Learning Objectives

At the end of the class you should be able to:

- show an example of decision-tree learning
- explain how to avoid overfitting in decision-tree learning
- explain the relationship between linear and logistic regression
- explain how overfitting can be avoided

Basic Models for Supervised Learning

Many learning algorithms can be seen as deriving from:

- decision trees
- linear (and non-linear) classifiers

Learning Decision Trees

- Representation is a decision tree.
- Bias is towards simple decision trees.
- Search through the space of decision trees, from simple decision trees to more complex ones.

Decision trees

A (binary) decision tree (for a particular target feature) is a tree where:

- Each nonleaf node is labeled with an test (function of input features).
- The arcs out of a node labeled with values for the test.
- The leaves of the tree are labeled with point prediction of the target feature.

Example Classification Data

Training Examples:

	Action	Author	Thread	Length	Where
e1	skips	known	new	long	home
e2	reads	unknown	new	short	work
e3	skips	unknown	old	long	work
e4	skips	known	old	long	home
e5	reads	known	new	short	home
e6	skips	known	old	long	work

New Examples:

e7	$? ? ?$	known	new	short	work
e8	$? ? ?$	unknown	new	short	work

We want to classify new examples on feature Action based on the examples' Author, Thread, Length, and Where.

Example Decision Trees

Equivalent Programs

define action(e):
if long(e): return skips
else if new (e): return reads
else if unknown(e): return skips
else: return reads
Logic Program:

```
skips }(E)\leftarrow\operatorname{long}(E)
    reads}(E)\leftarrow\operatorname{short}(E)\wedge\operatorname{new}(E)
    reads }(E)\leftarrow\operatorname{short}(E)\wedge\mathrm{ follow_up (E) ^ known (E).
    skips }(E)\leftarrow\operatorname{short}(E)\wedge\mathrm{ follow_up (E)^unknown (E).
```

or with negation as failure:
reads \leftarrow short \wedge new.
reads \leftarrow short $\wedge \sim$ new \wedge known.

Issues in decision-tree learning

- Given some training examples, which decision tree should be generated?
- A decision tree can represent any discrete function of the input features.
- You need a bias. Example, prefer the smallest tree. Least depth? Fewest nodes? Which trees are the best predictors of unseen data?
- How should you go about building a decision tree? The space of decision trees is too big for systematic search for the smallest decision tree.

Searching for a Good Decision Tree

- The input is a set of input features, a target feature and, a set of training examples.
- Either:
- Stop and return a value for the target feature or a distribution over target feature values
- Choose a test (e.g. an input feature) to split on. For each value of the test, build a subtree for those examples with this value for the test.

Choices in implementing the algorithm

- When to stop:

Choices in implementing the algorithm

- When to stop:
- no more input features
- all examples are classified the same
- too few examples to make an informative split

Choices in implementing the algorithm

- When to stop:
- no more input features
- all examples are classified the same
- too few examples to make an informative split
- Which test to split on isn't defined. Often we use myopic split: which single split gives smallest error.

Choices in implementing the algorithm

- When to stop:
- no more input features
- all examples are classified the same
- too few examples to make an informative split
- Which test to split on isn't defined. Often we use myopic split: which single split gives smallest error.
- With multi-valued features, the text can be can to split on all values or split values into half. More complex tests are possible.

Example Classification Data

Training Examples:

	Action	Author	Thread	Length	Where
e1	skips	known	new	long	home
e2	reads	unknown	new	short	work
e3	skips	unknown	old	long	work
e4	skips	known	old	long	home
e5	reads	known	new	short	home
e6	skips	known	old	long	work

New Examples:

e7	$? ? ?$	known	new	short	work
e8	$? ? ?$	unknown	new	short	work

We want to classify new examples on feature Action based on the examples' Author, Thread, Length, and Where.

Example: possible splits

Handling Overfitting

- This algorithm can overfit the data. This occurs when

Handling Overfitting

- This algorithm can overfit the data.

