Handling Overfitting

- Overfitting occurs when the system finds regularities in the training set that are not in the test set.
- Often results in overconfidence (more extreme probabilities) and overly complex models.

Handling Overfitting

- Overfitting occurs when the system finds regularities in the training set that are not in the test set.
- Often results in overconfidence (more extreme probabilities) and overly complex models.
- Prefer simpler models. How do we trade off simplicity and fit to data?
- Test it on some hold-out data.

Description Length

Bayes Rule:

$$
\begin{aligned}
& P(h \mid d) \propto P(d \mid h) P(h) \\
& \begin{aligned}
\arg \max _{h} P(h \mid d) & =\arg \max _{h} P(d \mid h) P(h) \\
& =\arg \max _{h}(\log P(d \mid h)+\log P(h))
\end{aligned}
\end{aligned}
$$

Description Length

Bayes Rule:

$$
\begin{aligned}
& P(h \mid d) \propto P(d \mid h) P(h) \\
& \begin{aligned}
\arg \max _{h} P(h \mid d) & =\arg \max _{h} P(d \mid h) P(h) \\
& =\arg \max _{h}(\log P(d \mid h)+\log P(h))
\end{aligned}
\end{aligned}
$$

- $\log P(d \mid h)$ measures fit to data
- $\log P(h)$ measures model complexity

Regularization

Logistic regression, minimize sum-of-squares:

$$
\operatorname{minimize} \operatorname{Error}_{E}(\bar{w})=\sum_{e \in E}\left(Y(e)-f\left(\sum_{i} w_{i} X_{i}(e)\right)\right)^{2}
$$

Regularization

Logistic regression, minimize sum-of-squares:

$$
\operatorname{minimize} \operatorname{Error}_{E}(\bar{w})=\sum_{e \in E}\left(Y(e)-f\left(\sum_{i} w_{i} X_{i}(e)\right)\right)^{2}
$$

L 2 regularization (penalize deviation from m):

Regularization

Logistic regression, minimize sum-of-squares:

$$
\operatorname{minimize} \operatorname{Error}_{E}(\bar{w})=\sum_{e \in E}\left(Y(e)-f\left(\sum_{i} w_{i} X_{i}(e)\right)\right)^{2}
$$

L 2 regularization (penalize deviation from m):

$$
\operatorname{minimize} \sum_{e \in E}\left(Y(e)-f\left(\sum_{i} w_{i} X_{i}(e)\right)\right)^{2}+\lambda \sum_{i}\left(w_{i}-m\right)^{2}
$$

Regularization

Logistic regression, minimize sum-of-squares:

$$
\operatorname{minimize} \operatorname{Error}_{E}(\bar{w})=\sum_{e \in E}\left(Y(e)-f\left(\sum_{i} w_{i} X_{i}(e)\right)\right)^{2}
$$

L 2 regularization (penalize deviation from m):

$$
\operatorname{minimize} \sum_{e \in E}\left(Y(e)-f\left(\sum_{i} w_{i} X_{i}(e)\right)\right)^{2}+\lambda \sum_{i}\left(w_{i}-m\right)^{2}
$$

L1 regularization (penalize deviation from m):

Regularization

Logistic regression, minimize sum-of-squares:

$$
\operatorname{minimize} \operatorname{Error}_{E}(\bar{w})=\sum_{e \in E}\left(Y(e)-f\left(\sum_{i} w_{i} X_{i}(e)\right)\right)^{2}
$$

L 2 regularization (penalize deviation from m):

$$
\operatorname{minimize} \sum_{e \in E}\left(Y(e)-f\left(\sum_{i} w_{i} X_{i}(e)\right)\right)^{2}+\lambda \sum_{i}\left(w_{i}-m\right)^{2}
$$

L1 regularization (penalize deviation from m):

$$
\operatorname{minimize} \sum_{e \in E}\left(Y(e)-f\left(\sum_{i} w_{i} X_{i}(e)\right)\right)^{2}+\lambda \sum_{i}\left|w_{i}-m\right|
$$

λ is a parameter given a priori and/or learned.

L2 Regularization

- Simplest case, no inputs: find p to minimize:

$$
\sum_{i}\left(p-d_{i}\right)^{2}+\lambda(p-m)^{2}
$$

L2 Regularization

- Simplest case, no inputs: find p to minimize:

$$
\sum_{i}\left(p-d_{i}\right)^{2}+\lambda(p-m)^{2}
$$

This is ambiguous! Why?

L2 Regularization

- Simplest case, no inputs: find p to minimize:

$$
\sum_{i}\left(p-d_{i}\right)^{2}+\lambda(p-m)^{2}
$$

This is ambiguous! Why?

- Does it mean:

0

$$
\left(\sum_{i}\left(p-d_{i}\right)^{2}\right)+\lambda(p-m)^{2}
$$

1

$$
\sum_{i}\left(\left(p-d_{i}\right)^{2}+\lambda(p-m)^{2}\right)
$$

- Does it matter?

