Markov chains

- A Markov chain is a special sort of belief network:

What probabilities need to be specified?

Markov chains

- A Markov chain is a special sort of belief network:

What probabilities need to be specified?

- $P\left(S_{0}\right)$ specifies initial conditions
- $P\left(S_{i+1} \mid S_{i}\right)$ specifies the dynamics

Markov chains

- A Markov chain is a special sort of belief network:

What probabilities need to be specified?

- $P\left(S_{0}\right)$ specifies initial conditions
- $P\left(S_{i+1} \mid S_{i}\right)$ specifies the dynamics

What independence assumptions are made?

Markov chains

- A Markov chain is a special sort of belief network:

What probabilities need to be specified?

- $P\left(S_{0}\right)$ specifies initial conditions
- $P\left(S_{i+1} \mid S_{i}\right)$ specifies the dynamics

What independence assumptions are made?

- $P\left(S_{i+1} \mid S_{0}, \ldots, S_{i}\right)=P\left(S_{i+1} \mid S_{i}\right)$.

Markov chains

- A Markov chain is a special sort of belief network:

What probabilities need to be specified?

- $P\left(S_{0}\right)$ specifies initial conditions
- $P\left(S_{i+1} \mid S_{i}\right)$ specifies the dynamics

What independence assumptions are made?

- $P\left(S_{i+1} \mid S_{0}, \ldots, S_{i}\right)=P\left(S_{i+1} \mid S_{i}\right)$.
- Often S_{t} represents the state at time t.

The state encodes all of the information about the past that can affect the future.

Markov chains

- A Markov chain is a special sort of belief network:

What probabilities need to be specified?

- $P\left(S_{0}\right)$ specifies initial conditions
- $P\left(S_{i+1} \mid S_{i}\right)$ specifies the dynamics

What independence assumptions are made?

- $P\left(S_{i+1} \mid S_{0}, \ldots, S_{i}\right)=P\left(S_{i+1} \mid S_{i}\right)$.
- Often S_{t} represents the state at time t.

The state encodes all of the information about the past that can affect the future.

- "The future is independent of the past given the state."

Stationary Markov chain

- A stationary Markov chain is when for all $i>0, i^{\prime}>0$, $P\left(S_{i+1} \mid S_{i}\right)=P\left(S_{i^{\prime}+1} \mid S_{i^{\prime}}\right)$.

Stationary Markov chain

- A stationary Markov chain is when for all $i>0, i^{\prime}>0$, $P\left(S_{i+1} \mid S_{i}\right)=P\left(S_{i^{\prime}+1} \mid S_{i^{\prime}}\right)$.
- We specify $P\left(S_{0}\right)$ and $P\left(S_{i+1} \mid S_{i}\right)$. Same parameters for each i.

Stationary Markov chain

- A stationary Markov chain is when for all $i>0, i^{\prime}>0$, $P\left(S_{i+1} \mid S_{i}\right)=P\left(S_{i^{\prime}+1} \mid S_{i^{\prime}}\right)$.
- We specify $P\left(S_{0}\right)$ and $P\left(S_{i+1} \mid S_{i}\right)$. Same parameters for each i.
- Simple model, easy to specify
- Often the natural model
- The network can extend indefinitely

Stationary Markov chain

- A stationary Markov chain is when for all $i>0, i^{\prime}>0$, $P\left(S_{i+1} \mid S_{i}\right)=P\left(S_{i^{\prime}+1} \mid S_{i^{\prime}}\right)$.
- We specify $P\left(S_{0}\right)$ and $P\left(S_{i+1} \mid S_{i}\right)$. Same parameters for each i.
- Simple model, easy to specify
- Often the natural model
- The network can extend indefinitely
- A stationary distribution is a distribution over states such that for ever state $s, P\left(S_{i+1}=s\right)=P\left(S_{i}=s\right)$.

