Goals and Preferences

Alice . . . went on "Would you please tell me, please, which way I ought to go from here?"

"That depends a good deal on where you want to get to," said the Cat.

"I don't much care where —" said Alice.

"Then it doesn't matter which way you go," said the Cat.

Lewis Carroll, 1832–1898 Alice's Adventures in Wonderland, 1865 Chapter 6

Learning Objectives

At the end of the class you should be able to:

- justify the use and semantics of utility
- estimate the utility of an outcome
- build a decision network for a domain
- compute the optimal policy of a decision network

Preferences

- Actions result in outcomes
- Agents have preferences over outcomes

Preferences

- Actions result in outcomes
- Agents have preferences over outcomes
- A rational agent will do the action that has the best outcome for them

Preferences

- Actions result in outcomes
- Agents have preferences over outcomes
- A rational agent will do the action that has the best outcome for them
- Sometimes agents don't know the outcomes of the actions, but they still need to compare actions
- Agents have to act. (Doing nothing is (often) an action).

Preferences Over Outcomes

If o_1 and o_2 are outcomes

- $o_1 \succeq o_2$ means o_1 is at least as desirable as o_2 .
- $o_1 \sim o_2$ means $o_1 \succeq o_2$ and $o_2 \succeq o_1$.
- $o_1 \succ o_2$ means $o_1 \succeq o_2$ and $o_2 \not\succeq o_1$

Lotteries

- An agent may not know the outcomes of its actions, but only have a probability distribution of the outcomes.
- A lottery is a probability distribution over outcomes. It is written

$$[p_1:o_1,p_2:o_2,\ldots,p_k:o_k]$$

where the o_i are outcomes and $p_i \ge 0$ such that

$$\sum_{i} p_i = 1$$

The lottery specifies that outcome o_i occurs with probability p_i .

When we talk about outcomes, we will include lotteries.

Properties of Preferences

 Completeness: Agents have to act, so they must have preferences:

$$\forall o_1 \forall o_2 \ o_1 \succeq o_2 \ \text{or} \ o_2 \succeq o_1$$

Properties of Preferences

 Completeness: Agents have to act, so they must have preferences:

$$\forall o_1 \forall o_2 \ o_1 \succeq o_2 \ \text{or} \ o_2 \succeq o_1$$

• Transitivity: Preferences must be transitive:

if
$$o_1 \succeq o_2$$
 and $o_2 \succ o_3$ then $o_1 \succ o_3$

(Similarly for other mixtures of \succ and \succeq .)

Properties of Preferences

 Completeness: Agents have to act, so they must have preferences:

$$\forall o_1 \forall o_2 \ o_1 \succeq o_2 \ \text{or} \ o_2 \succeq o_1$$

Transitivity: Preferences must be transitive:

if
$$o_1 \succeq o_2$$
 and $o_2 \succ o_3$ then $o_1 \succ o_3$

(Similarly for other mixtures of \succ and \succeq .)

Rationale: otherwise $o_1 \succeq o_2$ and $o_2 \succ o_3$ and $o_3 \succeq o_1$.

If they are prepared to pay to get o_2 instead of o_3 , and are happy to have o_1 instead of o_2 , and are happy to have o_3 instead of o_1 \longrightarrow money pump.

Monotonicity: An agent prefers a larger chance of getting a better outcome than a smaller chance:

• If $o_1 \succ o_2$ and p > q then

$$[p:o_1,1-p:o_2] \succ [q:o_1,1-q:o_2]$$

Consequence of axioms

- Suppose $o_1 \succ o_2$ and $o_2 \succ o_3$. Consider whether the agent would prefer
 - ▶ 02
 - ▶ the lottery $[p : o_1, 1 p : o_3]$

for different values of $p \in [0, 1]$.

