6 hours North on day 3.
- An excursion for 6 hours South on day 3.

Complements and Substitutes

- Often additive independence is not a good assumption.
- Values x_{1} of feature X_{1} and x_{2} of feature X_{2} are complements if having both is better than the sum of the two.
- Values x_{1} of feature X_{1} and x_{2} of feature X_{2} are substitutes if having both is worse than the sum of the two.
- Example: on a holiday
- An excursion for 6 hours North on day 3.
- An excursion for 6 hours South on day 3.
- Example: on a holiday
- A trip to a location 3 hours North on day 3
- The return trip for the same day.

Generalized Additive Utility

- A generalized additive utility can be written as a sum of factors:

$$
u\left(X_{1}, \ldots, X_{n}\right)=f_{1}\left(\overline{X_{1}}\right)+\cdots+f_{k}\left(\overline{X_{k}}\right)
$$

where $\overline{X_{i}} \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$.

- An intuitive canonical representation is difficult to find.
- It can represent complements and substitutes.

Utility and time

- Would you prefer $\$ 1000$ today or $\$ 1000$ next year?
- What price would you pay now to have an eternity of happiness?
- How can you trade off pleasures today with pleasures in the future?

Pascal's Wager (1670)

Decide whether to believe in God.

Pascal's Wager (1670)

Decide whether to believe in God.

Utility and time

- How would you compare the following sequences of rewards (per week):

A: \$1000000, \$0, \$0, \$0, \$0, \$0,...
B: $\$ 1000, \$ 1000, \$ 1000, \$ 1000, \$ 1000, \ldots$
C: \$1000, \$0, \$0, \$0, \$0,...
D: $\$ 1, \$ 1, \$ 1, \$ 1, \$ 1, \ldots$
E: $\$ 1, \$ 2, \$ 3, \$ 4, \$ 5, \ldots$

Rewards and Values

Suppose the agent receives a sequence of rewards $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$ in time. What utility should be assigned? "Return" or "value"

Rewards and Values

Suppose the agent receives a sequence of rewards $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$ in time. What utility should be assigned? "Return" or "value"

- total reward $V=\sum_{i=1}^{\infty} r_{i}$
- average reward $V=\lim _{n \rightarrow \infty}\left(r_{1}+\cdots+r_{n}\right) / n$

Average vs Accumulated Rewards

Agent goes on forever?

Agent gets stuck in "absorbing" state(s) with zero reward?

Rewards and Values

Suppose the agent receives a sequence of rewards $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$ in time.

- discounted return $V=r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\gamma^{3} r_{4}+\cdots$ γ is the discount factor $0 \leq \gamma \leq 1$.

Properties of the Discounted Rewards

- The discounted return for rewards $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$ is

$$
V=r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\gamma^{3} r_{4}+\cdots
$$

Properties of the Discounted Rewards

- The discounted return for rewards $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$ is

$$
\begin{aligned}
V & =r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\gamma^{3} r_{4}+\cdots \\
& =r_{1}+\gamma\left(r_{2}+\gamma\left(r_{3}+\gamma\left(r_{4}+\ldots\right)\right)\right)
\end{aligned}
$$

- If V_{t} is the value obtained from time step t

$$
V_{t}=
$$

Properties of the Discounted Rewards

- The discounted return for rewards $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$ is

$$
\begin{aligned}
V & =r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\gamma^{3} r_{4}+\cdots \\
& =r_{1}+\gamma\left(r_{2}+\gamma\left(r_{3}+\gamma\left(r_{4}+\ldots\right)\right)\right)
\end{aligned}
$$

- If V_{t} is the value obtained from time step t

$$
V_{t}=r_{t}+\gamma V_{t+1}
$$

Properties of the Discounted Rewards

- The discounted return for rewards $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$ is

$$
\begin{aligned}
V & =r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\gamma^{3} r_{4}+\cdots \\
& =r_{1}+\gamma\left(r_{2}+\gamma\left(r_{3}+\gamma\left(r_{4}+\ldots\right)\right)\right)
\end{aligned}
$$

- If V_{t} is the value obtained from time step t

$$
V_{t}=r_{t}+\gamma V_{t+1}
$$

- How is the infinite future valued compared to immediate rewards?

