• alarm and smoke are

- alarm and smoke are dependent
- alarm and smoke are given fire

- alarm and smoke are dependent
- *alarm* and *smoke* are independent given *fire*

- *alarm* and *smoke* are dependent
- alarm and smoke are independent given fire
- Intuitively, *fire* can explain *alarm* and *smoke*; learning one can affect the other by changing your belief in *fire*.

• alarm and report are

• *alarm* and *report* are dependent

- *alarm* and *report* are dependent
- alarm and report are given

leaving

- *alarm* and *report* are dependent
- alarm and report are independent given leaving

- *alarm* and *report* are dependent
- alarm and report are independent given leaving
- Intuitively, the only way that the *alarm* affects report is by affecting *leaving*.

• *tampering* and *fire* are

• *tampering* and *fire* are independent

- *tampering* and *fire* are independent
- *tampering* and *fire* are given *alarm*

- *tampering* and *fire* are independent
- *tampering* and *fire* are dependent given *alarm*

- *tampering* and *fire* are independent
- *tampering* and *fire* are dependent given *alarm*
- Intuitively, *tampering* can explain away fire

Understanding independence: example

1. On which given probabilities does P(N) depend?

- 1. On which given probabilities does P(N) depend?
- 2. If you were to observe a value for *B*, which variables' probabilities will change?

- 1. On which given probabilities does P(N) depend?
- 2. If you were to observe a value for *B*, which variables' probabilities will change?
- 3. If you were to observe a value for *N*, which variables' probabilities will change?

- 1. On which given probabilities does P(N) depend?
- 2. If you were to observe a value for *B*, which variables' probabilities will change?
- 3. If you were to observe a value for *N*, which variables' probabilities will change?
- 4. Suppose you had observed a value for *M*; if you were to then observe a value for *N*, which variables' probabilities will change?

- 1. On which given probabilities does P(N) depend?
- 2. If you were to observe a value for *B*, which variables' probabilities will change?
- 3. If you were to observe a value for *N*, which variables' probabilities will change?
- 4. Suppose you had observed a value for *M*; if you were to then observe a value for *N*, which variables' probabilities will change?
- 5. Suppose you had observed *B* and *Q*; which variables' probabilities will change when you observe *N*?

- If you observe variable(s) \overline{Y} , the variables whose posterior probability is different from their prior are:
 - The ancestors of \overline{Y} and
 - their descendants.
- Intuitively (if you have a causal belief network):
 - You do abduction to possible causes and
 - prediction from the causes.

d-separation

- A connection is a meeting of arcs in a belief network. A connection is open is defined as follows:
 - ▶ If there are arcs $A \rightarrow B$ and $B \rightarrow C$ such that $B \notin \overline{Z}$, then the connection at *B* between *A* and *C* is open.
 - If there are arcs B → A and B → C such that B ∉ Z, then the connection at B between A and C is open.
 - If there are arcs A → B and C → B such that B (or a descendent of B) is in Z, then the connection at B between A and C is open.

d-separation

- A connection is a meeting of arcs in a belief network. A connection is open is defined as follows:
 - If there are arcs A → B and B → C such that B ∉ Z, then the connection at B between A and C is open.
 - If there are arcs B → A and B → C such that B ∉ Z, then the connection at B between A and C is open.
 - If there are arcs A → B and C → B such that B (or a descendent of B) is in Z, then the connection at B between A and C is open.
- X is d-connected from Y given \overline{Z} if there is a path from X to Y, along open connections.
- X is d-separated from Y given \overline{Z} if it is not d-connected.

d-separation

- A connection is a meeting of arcs in a belief network. A connection is open is defined as follows:
 - If there are arcs A → B and B → C such that B ∉ Z, then the connection at B between A and C is open.
 - If there are arcs B → A and B → C such that B ∉ Z, then the connection at B between A and C is open.
 - If there are arcs A → B and C → B such that B (or a descendent of B) is in Z, then the connection at B between A and C is open.
- X is d-connected from Y given \overline{Z} if there is a path from X to Y, along open connections.
- X is d-separated from Y given \overline{Z} if it is not d-connected.
- \overline{X} is independent \overline{Y} given \overline{Z} for all conditional probabilities iff \overline{X} is d-separated from \overline{Y} given \overline{Z}