• Plot which one is preferred as a function of *p*:

Continuity: Suppose $o_1 \succ o_2$ and $o_2 \succ o_3$, then there exists a $p \in [0,1]$ such that

$$o_2 \sim [p:o_1, 1-p:o_3]$$

Decomposability: (no fun in gambling). An agent is indifferent between lotteries that have same probabilities and outcomes. This includes lotteries over lotteries. For example:

$$[p:o_1, 1-p:[q:o_2, 1-q:o_3]]$$

$$\sim [p:o_1, (1-p)q:o_2, (1-p)(1-q):o_3]$$

Substitutability: if $o_1 \sim o_2$ then the agent is indifferent between lotteries that only differ by o_1 and o_2 :

$$[p:o_1,1-p:o_3] \sim [p:o_2,1-p:o_3]$$

Alternative Axiom for Substitutability

Substitutability: if $o_1 \succeq o_2$ then the agent weakly prefers lotteries that contain o_1 instead of o_2 , everything else being equal.

That is, for any number p and outcome o_3 :

$$[p:o_1,(1-p):o_3]\succeq [p:o_2,(1-p):o_3]$$

What we would like

 We would like a measure of preference that can be combined with probabilities. So that

$$value([p:o_1, 1-p:o_2])$$

$$= p \times value(o_1) + (1-p) \times value(o_2)$$

Money does not act like this.
 What would you prefer

$$1,000,000 \text{ or } [0.5: 0,0.5: 2,000,000]$$
?

What we would like

 We would like a measure of preference that can be combined with probabilities. So that

$$value([p:o_1, 1-p:o_2])$$

$$= p \times value(o_1) + (1-p) \times value(o_2)$$

Money does not act like this.
 What would you prefer

$$1,000,000 \text{ or } [0.5: 0,0.5: 2,000,000]$$
?

 It may seem that preferences are too complex and muti-faceted to be represented by single numbers.

Theorem

If preferences follow the preceding properties, then preferences can be measured by a function

$$\textit{utility}: \textit{outcomes} \rightarrow [0, 1]$$

such that

- $o_1 \succeq o_2$ if and only if $utility(o_1) \geq utility(o_2)$.
- Utilities are linear with probabilities:

$$utility([p_1:o_1,p_2:o_2,\ldots,p_k:o_k])$$

$$= \sum_{i=1}^k p_i \times utility(o_i)$$

Proof

• If all outcomes are equally preferred,

Proof

- If all outcomes are equally preferred, set $utility(o_i) = 0$ for all outcomes o_i .
- Otherwise, suppose the best outcome is best and the worst outcome is worst.
- For any outcome o_i, define utility(o_i) to be the number
 u_i such that

$$o_i \sim [u_i : best, 1 - u_i : worst]$$

This exists by

Proof

- If all outcomes are equally preferred, set $utility(o_i) = 0$ for all outcomes o_i .
- Otherwise, suppose the best outcome is best and the worst outcome is worst.
- For any outcome o_i, define utility(o_i) to be the number
 u_i such that

$$o_i \sim [u_i : best, 1 - u_i : worst]$$

This exists by the Continuity property.

• Suppose $o_1 \succeq o_2$ and $utility(o_i) = u_i$, then by Substitutability,

```
[u_1:best, 1-u_1:worst] \succeq
```

• Suppose $o_1 \succeq o_2$ and $utility(o_i) = u_i$, then by Substitutability,

$$[u_1 : best, 1 - u_1 : worst]$$

$$\succeq [u_2 : best, 1 - u_2 : worst]$$

Which, by completeness and monotonicity implies

• Suppose $o_1 \succeq o_2$ and $utility(o_i) = u_i$, then by Substitutability,

$$[u_1 : best, 1 - u_1 : worst]$$

$$\succeq [u_2 : best, 1 - u_2 : worst]$$

Which, by completeness and monotonicity implies $u_1 \ge u_2$.

- Suppose $p = utility([p_1 : o_1, p_2 : o_2, ..., p_k : o_k]).$
- Suppose $utility(o_i) = u_i$. We know:

$$o_i \sim [u_i : best, 1 - u_i : worst]$$

• By substitutability, we can replace each o_i by $[u_i:best, 1-u_i:worst]$, so $p=utility([p_1:[u_1:best, 1-u_1:worst] \dots p_k:[u_k:best, 1-u_k:worst]])$

By decomposability, this is equivalent to:

$$p = utility([p_1u_1 + \cdots + p_ku_k : best, \\ p_1(1-u_1) + \cdots + p_k(1-u_k) \\ : worst]])$$

Thus, by definition of utility,

$$p = p_1 \times u_1 + \cdots + p_k \times u_k$$

Utility as a function of money

Possible utility as a function of money

Someone who really wants a toy worth \$30, but who would also like one worth \$20:

Factored Representation of Utility

- Suppose the outcomes can be described in terms of features X_1, \ldots, X_n .
- An additive utility is one that can be decomposed into set of factors:

$$u(X_1,\ldots,X_n)=f_1(X_1)+\cdots+f_n(X_n).$$

This assumes additive independence.