L2 Regularization: version 0

Minimize:

$$
\left(\sum_{i}\left(p-d_{i}\right)^{2}\right)+\lambda(p-m)^{2}
$$

- Is at a minimum when:

L2 Regularization: version 0

Minimize:

$$
\left(\sum_{i}\left(p-d_{i}\right)^{2}\right)+\lambda(p-m)^{2}
$$

- Is at a minimum when:

$$
p=\frac{m \lambda+\sum_{i} d_{i}}{\lambda+n}
$$

- This is equivalent to

L2 Regularization: version 0

Minimize:

$$
\left(\sum_{i}\left(p-d_{i}\right)^{2}\right)+\lambda(p-m)^{2}
$$

- Is at a minimum when:

$$
p=\frac{m \lambda+\sum_{i} d_{i}}{\lambda+n}
$$

- This is equivalent to a pseudocount with λ extra examples, each with value m.

L2 Regularization: version 1

Minimize:

$$
\sum_{i}\left(\left(p-d_{i}\right)^{2}+\lambda(p-m)^{2}\right)
$$

- Is at a minimum when:

L2 Regularization: version 1

Minimize:

$$
\sum_{i}\left(\left(p-d_{i}\right)^{2}+\lambda(p-m)^{2}\right)
$$

- Is at a minimum when:

$$
p=\frac{\lambda}{1+\lambda} m+\frac{1}{1+\lambda} \frac{\sum_{i} d_{i}}{n}
$$

- This is equivalent to

L2 Regularization: version 1

Minimize:

$$
\sum_{i}\left(\left(p-d_{i}\right)^{2}+\lambda(p-m)^{2}\right)
$$

- Is at a minimum when:

$$
p=\frac{\lambda}{1+\lambda} m+\frac{1}{1+\lambda} \frac{\sum_{i} d_{i}}{n}
$$

- This is equivalent to probabilistic mixture of m and the average of the data.

Gradient descent:
procedure Learn $0(D, m, \eta, \lambda)$
$p \leftarrow m$
repeat
for each $d_{i} \in D$ do

Gradient descent:
procedure Learn0(D, m, η, λ)
$p \leftarrow m$
repeat
for each $d_{i} \in D$ do

$$
\begin{array}{r}
p \leftarrow p-\eta *\left(p-d_{i}\right) \\
p \leftarrow p-\eta * \lambda *(p-m)
\end{array}
$$

until termination return p

Gradient descent:
procedure LearnO(D, m, η, λ)
$p \leftarrow m$
repeat for each $d_{i} \in D$ do

$$
\begin{array}{r}
p \leftarrow p-\eta *\left(p-d_{i}\right) \\
p \leftarrow p-\eta * \lambda *(p-m)
\end{array}
$$

until termination
return p
procedure Learn1 (D, m, η, λ)
$p \leftarrow m$
repeat for each $d_{i} \in D$ do

$$
\begin{aligned}
& p \leftarrow p-\eta *\left(p-d_{i}\right) \\
& p \leftarrow p-\eta * \lambda *(p-m)
\end{aligned}
$$

until termination
return p

L2 regularization: issues

- Can't we just distribute the λ term out of the sum (as it doesn't depend on i)?

L2 regularization: issues

- Can't we just distribute the λ term out of the sum (as it doesn't depend on i)?
- How does the amount of data affect the prediction? (What if there is lots of data? What if there is very little?)

L2 regularization: issues

- Can't we just distribute the λ term out of the sum (as it doesn't depend on i)?
- How does the amount of data affect the prediction? (What if there is lots of data? What if there is very little?)
- How would the $\lambda \mathrm{s}$ be different?

L2 regularization: issues

- Can't we just distribute the λ term out of the sum (as it doesn't depend on i)?
- How does the amount of data affect the prediction? (What if there is lots of data? What if there is very little?)
- How would the $\lambda \mathrm{s}$ be different?
- When should we use either one?

L2 regularization: issues

- Can't we just distribute the λ term out of the sum (as it doesn't depend on i)?
- How does the amount of data affect the prediction? (What if there is lots of data? What if there is very little?)
- How would the $\lambda \mathrm{s}$ be different?
- When should we use either one?
- Can we use both?

L2 regularization: issues

- Can't we just distribute the λ term out of the sum (as it doesn't depend on i)?
- How does the amount of data affect the prediction? (What if there is lots of data? What if there is very little?)
- How would the $\lambda \mathrm{s}$ be different?
- When should we use either one?
- Can we use both?
- How does it differ for minimizing log loss (maximizing log likelihood)?

L2 regularization: issues

- Can't we just distribute the λ term out of the sum (as it doesn't depend on i)?
- How does the amount of data affect the prediction? (What if there is lots of data? What if there is very little?)
- How would the $\lambda \mathrm{s}$ be different?
- When should we use either one?
- Can we use both?
- How does it differ for minimizing log loss (maximizing log likelihood)?
- Is there a similar analysis for L1 regularization?

Cross Validation

Idea: split the training set into:

- new training set
- validation set

Use the new training set to train on. Use the model that works best on the validation set.

- To evaluate your algorithm, the test should must not be used for training or validation.
- Many variants: k-fold cross validation, leave-one-out cross validation,...