< 🗆 I

Markov Random Field

A Markov random field is composed of

- of a set of random variables: $X = \{X_1, X_2, \dots, X_n\}$ and
- a set of factors $\{f_1, \ldots, f_m\}$, where a factor is a non-negative function of a subset of the variables.

Markov Random Field

A Markov random field is composed of

- of a set of random variables: $X = \{X_1, X_2, \dots, X_n\}$ and
- a set of factors $\{f_1, \ldots, f_m\}$, where a factor is a non-negative function of a subset of the variables.

and defines a joint probability distribution:

$$P(X = x) \propto \prod_{k} f_k(X_k = x_k).$$

Markov Random Field

A Markov random field is composed of

- of a set of random variables: $X = \{X_1, X_2, \dots, X_n\}$ and
- a set of factors $\{f_1, \ldots, f_m\}$, where a factor is a non-negative function of a subset of the variables.

and defines a joint probability distribution:

$$P(X = x) \propto \prod_{k} f_{k}(X_{k} = x_{k}) .$$

$$P(X = x) = \frac{1}{Z} \prod_{k} f_{k}(X_{k} = x_{k}) .$$

$$Z = \sum_{x} \prod_{k} f_{k}(X_{k} = x_{k})$$

where $f_k(X_k)$ is a factor on $X_k \subseteq X$, and x_k is x projected onto X_k . Z is a normalization constant known as the partition function.

< 🗆)

• A Markov network is a graphical representation of a Markov random field where the nodes are the random variables and there is an arc between any two variables that are in a factor together.

- A Markov network is a graphical representation of a Markov random field where the nodes are the random variables and there is an arc between any two variables that are in a factor together.
- A factor graph is a bipartite graph, which contains a variable node for each random variable and a factor node for each factor. There is an edge between a variable node and a factor node if the variable appears in the factor.

- A Markov network is a graphical representation of a Markov random field where the nodes are the random variables and there is an arc between any two variables that are in a factor together.
- A factor graph is a bipartite graph, which contains a variable node for each random variable and a factor node for each factor. There is an edge between a variable node and a factor node if the variable appears in the factor.
- A belief network is a

- A Markov network is a graphical representation of a Markov random field where the nodes are the random variables and there is an arc between any two variables that are in a factor together.
- A factor graph is a bipartite graph, which contains a variable node for each random variable and a factor node for each factor. There is an edge between a variable node and a factor node if the variable appears in the factor.
- A belief network is a type of Markov random field where the factors represent conditional probabilities, there is a factor for each variable, and directed graph is acyclic.

- The Markov blanket of a variable X is the set of variables that are in factors with X.
- A variable is independent of the other variables given its Markov blanket.

- The Markov blanket of a variable X is the set of variables that are in factors with X.
- A variable is independent of the other variables given its Markov blanket.
- X is connected to Y given \overline{Z} if there is a path from X to Y in the Markov network, which does not contain an element of Z.
- X is separated from Y given \overline{Z} if it is not connected.

- The Markov blanket of a variable X is the set of variables that are in factors with X.
- A variable is independent of the other variables given its Markov blanket.
- X is connected to Y given \overline{Z} if there is a path from X to Y in the Markov network, which does not contain an element of Z.
- X is separated from Y given \overline{Z} if it is not connected.
- A positive distribution is one that does not contain zero probabilities.
- \overline{X} is independent \overline{Y} given \overline{Z} for all positive distributions iff \overline{X} is separated from \overline{Y} given \overline{Z}

- The parameters of a graphical model are the numbers that define the model.
- A belief network is a canonical representation: given the structure and the distribution, the parameters are uniquely determined.
- A Markov random field is not a canonical representation. Many different parameterizations result in the same distribution.