Factored Representation of Utility

- Suppose the outcomes can be described in terms of features X_1, \ldots, X_n .
- An additive utility is one that can be decomposed into set of factors:

$$u(X_1,\ldots,X_n)=f_1(X_1)+\cdots+f_n(X_n).$$

This assumes additive independence.

- Strong assumption: contribution of each feature doesn't depend on other features.
- Many ways to represent the same utility:

Factored Representation of Utility

- Suppose the outcomes can be described in terms of features X_1, \ldots, X_n .
- An additive utility is one that can be decomposed into set of factors:

$$u(X_1,\ldots,X_n)=f_1(X_1)+\cdots+f_n(X_n).$$

This assumes additive independence.

- Strong assumption: contribution of each feature doesn't depend on other features.
- Many ways to represent the same utility:
 - a number can be added to one factor as long as it is subtracted from others.

Additive Utility

An additive utility has a canonical representation:

$$u(X_1,\ldots,X_n)=w_1\times u_1(X_1)+\cdots+w_n\times u_n(X_n).$$

- If $best_i$ is the best value of X_i , $u_i(X_i=best_i)=1$. If $worst_i$ is the worst value of X_i , $u_i(X_i=worst_i)=0$.
- w_i are weights, $\sum_i w_i = 1$. The weights reflect the relative importance of features.
- We can determine weights by comparing outcomes.

$$w_1 =$$

Additive Utility

An additive utility has a canonical representation:

$$u(X_1,\ldots,X_n)=w_1\times u_1(X_1)+\cdots+w_n\times u_n(X_n).$$

- If $best_i$ is the best value of X_i , $u_i(X_i=best_i)=1$. If $worst_i$ is the worst value of X_i , $u_i(X_i=worst_i)=0$.
- w_i are weights, $\sum_i w_i = 1$. The weights reflect the relative importance of features.
- We can determine weights by comparing outcomes.

$$w_1 = u(best_1, x_2, \dots, x_n) - u(worst_1, x_2, \dots, x_n).$$

for any values x_2, \ldots, x_n of X_2, \ldots, X_n .

General Setup for Additive Utility

Suppose there are:

- multiple users
- multiple alternatives to choose among, e.g., hotel1,...
- multiple criteria upon which to judge, e.g., rate, location
- utility is a function of

General Setup for Additive Utility

Suppose there are:

- multiple users
- multiple alternatives to choose among, e.g., hotel1,...
- multiple criteria upon which to judge, e.g., rate, location
- utility is a function of users and alternatives

General Setup for Additive Utility

Suppose there are:

- multiple users
- multiple alternatives to choose among, e.g., hotel1,...
- multiple criteria upon which to judge, e.g., rate, location
- utility is a function of users and alternatives
- fact(crit, alt) is the fact about the domain value of criteria crit for alternative alt.
 - E.g., fact(rate, hotel1) is the room rate for hotel#1, which is \$125 per night.

General Setup for Additive Utility

Suppose there are:

- multiple users
- multiple alternatives to choose among, e.g., hotel1,...
- multiple criteria upon which to judge, e.g., rate, location
- utility is a function of users and alternatives
- fact(crit, alt) is the fact about the domain value of criteria crit for alternative alt.
 - E.g., fact(rate, hotel1) is the room rate for hotel#1, which is \$125 per night.
- score(val, user, crit) gives the score of the domain value for user on criteria crit.

