• A Markov chain is a special sort of belief network:



What probabilities need to be specified?

A Markov chain is a special sort of belief network:



What probabilities need to be specified?

- $P(S_0)$  specifies initial conditions
- $P(S_{i+1} | S_i)$  specifies the dynamics

A Markov chain is a special sort of belief network:



What probabilities need to be specified?

- $P(S_0)$  specifies initial conditions
- $P(S_{i+1} | S_i)$  specifies the dynamics

What independence assumptions are made?

A Markov chain is a special sort of belief network:



What probabilities need to be specified?

- $P(S_0)$  specifies initial conditions
- $P(S_{i+1} | S_i)$  specifies the dynamics

What independence assumptions are made?

• 
$$P(S_{i+1} \mid S_0, ..., S_i) = P(S_{i+1} \mid S_i).$$

A Markov chain is a special sort of belief network:



What probabilities need to be specified?

- $P(S_0)$  specifies initial conditions
- $P(S_{i+1} | S_i)$  specifies the dynamics

What independence assumptions are made?

- $P(S_{i+1} \mid S_0, \ldots, S_i) = P(S_{i+1} \mid S_i)$ .
- Often S<sub>t</sub> represents the state at time t.
   The state encodes all of the information about the past that can affect the future.

1/25

A Markov chain is a special sort of belief network:



What probabilities need to be specified?

- $P(S_0)$  specifies initial conditions
- $P(S_{i+1} | S_i)$  specifies the dynamics

What independence assumptions are made?

- $P(S_{i+1} \mid S_0, ..., S_i) = P(S_{i+1} \mid S_i).$
- Often S<sub>t</sub> represents the state at time t.
   The state encodes all of the information about the past that can affect the future.
- "The future is independent of the past given the state."

• A stationary Markov chain is when for all i > 0, i' > 0,  $P(S_{i+1} | S_i) = P(S_{i'+1} | S_{i'})$ .



- A stationary Markov chain is when for all i > 0, i' > 0,  $P(S_{i+1} | S_i) = P(S_{i'+1} | S_{i'})$ .
- We specify  $P(S_0)$  and  $P(S_{i+1} \mid S_i)$ . Same parameters for each i.



- A stationary Markov chain is when for all i > 0, i' > 0,  $P(S_{i+1} | S_i) = P(S_{i'+1} | S_{i'})$ .
- We specify  $P(S_0)$  and  $P(S_{i+1} \mid S_i)$ . Same parameters for each i.
  - Simple model, easy to specify
  - Often the natural model
  - ► The network can extend indefinitely



- A stationary Markov chain is when for all i > 0, i' > 0,  $P(S_{i+1} \mid S_i) = P(S_{i'+1} \mid S_{i'})$ .
- We specify  $P(S_0)$  and  $P(S_{i+1} \mid S_i)$ . Same parameters for each i.
  - Simple model, easy to specify
  - Often the natural model
  - The network can extend indefinitely
- A stationary distribution is a distribution over states such that for ever state s,  $P(S_{i+1}=s) = P(S_i=s)$ .



- A stationary Markov chain is when for all i > 0, i' > 0,  $P(S_{i+1} \mid S_i) = P(S_{i'+1} \mid S_{i'})$ .
- We specify  $P(S_0)$  and  $P(S_{i+1} \mid S_i)$ . Same parameters for each i.
  - Simple model, easy to specify
  - Often the natural model
  - The network can extend indefinitely
- A stationary distribution is a distribution over states such that for ever state s,  $P(S_{i+1}=s) = P(S_i=s)$ .
- Under reasonable assumptions,  $P(S_k)$  will approach the stationary distribution as  $k \to \infty$ .



• A distribution over states, P is a stationary distribution if for each state s,  $P(S_{i+1}=s) = P(S_i=s)$ .



- A distribution over states, P is a stationary distribution if for each state s,  $P(S_{i+1}=s) = P(S_i=s)$ .
- Every Markov chain has a stationary distribution.