Properties of the Discounted Rewards

- The discounted return for rewards $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$ is

$$
\begin{aligned}
V & =r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\gamma^{3} r_{4}+\cdots \\
& =r_{1}+\gamma\left(r_{2}+\gamma\left(r_{3}+\gamma\left(r_{4}+\ldots\right)\right)\right)
\end{aligned}
$$

- If V_{t} is the value obtained from time step t

$$
V_{t}=r_{t}+\gamma V_{t+1}
$$

- How is the infinite future valued compared to immediate rewards?
$1+\gamma+\gamma^{2}+\gamma^{3}+\cdots=$

Properties of the Discounted Rewards

- The discounted return for rewards $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$ is

$$
\begin{aligned}
V & =r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\gamma^{3} r_{4}+\cdots \\
& =r_{1}+\gamma\left(r_{2}+\gamma\left(r_{3}+\gamma\left(r_{4}+\ldots\right)\right)\right)
\end{aligned}
$$

- If V_{t} is the value obtained from time step t

$$
V_{t}=r_{t}+\gamma V_{t+1}
$$

- How is the infinite future valued compared to immediate rewards?
$1+\gamma+\gamma^{2}+\gamma^{3}+\cdots=1 /(1-\gamma)$
Therefore $\frac{\text { minimum reward }}{1-\gamma} \leq V_{t} \leq \frac{\text { maximum reward }}{1-\gamma}$
- We can approximate V with the first k terms, with error:

$$
\begin{aligned}
V-\left(r_{1}+\gamma r_{2}+\cdots+\gamma^{k-1} r_{k}\right) & =\gamma^{k} V_{k+1} \\
& \propto \gamma^{k} /(1-\gamma)
\end{aligned}
$$

Properties of the Discounted Rewards

- $\boldsymbol{V}=r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\gamma^{3} r_{4}+\cdots$
- At each time:
- with probability γ, agent keeps going
- otherwise agent stops
with return is

Properties of the Discounted Rewards

- $\boldsymbol{V}=r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\gamma^{3} r_{4}+\cdots$
- At each time:
- with probability γ, agent keeps going
- otherwise agent stops
with return is total reward is equivalent to discounting.

Properties of the Discounted Rewards

- $\boldsymbol{V}=r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\gamma^{3} r_{4}+\cdots$
- At each time:
- with probability γ, agent keeps going
- otherwise agent stops
with return is total reward is equivalent to discounting.
- With an interest rate of i, a dollar now is worth $1+i$ in a year. So a dollar in a year is worth

Properties of the Discounted Rewards

- $\boldsymbol{V}=r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\gamma^{3} r_{4}+\cdots$
- At each time:
- with probability γ, agent keeps going
- otherwise agent stops
with return is total reward is equivalent to discounting.
- With an interest rate of i, a dollar now is worth $1+i$ in a year. So a dollar in a year is worth $1 /(1+i)$ now. γ can be seen as $1 /(1+i)$ where i is interest rate.

Properties of the Discounted Rewards

- $\boldsymbol{V}=r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\gamma^{3} r_{4}+\cdots$
- At each time:
- with probability γ, agent keeps going
- otherwise agent stops
with return is total reward is equivalent to discounting.
- With an interest rate of i, a dollar now is worth $1+i$ in a year. So a dollar in a year is worth $1 /(1+i)$ now. γ can be seen as $1 /(1+i)$ where i is interest rate.
- γ should reflect an agent's utility.

Allais Paradox (1953)

What would you prefer:
A: $\$ 1 m$ - one million dollars
B: lottery [0.10 : \$2.5m, 0.89 : \$1m, 0.01 : \$0]

Allais Paradox (1953)

What would you prefer:
A: $\$ 1 m$ - one million dollars
B: lottery [0.10 : \$2.5m, 0.89 : \$1m, 0.01 : \$0]
What would you prefer:
C: lottery [0.11:\$1m, 0.89:\$0]
D: lottery [0.10 : \$2.5m, 0.9 : \$0]

Allais Paradox (1953)

What would you prefer:

> A: $\$ 1 m$ - one million dollars
> B: lottery $[0.10: \$ 2.5 m, 0.89: \$ 1 m, 0.01: \$ 0]$

What would you prefer:
C: lottery $[0.11: \$ 1 m, 0.89: \$ 0]$
D: lottery $[0.10: \$ 2.5 m, 0.9: \$ 0]$
It is inconsistent with the axioms of preferences to have $A \succ B$ and $D \succ C$.

Allais Paradox (1953)

What would you prefer:
A: $\$ 1 m$ - one million dollars
B: lottery [0.10 : \$2.5m, 0.89 : \$1m, 0.01 : \$0]
What would you prefer:
C: lottery $[0.11: \$ 1 m, 0.89: \$ 0]$
D: lottery $[0.10: \$ 2.5 m, 0.9: \$ 0]$
It is inconsistent with the axioms of preferences to have $A \succ B$ and $D \succ C$.

A,C: lottery [0.11: \$1m, 0.89 : X]
B,D: lottery $[0.10: \$ 2.5 m, 0.01: \$ 0,0.89: X]$

Framing Effects [Tversky and Kahneman]

- A disease is expected to kill 600 people. Two alternative programs have been proposed:
Program A: 200 people will be saved
Program B: probability $1 / 3$: 600 people will be saved probability 2/3: no one will be saved
Which program would you favor?