General Setup for Additive Utility

Suppose there are:

- multiple users
- multiple alternatives to choose among, e.g., hotel1,...
- multiple criteria upon which to judge, e.g., rate, location
- utility is a function of users and alternatives
- fact(crit, alt) is the fact about the domain value of criteria crit for alternative alt.
 - E.g., fact(rate, hotel1) is the room rate for hotel#1, which is \$125 per night.
- score(val, user, crit) gives the score of the domain value for user on criteria crit.

$$\textit{utility}(\textit{user}, \textit{alt}) = \sum_{\textit{crit}} \; \textit{weight}(\textit{user}, \textit{crit}) \times \\ \textit{score}(\textit{fact}(\textit{crit}, \textit{alt}), \textit{user}, \textit{crit})$$

for user, alternative alt, criteria crit

Complements and Substitutes

- Often additive independence is not a good assumption.
- Values x₁ of feature X₁ and x₂ of feature X₂ are complements if having both is better than the sum of the two.
- Values x₁ of feature X₁ and x₂ of feature X₂ are substitutes if having both is worse than the sum of the two.

Complements and Substitutes

- Often additive independence is not a good assumption.
- Values x₁ of feature X₁ and x₂ of feature X₂ are complements if having both is better than the sum of the two.
- Values x₁ of feature X₁ and x₂ of feature X₂ are substitutes if having both is worse than the sum of the two.
- Example: on a holiday
 - ► An excursion for 6 hours North on day 3.
 - ► An excursion for 6 hours South on day 3.

Complements and Substitutes

- Often additive independence is not a good assumption.
- Values x₁ of feature X₁ and x₂ of feature X₂ are complements if having both is better than the sum of the two.
- Values x₁ of feature X₁ and x₂ of feature X₂ are substitutes if having both is worse than the sum of the two.
- Example: on a holiday
 - An excursion for 6 hours North on day 3.
 - An excursion for 6 hours South on day 3.
- Example: on a holiday
 - ► A trip to a location 3 hours North on day 3
 - ► The return trip for the same day.

Generalized Additive Utility

 A generalized additive utility can be written as a sum of factors:

$$u(X_1,\ldots,X_n)=f_1(\overline{X_1})+\cdots+f_k(\overline{X_k})$$

where
$$\overline{X_i} \subseteq \{X_1, \dots, X_n\}$$
.

- An intuitive canonical representation is difficult to find.
- It can represent complements and substitutes.

Utility and time

- Would you prefer \$1000 today or \$1000 next year?
- What price would you pay now to have an eternity of happiness?
- How can you trade off pleasures today with pleasures in the future?

Pascal's Wager (1670)

Decide whether to believe in God.

Pascal's Wager (1670)

Decide whether to believe in God.

Utility and time

 How would you compare the following sequences of rewards (per week):

```
A: $1000000, $0, $0, $0, $0, $0,...
B: $1000, $1000, $1000, $1000, $1000,...
C: $1000, $0, $0, $0, $0,...
D: $1, $1, $1, $1, $1,...
E: $1, $2, $3, $4, $5....
```

Rewards and Values

Suppose the agent receives a sequence of rewards $r_1, r_2, r_3, r_4, \ldots$ in time. What utility should be assigned? "Return" or "value"

Rewards and Values

Suppose the agent receives a sequence of rewards $r_1, r_2, r_3, r_4, \ldots$ in time. What utility should be assigned? "Return" or "value"

- total reward $V = \sum_{i=1}^{\infty} r_i$
- average reward $V = \lim_{n \to \infty} (r_1 + \cdots + r_n)/n$

Average vs Accumulated Rewards

Rewards and Values

Suppose the agent receives a sequence of rewards $r_1, r_2, r_3, r_4, \ldots$ in time.

• discounted return $V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$ γ is the discount factor $0 \le \gamma \le 1$.

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$$
=

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots = r_1 + \gamma (r_2 + \gamma (r_3 + \gamma (r_4 + \dots)))$$

ullet If V_t is the value obtained from time step t

$$V_t =$$

32 / 43

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots = r_1 + \gamma (r_2 + \gamma (r_3 + \gamma (r_4 + \dots)))$$

ullet If V_t is the value obtained from time step t

$$V_t = r_t + \gamma V_{t+1}$$

32 / 43

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots = r_1 + \gamma (r_2 + \gamma (r_3 + \gamma (r_4 + \dots)))$$

• If V_t is the value obtained from time step t

$$V_t = r_t + \gamma V_{t+1}$$

 How is the infinite future valued compared to immediate rewards?