- A distribution over states, P is a stationary distribution if for each state s,  $P(S_{i+1}=s) = P(S_i=s)$ .
- Every Markov chain has a stationary distribution.
- A Markov chain is ergodic if, for any two states  $s_1$  and  $s_2$ , there is a non-zero probability of eventually reaching  $s_2$  from  $s_1$ .

- A distribution over states, P is a stationary distribution if for each state s,  $P(S_{i+1}=s) = P(S_i=s)$ .
- Every Markov chain has a stationary distribution.
- A Markov chain is ergodic if, for any two states  $s_1$  and  $s_2$ , there is a non-zero probability of eventually reaching  $s_2$  from  $s_1$ .
- A state in a Markov chain is periodic if there is a temporal regularity in visiting that state; it has period n if the difference of times when visiting the state is divisible by n.
   A Markov chain is aperiodic if all states have a only period of
  - A Markov chain is aperiodic if all states have a only period of 1.



- A distribution over states, P is a stationary distribution if for each state s,  $P(S_{i+1}=s) = P(S_i=s)$ .
- Every Markov chain has a stationary distribution.
- A Markov chain is ergodic if, for any two states  $s_1$  and  $s_2$ , there is a non-zero probability of eventually reaching  $s_2$  from  $s_1$ .
- A state in a Markov chain is periodic if there is a temporal regularity in visiting that state; it has period n if the difference of times when visiting the state is divisible by n.
   A Markov chain is aperiodic if all states have a only period of 1.
- An ergodic and aperiodic Markov chain has a unique stationary distribution P and  $P(s) = \lim_{i \to \infty} P(S_i = s)$  equilibrium distribution



Consider the Markov chain:

• Domain of  $S_i$  is the set of all web pages



#### Consider the Markov chain:

- Domain of  $S_i$  is the set of all web pages
- $P(S_0)$  is uniform;  $P(S_0 = p_j) = 1/N$



Consider the Markov chain:

- Domain of  $S_i$  is the set of all web pages
- $P(S_0)$  is uniform;  $P(S_0 = p_j) = 1/N$

where there are N web pages



Consider the Markov chain:

- Domain of  $S_i$  is the set of all web pages
- $P(S_0)$  is uniform;  $P(S_0 = p_j) = 1/N$

$$P(S_{i+1} = p_j \mid S_i = p_k)$$
 $= (1-d)/N + d * \begin{cases} & \text{if } p_k \text{ links to } p_j \end{cases}$ 

where there are N web pages

Consider the Markov chain:

- Domain of  $S_i$  is the set of all web pages
- $P(S_0)$  is uniform;  $P(S_0 = p_j) = 1/N$

$$P(S_{i+1} = p_j \mid S_i = p_k)$$

$$= (1-d)/N + d * \begin{cases} 1/n_k & \text{if } p_k \text{ links to } p_j \end{cases}$$

where there are N web pages and  $n_k$  links from page  $p_k$ 

Consider the Markov chain:

- Domain of  $S_i$  is the set of all web pages
- $P(S_0)$  is uniform;  $P(S_0 = p_j) = 1/N$

$$P(S_{i+1} = p_j \mid S_i = p_k)$$

$$= (1-d)/N + d * \begin{cases} 1/n_k & \text{if } p_k \text{ links to } p_j \\ & \text{if } p_k \text{ has no links} \end{cases}$$

where there are N web pages and  $n_k$  links from page  $p_k$ 

Consider the Markov chain:

- Domain of  $S_i$  is the set of all web pages
- $P(S_0)$  is uniform;  $P(S_0 = p_j) = 1/N$

$$P(S_{i+1} = p_j \mid S_i = p_k)$$

$$= (1-d)/N + d * \begin{cases} 1/n_k & \text{if } p_k \text{ links to } p_j \\ 1/N & \text{if } p_k \text{ has no links} \end{cases}$$

where there are N web pages and  $n_k$  links from page  $p_k$ 



Consider the Markov chain:

- Domain of  $S_i$  is the set of all web pages
- $P(S_0)$  is uniform;  $P(S_0 = p_j) = 1/N$

$$P(S_{i+1} = p_j \mid S_i = p_k)$$

$$= (1-d)/N + d * \begin{cases} 1/n_k & \text{if } p_k \text{ links to } p_j \\ 1/N & \text{if } p_k \text{ has no links} \\ 0 & \text{otherwise} \end{cases}$$

where there are N web pages and  $n_k$  links from page  $p_k$ 

Consider the Markov chain:

- Domain of  $S_i$  is the set of all web pages
- $P(S_0)$  is uniform;  $P(S_0 = p_i) = 1/N$

$$P(S_{i+1} = p_j \mid S_i = p_k)$$

$$= (1-d)/N + d * \begin{cases} 1/n_k & \text{if } p_k \text{ links to } p_j \\ 1/N & \text{if } p_k \text{ has no links} \\ 0 & \text{otherwise} \end{cases}$$

where there are N web pages and  $n_k$  links from page  $p_k$ 

- ullet dpprox 0.85 is the probability someone keeps surfing web
- This Markov chain converges to a stationary distribution over web pages (original  $P(S_i)$  for i = 52 for 24 million pages and 322 million links):

Pagerank - basis for Google's initial search engine

Sentence:  $w_1, w_2, w_3, \dots$ Set-of-words model:



• Each variable is Boolean: *true* when word is in the sentence and *false* otherwise.

Sentence:  $w_1, w_2, w_3, \ldots$ 

Set-of-words model:



- Each variable is Boolean: true when word is in the sentence and false otherwise.
- What probabilities are provided?

Sentence:  $w_1, w_2, w_3, \dots$ Set-of-words model:



- Each variable is Boolean: true when word is in the sentence and false otherwise.
- What probabilities are provided?
  - ▶ P(" a"), P(" aardvark"), ..., P(" zzz")

Sentence:  $w_1, w_2, w_3, \ldots$ 

Set-of-words model:



- Each variable is Boolean: true when word is in the sentence and false otherwise.
- What probabilities are provided?
  - ► P(" a"), P(" aardvark"), ..., P(" zzz")
- How do we condition on the question "how can I phone my phone"?



 $\boldsymbol{H}$  is the help page the user is interested in.



*H* is the help page the user is interested in. What probabilities are required?



H is the help page the user is interested in.

What probabilities are required?

•  $P(h_i)$  for each help page  $h_i$ . The user is interested in one best web page, so  $\sum_i P(h_i) = 1$ .



*H* is the help page the user is interested in.

What probabilities are required?

- $P(h_i)$  for each help page  $h_i$ . The user is interested in one best web page, so  $\sum_i P(h_i) = 1$ .
- $P(w_j | h_i)$  for each word  $w_j$  given page  $h_i$ . There can be multiple words used in a query.



*H* is the help page the user is interested in.

What probabilities are required?

- $P(h_i)$  for each help page  $h_i$ . The user is interested in one best web page, so  $\sum_i P(h_i) = 1$ .
- $P(w_j | h_i)$  for each word  $w_j$  given page  $h_i$ . There can be multiple words used in a query.
- Given a help query:





H is the help page the user is interested in.

What probabilities are required?

- $P(h_i)$  for each help page  $h_i$ . The user is interested in one best web page, so  $\sum_i P(h_i) = 1$ .
- $P(w_j | h_i)$  for each word  $w_j$  given page  $h_i$ . There can be multiple words used in a query.
- Given a help query: condition on the words in the query and display the most likely help page.

Sentence:  $w_1, w_2, w_3, \ldots, w_n$ . Bag-of-words or unigram:



• Domain of each variable is the set of all words.