Stationary Markov chain

- A stationary Markov chain is when for all $i>0, i^{\prime}>0$, $P\left(S_{i+1} \mid S_{i}\right)=P\left(S_{i^{\prime}+1} \mid S_{i^{\prime}}\right)$.
- We specify $P\left(S_{0}\right)$ and $P\left(S_{i+1} \mid S_{i}\right)$. Same parameters for each i.
- Simple model, easy to specify
- Often the natural model
- The network can extend indefinitely
- A stationary distribution is a distribution over states such that for ever state $s, P\left(S_{i+1}=s\right)=P\left(S_{i}=s\right)$.
- Under reasonable assumptions, $P\left(S_{k}\right)$ will approach the stationary distribution as $k \rightarrow \infty$.

Stationary Distribution

- A distribution over states, P is a stationary distribution if for each state $s, P\left(S_{i+1}=s\right)=P\left(S_{i}=s\right)$.

Stationary Distribution

- A distribution over states, P is a stationary distribution if for each state $s, P\left(S_{i+1}=s\right)=P\left(S_{i}=s\right)$.
- Every Markov chain has a stationary distribution.

Stationary Distribution

- A distribution over states, P is a stationary distribution if for each state $s, P\left(S_{i+1}=s\right)=P\left(S_{i}=s\right)$.
- Every Markov chain has a stationary distribution.
- A Markov chain is ergodic if, for any two states s_{1} and s_{2}, there is a non-zero probability of eventually reaching s_{2} from s_{1}.

Stationary Distribution

- A distribution over states, P is a stationary distribution if for each state $s, P\left(S_{i+1}=s\right)=P\left(S_{i}=s\right)$.
- Every Markov chain has a stationary distribution.
- A Markov chain is ergodic if, for any two states s_{1} and s_{2}, there is a non-zero probability of eventually reaching s_{2} from s_{1}.
- A state in a Markov chain is periodic if there is a temporal regularity in visiting that state; it has period n if the difference of times when visiting the state is divisible by n.
A Markov chain is aperiodic if all states have a only period of 1.

Stationary Distribution

- A distribution over states, P is a stationary distribution if for each state $s, P\left(S_{i+1}=s\right)=P\left(S_{i}=s\right)$.
- Every Markov chain has a stationary distribution.
- A Markov chain is ergodic if, for any two states s_{1} and s_{2}, there is a non-zero probability of eventually reaching s_{2} from s_{1}.
- A state in a Markov chain is periodic if there is a temporal regularity in visiting that state; it has period n if the difference of times when visiting the state is divisible by n.
A Markov chain is aperiodic if all states have a only period of 1.
- An ergodic and aperiodic Markov chain has a unique stationary distribution P and
$P(s)=\lim _{i \rightarrow \infty} P\left(S_{i}=s\right)$ - equilibrium distribution

Pagerank

Consider the Markov chain:

- Domain of S_{i} is the set of all web pages

Pagerank

Consider the Markov chain:

- Domain of S_{i} is the set of all web pages
- $P\left(S_{0}\right)$ is uniform; $P\left(S_{0}=p_{j}\right)=1 / N$

Pagerank

Consider the Markov chain:

- Domain of S_{i} is the set of all web pages
- $P\left(S_{0}\right)$ is uniform; $P\left(S_{0}=p_{j}\right)=1 / N$

$$
\begin{aligned}
P\left(S_{i+1}\right. & \left.=p_{j} \mid S_{i}=p_{k}\right) \\
& =(1-d) / N+d *\{
\end{aligned}
$$

where there are N web pages

- $d \approx 0.85$ is the probability someone keeps surfing web

Pagerank

Consider the Markov chain:

- Domain of S_{i} is the set of all web pages
- $P\left(S_{0}\right)$ is uniform; $P\left(S_{0}=p_{j}\right)=1 / N$

$$
\begin{aligned}
P\left(S_{i+1}\right. & \left.=p_{j} \mid S_{i}=p_{k}\right) \\
& =(1-d) / N+d *\left\{\begin{array}{l}
\text { if } p_{k} \text { links to } p_{j}
\end{array}\right.
\end{aligned}
$$

where there are N web pages

- $d \approx 0.85$ is the probability someone keeps surfing web

Pagerank

Consider the Markov chain:

- Domain of S_{i} is the set of all web pages
- $P\left(S_{0}\right)$ is uniform; $P\left(S_{0}=p_{j}\right)=1 / N$

$$
\begin{aligned}
P\left(S_{i+1}\right. & \left.=p_{j} \mid S_{i}=p_{k}\right) \\
& =(1-d) / N+d *\left\{\begin{array}{l}
1 / n_{k} \text { if } p_{k} \text { links to } p_{j}
\end{array}\right.
\end{aligned}
$$

where there are N web pages and n_{k} links from page p_{k}

- $d \approx 0.85$ is the probability someone keeps surfing web

Pagerank

Consider the Markov chain:

- Domain of S_{i} is the set of all web pages
- $P\left(S_{0}\right)$ is uniform; $P\left(S_{0}=p_{j}\right)=1 / N$

$$
\begin{aligned}
P\left(S_{i+1}\right. & \left.=p_{j} \mid S_{i}=p_{k}\right) \\
& =(1-d) / N+d * \begin{cases}1 / n_{k} & \text { if } p_{k} \text { links to } p_{j} \\
& \text { if } p_{k} \text { has no links }\end{cases}
\end{aligned}
$$

where there are N web pages and n_{k} links from page p_{k}

- $d \approx 0.85$ is the probability someone keeps surfing web

Pagerank

Consider the Markov chain:

- Domain of S_{i} is the set of all web pages
- $P\left(S_{0}\right)$ is uniform; $P\left(S_{0}=p_{j}\right)=1 / N$

$$
\begin{aligned}
P\left(S_{i+1}\right. & \left.=p_{j} \mid S_{i}=p_{k}\right) \\
& =(1-d) / N+d * \begin{cases}1 / n_{k} & \text { if } p_{k} \text { links to } p_{j} \\
1 / N & \text { if } p_{k} \text { has no links }\end{cases}
\end{aligned}
$$

where there are N web pages and n_{k} links from page p_{k}

- $d \approx 0.85$ is the probability someone keeps surfing web

Pagerank

Consider the Markov chain:

- Domain of S_{i} is the set of all web pages
- $P\left(S_{0}\right)$ is uniform; $P\left(S_{0}=p_{j}\right)=1 / N$

$$
\begin{aligned}
P\left(S_{i+1}\right. & \left.=p_{j} \mid S_{i}=p_{k}\right) \\
& =(1-d) / N+d * \begin{cases}1 / n_{k} & \text { if } p_{k} \text { links to } p_{j} \\
1 / N & \text { if } p_{k} \text { has no links } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

where there are N web pages and n_{k} links from page p_{k}

- $d \approx 0.85$ is the probability someone keeps surfing web

Pagerank

Consider the Markov chain:

- Domain of S_{i} is the set of all web pages
- $P\left(S_{0}\right)$ is uniform; $P\left(S_{0}=p_{j}\right)=1 / N$

$$
\begin{aligned}
P\left(S_{i+1}\right. & \left.=p_{j} \mid S_{i}=p_{k}\right) \\
& =(1-d) / N+d * \begin{cases}1 / n_{k} & \text { if } p_{k} \text { links to } p_{j} \\
1 / N & \text { if } p_{k} \text { has no links } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

where there are N web pages and n_{k} links from page p_{k}

- $d \approx 0.85$ is the probability someone keeps surfing web
- This Markov chain converges to a stationary distribution over web pages (original $P\left(S_{i}\right)$ for $i=52$ for 24 million pages and 322 million links):
Pagerank - basis for Google's initial search engine

Simple Language Models: set-of-words

Sentence: $w_{1}, w_{2}, w_{3}, \ldots$
Set-of-words model:

- Each variable is Boolean: true when word is in the sentence and false otherwise.

