
Handling Overfitting

Overfitting occurs when the system finds regularities in
the training set that are not in the test set.

Often results in overconfidence (more extreme
probabilities) and overly complex models.

Prefer simpler models. How do we trade off simplicity and
fit to data?

Test it on some hold-out data.
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Description Length

Bayes Rule:

P(h|d) ∝ P(d |h)P(h)

arg max
h

P(h|d) = arg max
h

P(d |h)P(h)

= arg max
h

(logP(d |h) + logP(h))

logP(d |h) measures fit to data

logP(h) measures model complexity
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Regularization

Logistic regression, minimize sum-of-squares:

minimize ErrorE (w) =
∑
e∈E

(
Y (e)− f (

∑
i

wiXi(e))

)2

.

L2 regularization (penalize deviation from m):

minimize
∑
e∈E

(
Y (e)− f (

∑
i

wiXi(e))

)2

+λ
∑
i

(wi−m)2

L1 regularization (penalize deviation from m):

minimize
∑
e∈E

(
Y (e)− f (

∑
i

wiXi(e))

)2

+λ
∑
i

|wi −m|

λ is a parameter given a priori and/or learned.
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L2 Regularization

Simplest case, no inputs: find p to minimize:∑
i

(p − di)
2 + λ(p −m)2

This is ambiguous! Why?

Does it mean:
0 (∑

i

(p − di )
2

)
+ λ(p −m)2

1 ∑
i

(
(p − di )

2 + λ(p −m)2
)

Does it matter?
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L2 Regularization: version 0

Minimize:(∑
i

(p − di)
2

)
+ λ(p −m)2

Is at a minimum when:

p =
mλ +

∑
i di

λ + n

This is equivalent to a pseudocount with λ extra
examples, each with value m.
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L2 Regularization: version 1

Minimize:∑
i

(
(p − di)

2 + λ(p −m)2
)

Is at a minimum when:

p =
λ

1 + λ
m +

1

1 + λ

∑
i di
n

This is equivalent to probabilistic mixture of m and the
average of the data.
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Gradient descent:

procedure Learn0(D,m, η, λ)
p ← m
repeat

for each di ∈ D do

p ← p − η ∗ (p − di)

p ← p − η ∗ λ ∗ (p −m)
until termination
return p

procedure Learn1(D,m, η, λ)
p ← m
repeat

for each di ∈ D do
p ← p − η ∗ (p − di)
p ← p − η ∗ λ ∗ (p −m)

until termination
return p
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L2 regularization: issues

Can’t we just distribute the λ term out of the sum
(as it doesn’t depend on i)?

How does the amount of data affect the prediction?
(What if there is lots of data? What if there is very
little?)

How would the λs be different?

When should we use either one?

Can we use both?

How does it differ for minimizing log loss (maximizing log
likelihood)?

Is there a similar analysis for L1 regularization?
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Cross Validation

Idea: split the training set into:

new training set

validation set

Use the new training set to train on. Use the model that
works best on the validation set.

To evaluate your algorithm, the test should must not be
used for training or validation.

Many variants: k-fold cross validation, leave-one-out cross
validation,. . .
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