Sentence:  $w_1, w_2, w_3, \ldots, w_n$ . Bag-of-words or unigram:

 $(W_1)$ 







- Domain of each variable is the set of all words.
- What probabilities are provided?

Sentence:  $w_1, w_2, w_3, \ldots, w_n$ .

Bag-of-words or unigram:









- Domain of each variable is the set of all words.
- What probabilities are provided?
  - $\triangleright$   $P(w_i)$  is a distribution over words for each position

Sentence:  $w_1, w_2, w_3, \ldots, w_n$ .

Bag-of-words or unigram:



- Domain of each variable is the set of all words.
- What probabilities are provided?
  - $\triangleright$   $P(w_i)$  is a distribution over words for each position
- How do we condition on the question "how can I phone my phone"?

Sentence:  $w_1, w_2, w_3, \ldots, w_n$ .

#### bigram:



• Domain of each variable is the set of all words.

Sentence:  $w_1, w_2, w_3, \ldots, w_n$ .

#### bigram:



- Domain of each variable is the set of all words.
- What probabilities are provided?

Sentence:  $w_1, w_2, w_3, \ldots, w_n$ .

#### bigram:



- Domain of each variable is the set of all words.
- What probabilities are provided?
  - ▶  $P(w_i \mid w_{i-1})$  is a distribution over words for each position given the previous word

Sentence:  $w_1, w_2, w_3, \ldots, w_n$ .

#### bigram:



- Domain of each variable is the set of all words.
- What probabilities are provided?
  - ▶  $P(w_i \mid w_{i-1})$  is a distribution over words for each position given the previous word
- How do we condition on the question "how can I phone my phone"?

Sentence:  $w_1, w_2, w_3, \ldots, w_n$ .

trigram:



Domain of each variable is the set of all words.

Sentence:  $w_1, w_2, w_3, \ldots, w_n$ .

trigram:



Domain of each variable is the set of all words.

What probabilities are provided?

Sentence:  $w_1, w_2, w_3, \ldots, w_n$ .

#### trigram:



Domain of each variable is the set of all words.

What probabilities are provided?

• 
$$P(w_i \mid w_{i-1}, w_{i-2})$$

#### N-gram

•  $P(w_i \mid w_{i-1}, \dots w_{i-n+1})$  is a distribution over words given the previous n-1 words



# Logic, Probability, Statistics, Ontology over time



From: Google Books Ngram Viewer (https://books.google.com/ngrams)



## Topic Model



## Google's rephil



## Predictive Typing and Error Correction



$$domain(W_i) = \{"a", "aarvark", ..., "zzz", "\perp "?"\}$$
  
 $domain(L_{ji}) = \{"a", "b", "c", ..., "z", "1", "2", ...\}$ 



## Beyond N-grams

- A person with a big hairy cat drank the cold milk.
- Who or what drank the milk?



# Beyond N-grams

- A person with a big hairy cat drank the cold milk.
- Who or what drank the milk?

Simple syntax diagram:



#### Hidden Markov Model

• A Hidden Markov Model (HMM) is a belief network:



The probabilities that need to be specified:

#### Hidden Markov Model

• A Hidden Markov Model (HMM) is a belief network:



The probabilities that need to be specified:

- $P(S_0)$  specifies initial conditions
- $P(S_{i+1} | S_i)$  specifies the dynamics
- $P(O_i \mid S_i)$  specifies the sensor model

Filtering:

$$P(S_i \mid o_0, \ldots, o_i)$$



#### Filtering:

$$P(S_i \mid o_0, \ldots, o_i)$$

What is the current belief state based on the observation history?