Simple Language Models: set-of-words

Sentence: $w_{1}, w_{2}, w_{3}, \ldots$
Set-of-words model:

- Each variable is Boolean: true when word is in the sentence and false otherwise.
- What probabilities are provided?

Simple Language Models: set-of-words

Sentence: $w_{1}, w_{2}, w_{3}, \ldots$
Set-of-words model:

- Each variable is Boolean: true when word is in the sentence and false otherwise.
- What probabilities are provided?
- $P\left(\right.$ " $\left.{ }^{\prime \prime}\right), P($ " aardvark" $), \ldots, P(" z z z ")$

Simple Language Models: set-of-words

Sentence: $w_{1}, w_{2}, w_{3}, \ldots$
Set-of-words model:

- Each variable is Boolean: true when word is in the sentence and false otherwise.
- What probabilities are provided?
- $P("$ " $), P($ " aardvark" $), \ldots, P(" z z z ")$
- How do we condition on the question "how can I phone my phone"?

Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.

Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
What probabilities are required?

Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
What probabilities are required?

- $P\left(h_{i}\right)$ for each help page h_{i}. The user is interested in one best web page, so $\sum_{i} P\left(h_{i}\right)=1$.

Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
What probabilities are required?

- $P\left(h_{i}\right)$ for each help page h_{i}. The user is interested in one best web page, so $\sum_{i} P\left(h_{i}\right)=1$.
- $P\left(w_{j} \mid h_{i}\right)$ for each word w_{j} given page h_{i}. There can be multiple words used in a query.

Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
What probabilities are required?

- $P\left(h_{i}\right)$ for each help page h_{i}. The user is interested in one best web page, so $\sum_{i} P\left(h_{i}\right)=1$.
- $P\left(w_{j} \mid h_{i}\right)$ for each word w_{j} given page h_{i}. There can be multiple words used in a query.
- Given a help query:

Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
What probabilities are required?

- $P\left(h_{i}\right)$ for each help page h_{i}. The user is interested in one best web page, so $\sum_{i} P\left(h_{i}\right)=1$.
- $P\left(w_{j} \mid h_{i}\right)$ for each word w_{j} given page h_{i}. There can be multiple words used in a query.
- Given a help query: condition on the words in the query and display the most likely help page.

Simple Language Models: bag-of-words

Sentence: $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$.
Bag-of-words or unigram:

- Domain of each variable is the set of all words.

Simple Language Models: bag-of-words

Sentence: $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$.
Bag-of-words or unigram:

- Domain of each variable is the set of all words.
- What probabilities are provided?

Simple Language Models: bag-of-words

Sentence: $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$.
Bag-of-words or unigram:

- Domain of each variable is the set of all words.
- What probabilities are provided?
- $P\left(w_{i}\right)$ is a distribution over words for each position

Simple Language Models: bag-of-words

Sentence: $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$.
Bag-of-words or unigram:

- Domain of each variable is the set of all words.
- What probabilities are provided?
- $P\left(w_{i}\right)$ is a distribution over words for each position
- How do we condition on the question "how can I phone my phone"?

Simple Language Models: bigram

Sentence: $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$. bigram:

- Domain of each variable is the set of all words.

Simple Language Models: bigram

Sentence: $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$. bigram:

- Domain of each variable is the set of all words.
- What probabilities are provided?

Simple Language Models: bigram

Sentence: $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$. bigram:

- Domain of each variable is the set of all words.
- What probabilities are provided?
- $P\left(w_{i} \mid w_{i-1}\right)$ is a distribution over words for each position given the previous word

Simple Language Models: bigram

Sentence: $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$. bigram:

- Domain of each variable is the set of all words.
- What probabilities are provided?
- $P\left(w_{i} \mid w_{i-1}\right)$ is a distribution over words for each position given the previous word
- How do we condition on the question "how can I phone my phone"?