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots = r_1 + \gamma (r_2 + \gamma (r_3 + \gamma (r_4 + \dots)))$$

• If V_t is the value obtained from time step t

$$V_t = r_t + \gamma V_{t+1}$$

 How is the infinite future valued compared to immediate rewards?

$$1 + \gamma + \gamma^2 + \gamma^3 + \dots =$$

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots = r_1 + \gamma (r_2 + \gamma (r_3 + \gamma (r_4 + \cdots)))$$

• If V_t is the value obtained from time step t

$$V_t = r_t + \gamma V_{t+1}$$

 How is the infinite future valued compared to immediate rewards?

$$1 + \gamma + \gamma^2 + \gamma^3 + \dots = 1/(1 - \gamma)$$

Therefore $\frac{\text{minimum reward}}{1 - \gamma} \leq V_t \leq \frac{\text{maximum reward}}{1 - \gamma}$

• We can approximate V with the first k terms, with error:

$$V - (r_1 + \gamma r_2 + \dots + \gamma^{k-1} r_k) = \gamma^k V_{k+1}$$

$$\propto \gamma^k / (1 - \gamma)$$

- $V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$
- At each time:
 - ightharpoonup with probability γ , agent keeps going
 - otherwise agent stops

with return is

- $V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$
- At each time:
 - ightharpoonup with probability γ , agent keeps going
 - otherwise agent stops

with return is total reward is equivalent to discounting.

- $V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$
- At each time:
 - ightharpoonup with probability γ , agent keeps going
 - otherwise agent stops

with return is total reward is equivalent to discounting.

• With an interest rate of i, a dollar now is worth 1+i in a year. So a dollar in a year is worth

- $V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$
- At each time:
 - ightharpoonup with probability γ , agent keeps going
 - otherwise agent stops

with return is total reward is equivalent to discounting.

• With an interest rate of i, a dollar now is worth 1+i in a year. So a dollar in a year is worth 1/(1+i) now. γ can be seen as 1/(1+i) where i is interest rate.

- $V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$
- At each time:
 - \triangleright with probability γ , agent keeps going
 - otherwise agent stops

with return is total reward is equivalent to discounting.

- With an interest rate of i, a dollar now is worth 1+i in a year. So a dollar in a year is worth 1/(1+i) now. γ can be seen as 1/(1+i) where i is interest rate.
- ullet γ should reflect an agent's utility.

What would you prefer:

A: \$1m — one million dollars

B: lottery [0.10: \$2.5m, 0.89: \$1m, 0.01: \$0]

```
What would you prefer:
```

```
A: $1m — one million dollars
```

B: lottery [0.10: \$2.5m, 0.89: \$1m, 0.01: \$0]

What would you prefer:

```
C: lottery [0.11:\$1m, 0.89:\$0]
```

D: lottery [0.10: \$2.5m, 0.9: \$0]

What would you prefer:

```
A: $1m — one million dollars
```

B: lottery
$$[0.10: \$2.5m, 0.89: \$1m, 0.01: \$0]$$

What would you prefer:

D: lottery
$$[0.10: \$2.5m, 0.9: \$0]$$

It is inconsistent with the axioms of preferences to have $A \succ B$ and $D \succ C$.

What would you prefer:

```
A: $1m — one million dollars
```

B: lottery
$$[0.10: \$2.5m, 0.89: \$1m, 0.01: \$0]$$

What would you prefer:

It is inconsistent with the axioms of preferences to have $A \succ B$ and $D \succ C$.

```
A,C: lottery [0.11:\$1m, 0.89:X]
```

B,D: lottery
$$[0.10: \$2.5m, 0.01: \$0, 0.89: X]$$

34 / 43

Framing Effects [Tversky and Kahneman]

 A disease is expected to kill 600 people. Two alternative programs have been proposed:

Program A: 200 people will be saved

Program B: probability 1/3: 600 people will be saved

probability 2/3: no one will be saved

Which program would you favor?