Framing Effects [Tversky and Kahneman]

- A disease is expected to kill 600 people. Two alternative programs have been proposed:
Program C: 400 people will die
Program D: probability 1/3: no one will die probability $2 / 3$: 600 will die
Which program would you favor?

Framing Effects [Tversky and Kahneman]

- A disease is expected to kill 600 people. Two alternative programs have been proposed:
Program A: 200 people will be saved
Program B: probability 1/3: 600 people will be saved probability 2/3: no one will be saved
Which program would you favor?
- A disease is expected to kill 600 people. Two alternative programs have been proposed:
Program C: 400 people will die
Program D: probability 1/3: no one will die probability 2/3: 600 will die
Which program would you favor?
Tversky and Kahneman: 72\% chose A over B. 22\% chose C over D.

Prospect Theory

- In mixed gambles, loss aversion causes extreme risk-averse choices
- In bad choices, diminishing responsibility causes risk seeking.

Reference Points [Kahneman 2011]

Twins Andy and Bobbie, have identical tastes and identical starting jobs. There are two jobs that are identical, except that

- job A gives a raise of $\$ 10000$
- job B gives an extra day of vacation per month.

They are each indifferent to the outcomes and toss a coin. Andy takes job A, and Bobbie takes job B. Now the company suggests they swap jobs with a $\$ 500$ bonus. Will they swap?

Reference Points [Kahneman 2011]

Twins Andy and Bobbie, have identical tastes and identical starting jobs. There are two jobs that are identical, except that

- job A gives a raise of $\$ 10000$
- job B gives an extra day of vacation per month.

They are each indifferent to the outcomes and toss a coin. Andy takes job A, and Bobbie takes job B.
Now the company suggests they swap jobs with a $\$ 500$ bonus. Will they swap?
What does utility theory predict?

Reference Points [Kahneman 2011]

Twins Andy and Bobbie, have identical tastes and identical starting jobs. There are two jobs that are identical, except that

- job A gives a raise of $\$ 10000$
- job B gives an extra day of vacation per month.

They are each indifferent to the outcomes and toss a coin. Andy takes job A, and Bobbie takes job B. Now the company suggests they swap jobs with a $\$ 500$ bonus. Will they swap?
What does utility theory predict?
What does prospect theory predict?

Reference Points [Kahneman 2011]

Twins Andy and Bobbie, have identical tastes and identical starting jobs. There are two jobs that are identical, except that

- job A gives a raise of $\$ 10000$
- job B gives an extra day of vacation per month.

They are each indifferent to the outcomes and toss a coin. Andy takes job A, and Bobbie takes job B.
Now the company suggests they swap jobs with a $\$ 500$ bonus.
Will they swap?
What does utility theory predict?
What does prospect theory predict?
Utility theory predicts they swap. Prospect theory predicts they do not swap.
[From D. Kahneman, Thinking, Fast and Slow, 2011, p. 291.]

Reference Points

Consider Anthony and Betty who (for argument) are essentially the same except:

- Anthony's current wealth is $\$ 1$ million.
- Betty's current wealth is $\$ 4$ million.

They are both offered the choice between a gamble and a sure thing:

- Gamble: equal chance to end up owning $\$ 1$ million or $\$ 4$ million.
- Sure Thing: own $\$ 2$ million

What does expected utility theory predict?

Reference Points

Consider Anthony and Betty who (for argument) are essentially the same except:

- Anthony's current wealth is $\$ 1$ million.
- Betty's current wealth is $\$ 4$ million.

They are both offered the choice between a gamble and a sure thing:

- Gamble: equal chance to end up owning $\$ 1$ million or $\$ 4$ million.
- Sure Thing: own $\$ 2$ million

What does expected utility theory predict?
What does prospect theory predict?

Framing Effects

What do you think of Alan and Ben:

- Alan: intelligent-industrious-impulsive-critical-stubborn-envious

Framing Effects

What do you think of Alan and Ben:

- Ben: envious-stubborn-critical-impulsive-industrious-intelligent

Framing Effects

What do you think of Alan and Ben:

- Alan: intelligent-industrious-impulsive-critical-stubborn-envious
- Ben: envious—stubborn-critical-impulsive-industrious-intelligent
[From D. Kahneman, Thinking Fast and Slow, 2011, p. 82]

Framing Effects

- Suppose you had bought tickets for the theatre for $\$ 50$. When you got to the theatre, you had lost the tickets. You have your credit card and can buy equivalent tickets for $\$ 50$. Do you buy the replacement tickets on your credit card?