There are many representations of conditional probabilities and factors:

There are many representations of conditional probabilities and factors:

- Tables
- Decision Trees
- Rules
- Weighted Logical Formulae
- Noisy-or
- Logistic Function
- Neural network

Tabular Representation

	Α	В	С	D	Prob
	true	true	true	true	0.9
	true	true	true	false	0.1
	true	true	false	true	0.9
	true	true	false	false	0.1
	true	false	true	true	0.2
	true	false	true	false	0.8
	true	false	false	true	0.2
:	true	false	false	false	0.8
	false	true	true	true	0.3
	false	true	true	false	0.7
	false	true	false	true	0.4
	false	true	false	false	0.6
	false	false	true	true	0.3
	false	false	true	false	0.7
	false	false	false	true	0.4
	false	false	false	false	0.6

 $P(D \mid A, B, C)$:

Image: Image:

$$d \leftrightarrow ((a \land b \land n_0) \\ \lor (a \land \neg b \land n_1) \\ \lor (\neg a \land c \land n_2) \\ \lor (\neg a \land \neg c \land n_3))$$

 n_i are independent:

$$P(n_0) = 0.9$$

 $P(n_1) = 0.2$
 $P(n_2) = 0.3$
 $P(n_3) = 0.4$

Noisy-or

The robot is wet if it gets wet from rain or coffee or sprinkler or another reason. They each have a probability of making the robot wet \longrightarrow noisy-or.

Noisy-or

The robot is wet if it gets wet from rain or coffee or sprinkler or another reason. They each have a probability of making the robot wet \rightarrow noisy-or.

X has Boolean parents $V_1 \dots V_k$, $\longrightarrow k + 1$ parameters $p_0 \dots p_k$. invent Boolean variables A_0, A_1, \dots, A_k , with probabilities $P(A_0) = p_0$ and for i > 0

$$P(A_i = true \mid V_i = true) = p_i$$

$$P(A_i = true \mid V_i = false) = 0$$

$$P(X \mid A_0, A_1, \dots, A_k) = \begin{cases} 1 & \text{if } \exists i \ A_i \text{ is true} \\ 0 & \text{if } \forall i \ A_i \text{ is false} \end{cases}$$

- Suppose the robot could get wet from rain or coffee.
- There is a probability that it gets wet from rain if it rains, and a probability that it gets wet from coffee if it has coffee, and a probability that it gets wet for other reasons.

- Suppose the robot could get wet from rain or coffee.
- There is a probability that it gets wet from rain if it rains, and a probability that it gets wet from coffee if it has coffee, and a probability that it gets wet for other reasons.
- We could have:

 $P(wet_from_rain | rain) = 0.3,$ $P(wet_from_coffee | coffee) = 0.2$ $P(wet_for_other_reasons) = 0.1.$

- Suppose the robot could get wet from rain or coffee.
- There is a probability that it gets wet from rain if it rains, and a probability that it gets wet from coffee if it has coffee, and a probability that it gets wet for other reasons.
- We could have:

 $P(wet_from_rain | rain) = 0.3,$ $P(wet_from_coffee | coffee) = 0.2$ $P(wet_for_other_reasons) = 0.1.$

• The robot is wet if it wet from rain, wet from coffee, or wet for other reasons.

 $wet \leftrightarrow wet_from_rain \lor wet_from_coffe \lor wet_for_other_reasons$

$$P(h \mid e) = rac{P(h \wedge e)}{P(e)}$$

$$egin{aligned} P(h \mid e) &= rac{P(h \wedge e)}{P(e)} \ &= rac{P(h \wedge e)}{P(h \wedge e) + P(\neg h \wedge e)} \end{aligned}$$

$$P(h \mid e) = \frac{P(h \land e)}{P(e)}$$
$$= \frac{P(h \land e)}{P(h \land e) + P(\neg h \land e)}$$
$$= \frac{1}{1 + P(\neg h \land e)/P(h \land e)}$$

