
“The mind is a neural computer, fitted by natural
selection with combinatorial algorithms for causal and
probabilistic reasoning about plants, animals, objects,
and people.”

. . .
“In a universe with any regularities at all, deci-

sions informed about the past are better than deci-
sions made at random. That has always been true,
and we would expect organisms, especially informa-
vores such as humans, to have evolved acute intuitions
about probability. The founders of probability, like the
founders of logic, assumed they were just formalizing
common sense.”

Steven Pinker, How the Mind Works, 1997, pp. 524, 343.
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Learning Objectives

At the end of the class you should be able to:

justify the use and semantics of probability

know how to compute marginals and apply Bayes’
theorem

identify conditional independence

build a belief network for a domain

predict the inferences for a belief network

explain the predictions of a causal model
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Using Uncertain Knowledge

Agents don’t have complete knowledge about the world.

Agents need to make (informed) decisions given their
uncertainty.

It isn’t enough to assume what the world is like.
Example: wearing a seat belt.

An agent needs to reason about its uncertainty.

When an agent makes an action under uncertainty, it is
gambling =⇒ probability.
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Probability

Probability is an agent’s measure of belief in some
proposition — subjective probability.

An agent’s belief depends on its prior belief and what it
observes.

Example: An agent’s probability of a particular bird flying
I Other agents may have different probabilities
I An agent’s belief in a bird’s flying ability is affected by

what the agent knows about that bird.
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Random Variables

A random variable starts with upper case.

The domain of a variable X , written domain(X ), is the
set of values X can take. (Sometimes use “range”,
“frame”, “possible values”).

A tuple of random variables 〈X1, . . . ,Xn〉 is a complex
random variable with domain
domain(X1)× · · · × domain(Xn).
Often the tuple is written as X1, . . . ,Xn.

Assignment X = x means variable X has value x .

A proposition is a Boolean formula made from
assignments of values to variables or inequality (e.g., <,
≤,. . . ) between variables and values.
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Possible World Semantics

A possible world specifies an assignment of one value to
each random variable.

A random variable is a function from possible worlds into
the domain of the random variable.

ω |= X = x
means variable X is assigned value x in world ω.

Logical connectives have their standard meaning:

ω |= α ∧ β if ω |= α and ω |= β

ω |= α ∨ β if ω |= α or ω |= β

ω |= ¬α if ω 6|= α

Let Ω be the set of all possible worlds.
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Semantics of Probability

Probability defines a measure on sets of possible worlds.
A probability measure is a function µ from sets of worlds into
the non-negative real numbers such that:

µ(Ω) = 1

µ(S1 ∪ S2) = µ(S1) + µ(S2)
if S1 ∩ S2 = {}.

Then P(α) = µ({ω | ω |= α}).
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Semantics

Possible Worlds:

Suppose the measure of each singleton world is 0.1.

What is the probability of circle?

What us the probability of star?

What is the probability of orange?

What is the probability of orange and star?

What is the probability of orange and circle?

Note that P(α ∧ β) is not a function of P(α) and P(β).
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Axioms of Probability (finite case)

Three axioms define what follows from a set of probabilities:

Axiom 1 0 ≤ P(a) for any proposition a.

Axiom 2 P(true) = 1

Axiom 3 P(a ∨ b) = P(a) + P(b) if a and b cannot both
be true.

These axioms are sound and complete with respect to the
semantics.
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Conditioning

Probabilistic conditioning specifies how to revise beliefs
based on new information.

An agent builds a probabilistic model taking all
background information into account.
This gives the prior probability.

All other information must be conditioned on.

If evidence e is the all of the information obtained
subsequently, the conditional probability P(h | e) of h
given e is the posterior probability of h.
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Semantics of Conditional Probability

Evidence e rules out possible worlds incompatible with e.

Evidence e induces a new measure, µe , over possible
worlds:

µe(S) =

{

c × µ(S) if ω |= e for all ω ∈ S
0 if ω 6|= e for all ω ∈ S

We can show c = 1
P(e)

.

The conditional probability of formula h given evidence e
is

P(h | e) = µe({ω : ω |= h})

=
P(h ∧ e)

P(e)
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Conditioning

Possible Worlds:

Observe Color=orange:

P(Shape=star |
Color=orange) = 0.5

P(Shape=circle |
Color=orange) = 0.25
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Exercise

Flu Sneeze Snore µ
true true true 0.064
true true false 0.096
true false true 0.016
true false false 0.024
false true true 0.096
false true false 0.144
false false true 0.224
false false false 0.336

What is:

(a) P(flu ∧ sneeze)

(b) P(flu ∧ ¬sneeze)

(c) P(flu)

(d) P(sneeze | flu)

(e) P(¬flu ∧ sneeze)

(f) P(flu | sneeze)

(g) P(sneeze | flu∧snore)

(h) P(flu | sneeze∧snore)
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Chain Rule

Semantics of conditioning gives: P(h ∧ e) = P(h | e)× P(e)

P(fn ∧ fn−1 ∧ . . . ∧ f1)

= P(fn | fn−1 ∧ · · · ∧ f1)×
P(fn−1 ∧ · · · ∧ f1)

= P(fn | fn−1 ∧ · · · ∧ f1)×
P(fn−1 | fn−2 ∧ · · · ∧ f1)×
P(fn−1 ∧ · · · ∧ f1)

= P(fn | fn−1 ∧ · · · ∧ f1)×
P(fn−1 | fn−2 ∧ · · · ∧ f1)

× · · · × P(f3 | f2 ∧ f1)× P(f2 | f1)× P(f1)

=
n∏

i=1

P(fi | f1 ∧ · · · ∧ fi−1)
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P(fn ∧ fn−1 ∧ . . . ∧ f1)

= P(fn | fn−1 ∧ · · · ∧ f1)×
P(fn−1 ∧ · · · ∧ f1)

= P(fn | fn−1 ∧ · · · ∧ f1)×
P(fn−1 | fn−2 ∧ · · · ∧ f1)×
P(fn−1 ∧ · · · ∧ f1)

= P(fn | fn−1 ∧ · · · ∧ f1)×
P(fn−1 | fn−2 ∧ · · · ∧ f1)

× · · · × P(f3 | f2 ∧ f1)× P(f2 | f1)× P(f1)

=
n∏

i=1

P(fi | f1 ∧ · · · ∧ fi−1)
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Bayes’ theorem

The chain rule and commutativity of conjunction (h ∧ e is
equivalent to e ∧ h) gives us:

P(h ∧ e) =

P(h | e)× P(e)

= P(e | h)× P(h).

If P(e) 6= 0, divide the right hand sides by P(e):

P(h | e) =
P(e | h)× P(h)

P(e)
.

This is Bayes’ theorem.
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Why is Bayes’ theorem interesting?

Often you have causal knowledge:
P(symptom | disease)

P(light is off | status of switches and switch positions)
P(alarm | fire)

P(image looks like | a tree is in front of a car)

and want to do evidential reasoning:
P(disease | symptom)
P(status of switches | light is off and switch positions)
P(fire | alarm)

P(a tree is in front of a car | image looks like )
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Exercise

A cab was involved in a hit-and-run accident at night. Two
cab companies, the Green and the Blue, operate in the city.
You are given the following data:

85% of the cabs in the city are Green and 15% are Blue.

A witness identified the cab as Blue. The court tested the
reliability of the witness in the circumstances that existed
on the night of the accident and concluded that the
witness correctly identifies each one of the two colours
80% of the time and failed 20% of the time.

What is the probability that the cab involved in the accident
was Blue?

[From D. Kahneman, Thinking Fast and Slow, 2011, p. 166.]
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