Framing Effects [Tversky and Kahneman]

 A disease is expected to kill 600 people. Two alternative programs have been proposed:

Program C: 400 people will die

Program D: probability 1/3: no one will die

probability 2/3: 600 will die

Which program would you favor?

Framing Effects [Tversky and Kahneman]

 A disease is expected to kill 600 people. Two alternative programs have been proposed:

Program A: 200 people will be saved

Program B: probability 1/3: 600 people will be saved probability 2/3: no one will be saved

Which program would you favor?

• A disease is expected to kill 600 people. Two alternative programs have been proposed:

Program C: 400 people will die

Program D: probability 1/3: no one will die probability 2/3: 600 will die

Which program would you favor?

Tversky and Kahneman: 72% chose A over B. 22% chose C over D.

35 / 43

Prospect Theory

- In mixed gambles, loss aversion causes extreme risk-averse choices
- In bad choices, diminishing responsibility causes risk seeking.

Reference Points [Kahneman 2011]

Twins Andy and Bobbie, have identical tastes and identical starting jobs. There are two jobs that are identical, except that

- job A gives a raise of \$10000
- job B gives an extra day of vacation per month.

They are each indifferent to the outcomes and toss a coin.

Andy takes job A, and Bobbie takes job B.

Now the company suggests they swap jobs with a \$500 bonus.

Will they swap?

Reference Points [Kahneman 2011]

Twins Andy and Bobbie, have identical tastes and identical starting jobs. There are two jobs that are identical, except that

- job A gives a raise of \$10000
- job B gives an extra day of vacation per month.

They are each indifferent to the outcomes and toss a coin.

Andy takes job A, and Bobbie takes job B.

Now the company suggests they swap jobs with a \$500 bonus.

Will they swap?

What does utility theory predict?

Reference Points [Kahneman 2011]

Twins Andy and Bobbie, have identical tastes and identical starting jobs. There are two jobs that are identical, except that

- job A gives a raise of \$10000
- job B gives an extra day of vacation per month.

They are each indifferent to the outcomes and toss a coin.

Andy takes job A, and Bobbie takes job B.

Now the company suggests they swap jobs with a \$500 bonus.

Will they swap?

What does utility theory predict?

What does prospect theory predict?

Reference Points [Kahneman 2011]

Twins Andy and Bobbie, have identical tastes and identical starting jobs. There are two jobs that are identical, except that

- job A gives a raise of \$10000
- job B gives an extra day of vacation per month.

They are each indifferent to the outcomes and toss a coin.

Andy takes job A, and Bobbie takes job B.

Now the company suggests they swap jobs with a \$500 bonus.

Will they swap?

What does utility theory predict?

What does prospect theory predict?

Utility theory predicts they swap. Prospect theory predicts they do not swap.

[From D. Kahneman, Thinking, Fast and Slow, 2011, p. 291.]

37 / 43

Reference Points

Consider Anthony and Betty who (for argument) are essentially the same except:

- Anthony's current wealth is \$1 million.
- Betty's current wealth is \$4 million.

They are both offered the choice between a gamble and a sure thing:

- Gamble: equal chance to end up owning \$1 million or \$4 million.
- Sure Thing: own \$2 million

What does expected utility theory predict?

Reference Points

Consider Anthony and Betty who (for argument) are essentially the same except:

- Anthony's current wealth is \$1 million.
- Betty's current wealth is \$4 million.

They are both offered the choice between a gamble and a sure thing:

- Gamble: equal chance to end up owning \$1 million or \$4 million.
- Sure Thing: own \$2 million

What does expected utility theory predict? What does prospect theory predict?

What do you think of Alan and Ben:

 Alan: intelligent—industrious—impulsive—critical stubborn—envious

What do you think of Alan and Ben:

Ben: envious—stubborn—critical—impulsive—industrious—intelligent

What do you think of Alan and Ben:

- Alan: intelligent—industrious—impulsive—critical stubborn—envious
- Ben: envious—stubborn—critical—impulsive—industrious—intelligent

[From D. Kahneman, Thinking Fast and Slow, 2011, p. 82]

Suppose you had bought tickets for the theatre for \$50.
 When you got to the theatre, you had lost the tickets.
 You have your credit card and can buy equivalent tickets for \$50. Do you buy the replacement tickets on your credit card?