$$P(h \mid e) = \frac{P(h \land e)}{P(e)}$$
$$= \frac{P(h \land e)}{P(h \land e) + P(\neg h \land e)}$$
$$= \frac{1}{1 + P(\neg h \land e)/P(h \land e)}$$
$$= \frac{1}{1 + e^{-\log P(h \land e)/P(\neg h \land e)}}$$

$$P(h \mid e) = \frac{P(h \land e)}{P(e)}$$

$$= \frac{P(h \land e)}{P(h \land e) + P(\neg h \land e)}$$

$$= \frac{1}{1 + P(\neg h \land e) / P(h \land e)}$$

$$= \frac{1}{1 + e^{-\log P(h \land e) / P(\neg h \land e)}}$$

$$= sigmoid(\log odds(h \mid e))$$
sigmoid(x) = $\frac{1}{1 + e^{-x}}$
odds(h \mid e) = $\frac{P(h \land e)}{P(\neg h \land e)}$

Image: Image:

A conditional probability is the sigmoid of the log-odds.

A logistic function is the sigmoid of a linear function.

Logistic Representation of Conditional Probability

$$P(d \mid A, B, C) = sigmoid(0.9^{\dagger} * A * B)$$

+ $0.2^{\dagger} * A * (1 - B)$
+ $0.3^{\dagger} * (1 - A) * C$
+ $0.4^{\dagger} * (1 - A) * (1 - C))$

where 0.9^{\dagger} is *sigmoid*⁻¹(0.9).

Logistic Representation of Conditional Probability

$$egin{aligned} P(d \mid A, B, C) &= sigmoid(0.9^{\dagger} * A * B \ &+ 0.2^{\dagger} * A * (1-B) \ &+ 0.3^{\dagger} * (1-A) * C \ &+ 0.4^{\dagger} * (1-A) * (1-C)) \end{aligned}$$

where 0.9^{\dagger} is sigmoid⁻¹(0.9).

$$P(d \mid A, B, C) = sigmoid(0.4^{\dagger} + (0.2^{\dagger} - 0.4^{\dagger}) * A + (0.9^{\dagger} - 0.2^{\dagger}) * A * B + ...$$

• Build a neural network to predict D from A, B, C

- Build a neural network to predict D from A, B, C
- A neural network tries to predict expected values

- Build a neural network to predict D from A, B, C
- A neural network tries to predict expected values
- The expected value of a variable with domain {0,1} is its probability.

- Build a neural network to predict D from A, B, C
- A neural network tries to predict expected values
- The expected value of a variable with domain {0,1} is its probability.

Typically use a sigmoid activation at the root, and optimize with log likelihood.

- Build a neural network to predict D from A, B, C
- A neural network tries to predict expected values
- The expected value of a variable with domain {0,1} is its probability.

Typically use a sigmoid activation at the root, and optimize with log likelihood.

- such a neural network is a logistic regression model with learned features

• For other discrete variables, the expected value is *not* the probability.

- Build a neural network to predict D from A, B, C
- A neural network tries to predict expected values
- The expected value of a variable with domain {0,1} is its probability.

Typically use a sigmoid activation at the root, and optimize with log likelihood.

- such a neural network is a logistic regression model with learned features

• For other discrete variables, the expected value is *not* the probability.

We create a Boolean ({0,1}) variable for each value — indicator variable \equiv having an output for each value

< 🗆 I

- Build a neural network to predict D from A, B, C
- A neural network tries to predict expected values
- The expected value of a variable with domain {0,1} is its probability.

Typically use a sigmoid activation at the root, and optimize with log likelihood.

- such a neural network is a logistic regression model with learned features

• For other discrete variables, the expected value is *not* the probability.

We create a Boolean ({0,1}) variable for each value — indicator variable \equiv having an output for each value

• For other domains, a Bayesian neural network can represent the distribution over the outputs (not just a point prediction).