• Observe  $O_0$ , query  $S_0$ .  $P(S_0 \mid o_0)$ 

#### Filtering:

$$P(S_i \mid o_0, \ldots, o_i)$$

- Observe  $O_0$ , query  $S_0$ .  $P(S_0 \mid o_0)$
- then observe  $O_1$ , query  $S_1$ .  $P(S_1 \mid o_0, o_1)$

#### Filtering:

$$P(S_i \mid o_0, \ldots, o_i)$$

- Observe  $O_0$ , query  $S_0$ .  $P(S_0 \mid o_0)$
- then observe  $O_1$ , query  $S_1$ .  $P(S_1 \mid o_0, o_1)$
- then observe  $O_2$ , query  $S_2$ .  $P(S_2 \mid o_0, o_1, o_2)$
- ...

#### Filtering:

$$P(S_i \mid o_0, \ldots, o_i)$$

- Observe  $O_0$ , query  $S_0$ .  $P(S_0 \mid o_0)$
- then observe  $O_1$ , query  $S_1$ .  $P(S_1 \mid o_0, o_1)$
- then observe  $O_2$ , query  $S_2$ .  $P(S_2 \mid o_0, o_1, o_2)$
- ...

$$P(S_i \mid o_0, ..., o_i) \propto P(o_i \mid S_i o_0, ..., o_{i-1}) P(S_i \mid o_0, ..., o_{i-1})$$



#### Filtering:

$$P(S_i \mid o_0, \ldots, o_i)$$

- Observe  $O_0$ , query  $S_0$ .  $P(S_0 \mid o_0)$
- then observe  $O_1$ , query  $S_1$ .  $P(S_1 \mid o_0, o_1)$
- then observe  $O_2$ , query  $S_2$ .  $P(S_2 \mid o_0, o_1, o_2)$
- ...

$$P(S_i \mid o_0, ..., o_i) \propto P(o_i \mid S_i o_0, ..., o_{i-1}) P(S_i \mid o_0, ..., o_{i-1})$$
  
=  $P(o_i \mid S_i)$ 



#### Filtering:

$$P(S_i \mid o_0, \ldots, o_i)$$

- Observe  $O_0$ , query  $S_0$ .  $P(S_0 \mid o_0)$
- then observe  $O_1$ , query  $S_1$ .  $P(S_1 \mid o_0, o_1)$
- then observe  $O_2$ , query  $S_2$ .  $P(S_2 \mid o_0, o_1, o_2)$
- ...

$$P(S_i \mid o_0, ..., o_i) \propto P(o_i \mid S_i o_0, ..., o_{i-1}) P(S_i \mid o_0, ..., o_{i-1})$$

$$= P(o_i \mid S_i) \sum_{S_{i-1}} P(S_i \mid S_{i-1}) P(s_{i-1} \mid o_0, ..., o_{i-1})$$



### Example: localization

- Suppose a robot wants to determine its location based on its actions and its sensor readings: Localization
- This can be represented by the augmented HMM:



## Example localization domain

• Circular corridor, with 16 locations:



- Doors at positions: 2, 4, 7, 11.
- Noisy Sensors
- Stochastic Dynamics
- Robot starts at an unknown location and must determine where it is.

# Example Sensor Model

- $P(Observe\ Door\ |\ At\ Door) = 0.8$
- P(Observe Door | Not At Door) = 0.1



# **Example Dynamics Model**

- $P(loc_{t+1} = L \mid action_t = goRight \land loc_t = L) = 0.1$
- $P(loc_{t+1} = L + 1 \mid action_t = goRight \land loc_t = L) = 0.8$
- $P(loc_{t+1} = L + 2 \mid action_t = goRight \land loc_t = L) = 0.074$
- $P(loc_{t+1} = L' \mid action_t = goRight \land loc_t = L) = 0.002$  for any other location L'.
  - All location arithmetic is modulo 16.
  - The action goLeft works the same but to the left.



## Combining sensor information

 Example: we can combine information from a light sensor and the door sensor Sensor Fusion



 $S_t$  robot location at time t  $D_t$  door sensor value at time t  $L_t$  light sensor value at time t