- Suppose you had bought tickets for the theatre for \$50.
 When you got to the theatre, you had lost the tickets.
 You have your credit card and can buy equivalent tickets for \$50. Do you buy the replacement tickets on your credit card?
- Suppose you had \$50 in your pocket to buy tickets.
 When you got to the theatre, you had lost the \$50. You have your credit card and can buy equivalent tickets for \$50. Do you buy the tickets on your credit card?

[From R.M. Dawes, Rational Choice in an Uncertain World, 1988.]

The Ellsberg Paradox

Two bags:

- Bag 1 40 white chips, 30 yellow chips, 30 green chips
- Bag 2 40 white chips, 60 chips that are yellow or green

What do you prefer:

- A: Receive \$1m if a white or yellow chip is drawn from bag 1
- B: Receive \$1m if a white or yellow chip is drawn from bag 2
- C: Receive \$1m if a white or green chip is drawn from bag 2

The Ellsberg Paradox

Two bags:

- Bag 1 40 white chips, 30 yellow chips, 30 green chips
- Bag 2 40 white chips, 60 chips that are yellow or green

What do you prefer:

- A: Receive \$1m if a white or yellow chip is drawn from bag 1
- B: Receive \$1m if a white or yellow chip is drawn from bag 2
- C: Receive \$1m if a white or green chip is drawn from bag 2

What about

D: Lottery [0.5 : *B*, 0.5 : *C*]

The Ellsberg Paradox

Two bags:

- Bag 1 40 white chips, 30 yellow chips, 30 green chips
- Bag 2 40 white chips, 60 chips that are yellow or green

What do you prefer:

- A: Receive \$1m if a white or yellow chip is drawn from bag 1
- B: Receive \$1m if a white or yellow chip is drawn from bag 2
- C: Receive \$1m if a white or green chip is drawn from bag 2

What about

D: Lottery [0.5 : *B*, 0.5 : *C*]

However A and D should give same outcome, no matter what the proportion in Bag 2.

What if there is no "best" outcome?

Are utilities unbounded?

- Suppose utilities are unbounded.
- Then for any outcome o_i there is an outcome o_{i+1} such that $u(o_{i+1}) > 2u(o_i)$.

- Suppose utilities are unbounded.
- Then for any outcome o_i there is an outcome o_{i+1} such that $u(o_{i+1}) > 2u(o_i)$.
- Would the agent prefer o_1 or the lottery $[0.5:o_2,0.5:0]$? where 0 is the worst outcome.

- Suppose utilities are unbounded.
- Then for any outcome o_i there is an outcome o_{i+1} such that $u(o_{i+1}) > 2u(o_i)$.
- Would the agent prefer o_1 or the lottery $[0.5:o_2,0.5:0]$? where 0 is the worst outcome.
- Is it rational to gamble o_1 to on a coin toss to get o_2 ?
- Is it rational to gamble o_2 to on a coin toss to get o_3 ?
- Is it rational to gamble o_3 to on a coin toss to get o_4 ?

- Suppose utilities are unbounded.
- Then for any outcome o_i there is an outcome o_{i+1} such that $u(o_{i+1}) > 2u(o_i)$.
- Would the agent prefer o_1 or the lottery $[0.5:o_2,0.5:0]$? where 0 is the worst outcome.
- Is it rational to gamble o_1 to on a coin toss to get o_2 ?
- Is it rational to gamble o_2 to on a coin toss to get o_3 ?
- Is it rational to gamble o_3 to on a coin toss to get o_4 ?
- What will eventually happen?

Predictor Paradox

Two boxes:

- Box 1: contains \$10,000
- Box 2: contains either \$0 or \$1m
- You can either choose both boxes or just box 2.

Predictor Paradox

Two boxes:

- Box 1: contains \$10,000
- Box 2: contains either \$0 or \$1m
- You can either choose both boxes or just box 2.
- The "predictor" has put \$1m in box 2 if he thinks you will take box 2 and \$0 in box 2 if he thinks you will take both.
- The predictor has been correct in previous predictions.
- Do you take both boxes or just box 2?