Simple Language Models: trigram

Sentence: $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$. trigram:

Domain of each variable is the set of all words.

Simple Language Models: trigram

Sentence: $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$. trigram:

Domain of each variable is the set of all words.
What probabilities are provided?

Simple Language Models: trigram

Sentence: $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$. trigram:

Domain of each variable is the set of all words.
What probabilities are provided?

- $P\left(w_{i} \mid w_{i-1}, w_{i-2}\right)$

N -gram

- $P\left(w_{i} \mid w_{i-1}, \ldots w_{i-n+1}\right)$ is a distribution over words given the previous $n-1$ words

Logic, Probability, Statistics, Ontology over time

From: Google Books Ngram Viewer
(https://books.google.com/ngrams)

Topic Model

Google's rephil

900,000 topics

350,000,000 links

12,000,000 words

Predictive Typing and Error Correction

domain $\left(W_{i}\right)=\left\{" a^{\prime \prime}, "\right.$ aarvark" $\left., \ldots,{ }^{\prime \prime} z z z ", " \perp ", " ? "\right\}$ $\operatorname{domain}\left(L_{j i}\right)=\left\{" a^{\prime \prime}, " b ", " c ", \ldots, " z ", " 1 ", " 2 ", \ldots\right\}$

Beyond N-grams

- A person with a big hairy cat drank the cold milk.
- Who or what drank the milk?

Beyond N-grams

- A person with a big hairy cat drank the cold milk.
- Who or what drank the milk?

Simple syntax diagram:

Hidden Markov Model

- A Hidden Markov Model (HMM) is a belief network:

The probabilities that need to be specified:

Hidden Markov Model

- A Hidden Markov Model (HMM) is a belief network:

The probabilities that need to be specified:

- $P\left(S_{0}\right)$ specifies initial conditions
- $P\left(S_{i+1} \mid S_{i}\right)$ specifies the dynamics
- $P\left(O_{i} \mid S_{i}\right)$ specifies the sensor model

Filtering

Filtering:

$$
P\left(S_{i} \mid o_{0}, \ldots, o_{i}\right)
$$

What is the current belief state based on the observation history?

Filtering

Filtering:

$$
P\left(S_{i} \mid o_{0}, \ldots, o_{i}\right)
$$

What is the current belief state based on the observation history?

- Observe O_{0}, query $S_{0} . \quad P\left(S_{0} \mid o_{0}\right)$

Filtering

Filtering:

$$
P\left(S_{i} \mid o_{0}, \ldots, o_{i}\right)
$$

What is the current belief state based on the observation history?

- Observe O_{0}, query $S_{0} . \quad P\left(S_{0} \mid o_{0}\right)$
- then observe O_{1}, query $S_{1} . \quad P\left(S_{1} \mid o_{0}, o_{1}\right)$

Filtering

Filtering:

$$
P\left(S_{i} \mid o_{0}, \ldots, o_{i}\right)
$$

What is the current belief state based on the observation history?

- Observe O_{0}, query $S_{0} . \quad P\left(S_{0} \mid o_{0}\right)$
- then observe O_{1}, query $S_{1} . \quad P\left(S_{1} \mid o_{0}, o_{1}\right)$
- then observe O_{2}, query $S_{2} . \quad P\left(S_{2} \mid o_{0}, o_{1}, o_{2}\right)$

Filtering

Filtering:

$$
P\left(S_{i} \mid o_{0}, \ldots, o_{i}\right)
$$

What is the current belief state based on the observation history?