Framing Effects

- Suppose you had bought tickets for the theatre for $\$ 50$. When you got to the theatre, you had lost the tickets. You have your credit card and can buy equivalent tickets for $\$ 50$. Do you buy the replacement tickets on your credit card?
- Suppose you had $\$ 50$ in your pocket to buy tickets. When you got to the theatre, you had lost the \$50. You have your credit card and can buy equivalent tickets for $\$ 50$. Do you buy the tickets on your credit card?
[From R.M. Dawes, Rational Choice in an Uncertain World, 1988.]

The Ellsberg Paradox

Two bags:
Bag 140 white chips, 30 yellow chips, 30 green chips
Bag 240 white chips, 60 chips that are yellow or green
What do you prefer:
A: Receive $\$ 1 \mathrm{~m}$ if a white or yellow chip is drawn from bag 1
B: Receive $\$ 1 \mathrm{~m}$ if a white or yellow chip is drawn from bag 2
C: Receive $\$ 1 \mathrm{~m}$ if a white or green chip is drawn from bag 2

The Ellsberg Paradox

Two bags:
Bag 140 white chips, 30 yellow chips, 30 green chips
Bag 240 white chips, 60 chips that are yellow or green
What do you prefer:
A: Receive $\$ 1 \mathrm{~m}$ if a white or yellow chip is drawn from bag 1
B: Receive $\$ 1 \mathrm{~m}$ if a white or yellow chip is drawn from bag 2
C: Receive $\$ 1 \mathrm{~m}$ if a white or green chip is drawn from bag 2
What about
D: Lottery $[0.5: B, 0.5: C]$

The Ellsberg Paradox

Two bags:
Bag 140 white chips, 30 yellow chips, 30 green chips
Bag 240 white chips, 60 chips that are yellow or green
What do you prefer:
A: Receive \$1m if a white or yellow chip is drawn from bag 1
B: Receive \$1m if a white or yellow chip is drawn from bag 2
C: Receive $\$ 1 \mathrm{~m}$ if a white or green chip is drawn from bag 2
What about
D: Lottery $[0.5$: B, 0.5 : C]
However A and D should give same outcome, no matter what the proportion in Bag 2.

St. Petersburg Paradox

What if there is no "best" outcome?
Are utilities unbounded?

St. Petersburg Paradox

What if there is no "best" outcome?
Are utilities unbounded?

- Suppose utilities are unbounded.
- Then for any outcome o_{i} there is an outcome o_{i+1} such that $u\left(o_{i+1}\right)>2 u\left(o_{i}\right)$.

St. Petersburg Paradox

What if there is no "best" outcome?
Are utilities unbounded?

- Suppose utilities are unbounded.
- Then for any outcome o_{i} there is an outcome o_{i+1} such that $u\left(o_{i+1}\right)>2 u\left(o_{i}\right)$.
- Would the agent prefer o_{1} or the lottery $\left[0.5: o_{2}, 0.5: 0\right]$? where 0 is the worst outcome.

St. Petersburg Paradox

What if there is no "best" outcome?
Are utilities unbounded?

- Suppose utilities are unbounded.
- Then for any outcome o_{i} there is an outcome o_{i+1} such that $u\left(o_{i+1}\right)>2 u\left(o_{i}\right)$.
- Would the agent prefer o_{1} or the lottery [$\left.0.5: o_{2}, 0.5: 0\right]$? where 0 is the worst outcome.
- Is it rational to gamble o_{1} to on a coin toss to get o_{2} ?
- Is it rational to gamble o_{2} to on a coin toss to get o_{3} ?
- Is it rational to gamble o_{3} to on a coin toss to get o_{4} ?

St. Petersburg Paradox

What if there is no "best" outcome?
Are utilities unbounded?

- Suppose utilities are unbounded.
- Then for any outcome o_{i} there is an outcome o_{i+1} such that $u\left(o_{i+1}\right)>2 u\left(o_{i}\right)$.
- Would the agent prefer o_{1} or the lottery $\left[0.5: o_{2}, 0.5: 0\right]$? where 0 is the worst outcome.
- Is it rational to gamble o_{1} to on a coin toss to get o_{2} ?
- Is it rational to gamble o_{2} to on a coin toss to get o_{3} ?
- Is it rational to gamble o_{3} to on a coin toss to get o_{4} ?
- What will eventually happen?

Predictor Paradox

Two boxes:
Box 1: contains $\$ 10,000$
Box 2: contains either $\$ 0$ or $\$ 1 \mathrm{~m}$

- You can either choose both boxes or just box 2 .

Predictor Paradox

Two boxes:
Box 1: contains \$10,000
Box 2: contains either $\$ 0$ or $\$ 1 \mathrm{~m}$

- You can either choose both boxes or just box 2 .
- The "predictor" has put $\$ 1 \mathrm{~m}$ in box 2 if he thinks you will take box 2 and $\$ 0$ in box 2 if he thinks you will take both.
- The predictor has been correct in previous predictions.
- Do you take both boxes or just box 2 ?