- Observe O_{0}, query $S_{0} . \quad P\left(S_{0} \mid o_{0}\right)$
- then observe O_{1}, query $S_{1} . \quad P\left(S_{1} \mid o_{0}, o_{1}\right)$
- then observe O_{2}, query $S_{2} . \quad P\left(S_{2} \mid o_{0}, o_{1}, o_{2}\right)$
- ...

$$
P\left(S_{i} \mid o_{0}, \ldots, o_{i}\right) \propto P\left(o_{i} \mid S_{i} o_{0}, \ldots, o_{i-1}\right) P\left(S_{i} \mid o_{0}, \ldots, o_{i-1}\right)
$$

Filtering

Filtering:

$$
P\left(S_{i} \mid o_{0}, \ldots, o_{i}\right)
$$

What is the current belief state based on the observation history?

- Observe O_{0}, query $S_{0} . \quad P\left(S_{0} \mid o_{0}\right)$
- then observe O_{1}, query $S_{1} . \quad P\left(S_{1} \mid o_{0}, o_{1}\right)$
- then observe O_{2}, query $S_{2} . \quad P\left(S_{2} \mid o_{0}, o_{1}, o_{2}\right)$
- . . .

$$
\begin{aligned}
P\left(S_{i} \mid o_{0}, \ldots, o_{i}\right) & \propto P\left(o_{i} \mid S_{i} o_{0}, \ldots, o_{i-1}\right) P\left(S_{i} \mid o_{0}, \ldots, o_{i-1}\right) \\
& =P\left(o_{i} \mid S_{i}\right)
\end{aligned}
$$

Filtering

Filtering:

$$
P\left(S_{i} \mid o_{0}, \ldots, o_{i}\right)
$$

What is the current belief state based on the observation history?

- Observe O_{0}, query $S_{0} . \quad P\left(S_{0} \mid o_{0}\right)$
- then observe O_{1}, query $S_{1} . \quad P\left(S_{1} \mid o_{0}, o_{1}\right)$
- then observe O_{2}, query $S_{2} . \quad P\left(S_{2} \mid o_{0}, o_{1}, o_{2}\right)$
- ...

$$
\begin{aligned}
P\left(S_{i} \mid o_{0}, \ldots, o_{i}\right) & \propto P\left(o_{i} \mid S_{i} o_{0}, \ldots, o_{i-1}\right) P\left(S_{i} \mid o_{0}, \ldots, o_{i-1}\right) \\
& =P\left(o_{i} \mid S_{i}\right) \sum_{S_{i-1}} P\left(S_{i} \mid S_{i-1}\right) P\left(s_{i-1} \mid o_{0}, \ldots, o_{i-1}\right)
\end{aligned}
$$

Example: localization

- Suppose a robot wants to determine its location based on its actions and its sensor readings: Localization
- This can be represented by the augmented HMM:

Example localization domain

- Circular corridor, with 16 locations:

- Doors at positions: 2, 4, 7, 11 .
- Noisy Sensors
- Stochastic Dynamics
- Robot starts at an unknown location and must determine where it is.

Example Sensor Model

- $P($ Observe Door | At Door $)=0.8$
- $P($ Observe Door | Not At Door $)=0.1$

Example Dynamics Model

- $P\left(\right.$ loc $_{t+1}=L \mid$ action $_{t}=$ goRight \wedge loc $\left.c_{t}=L\right)=0.1$
- $P\left(\right.$ loc $_{t+1}=L+1 \mid$ action $_{t}=$ goRight \wedge loc $\left.c_{t}=L\right)=0.8$
- $P\left(l o c_{t+1}=L+2 \mid\right.$ action $_{t}=$ goRight \wedge loc $\left.c_{t}=L\right)=0.074$
- $P\left(l o c_{t+1}=L^{\prime} \mid\right.$ action $_{t}=$ goRight $\left.\wedge l o c_{t}=L\right)=0.002$ for any other location L^{\prime}.
- All location arithmetic is modulo 16 .
- The action goLeft works the same but to the left.

Combining sensor information

- Example: we can combine information from a light sensor and the door sensor Sensor Fusion

S_{t} robot location at time t
D_{t} door sensor value at time t
L_{t} light sensor value at time t