This occurs when noise and correlations in the training set that are not reflected in the data as a whole.

- To handle overfitting:
- restrict the splitting, and split only when the split is useful.
- allow unrestricted splitting and prune the resulting tree where it makes unwarranted distinctions.
- learn multiple trees and average them.

Linear Function

A linear function of features X_{1}, \ldots, X_{n} is a function of the form:

$$
f^{\bar{w}}\left(X_{1}, \ldots, X_{n}\right)=w_{0}+w_{1} X_{1}+\cdots+w_{n} X_{n}
$$

We invent a new feature X_{0} which has value 1 , to make it not a special case.

$$
f^{\bar{w}}\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=0}^{n} w_{i} X_{i}
$$

Linear Regression

- Aim: predict feature Y from features X_{1}, \ldots, X_{n}.
- A feature is a function of an example.
$X_{i}(e)$ is the value of feature X_{i} on example e.
- Linear regression: predict a linear function of the input features.

$$
\begin{aligned}
\widehat{Y}^{\bar{w}}(e) & =w_{0}+w_{1} X_{1}(e)+\cdots+w_{n} X_{n}(e) \\
& =\sum_{i=0}^{n} w_{i} X_{i}(e)
\end{aligned}
$$

$\widehat{Y}^{\bar{w}}(e)$ is the predicted value for Y on example e. It depends on the weights \bar{w}.

Sum of squares error for linear regression

The sum of squares error on examples E for target Y is:

$$
\begin{aligned}
\operatorname{SSE}(E, \bar{w}) & =\sum_{e \in E}\left(Y(e)-\widehat{Y}^{\bar{w}}(e)\right)^{2} \\
& =\sum_{e \in E}\left(Y(e)-\sum_{i=0}^{n} w_{i} X_{i}(e)\right)^{2} .
\end{aligned}
$$

Goal: given examples E, find weights that minimize $\operatorname{SSE}(E, \bar{w})$.

Finding weights that minimize $\operatorname{Error}(E, \bar{w})$

- Find the minimum analytically.

Effective when it can be done (e.g., for linear regression).

Finding weights that minimize $\operatorname{Error}(E, \bar{w})$

- Find the minimum analytically.

Effective when it can be done (e.g., for linear regression).

- Find the minimum iteratively.

Works for larger classes of problems.
Gradient descent:

$$
w_{i} \leftarrow w_{i}-\eta \frac{\partial}{\partial w_{i}} \operatorname{Error}(E, \bar{w})
$$

η is the gradient descent step size, the learning rate.

Finding weights that minimize $\operatorname{Error}(E, \bar{w})$

- Find the minimum analytically.

Effective when it can be done (e.g., for linear regression).

- Find the minimum iteratively.

Works for larger classes of problems.
Gradient descent:

$$
w_{i} \leftarrow w_{i}-\eta \frac{\partial}{\partial w_{i}} \operatorname{Error}(E, \bar{w})
$$

η is the gradient descent step size, the learning rate.

- Often update weights after each example:
- incremental gradient descent sweeps through examples - stochastic gradient descent selects examples at random Often much faster than updating weights after sweeping through examples, but may not converge to a local optimum

Incremental Gradient Descent for Linear Regression

1: procedure Linear_learner (X, Y, E, η)

3:
4:
5:
6:
7:

8:

9:

- $\quad X$: set of input features, $X=\left\{X_{1}, \ldots, X_{n}\right\}$
- $\quad Y$: target feature
- E : set of examples
- $\quad \eta$: learning rate initialize w_{0}, \ldots, w_{n} randomly repeat
for each example e in E do

10 :
11:
12:
13:
14:

$$
p \leftarrow \sum_{i} w_{i} X_{i}(e)
$$

$$
\delta \leftarrow \bar{Y}(e)-p
$$

for each $i \in[0, n]$ do

$$
w_{i} \leftarrow w_{i}+\eta \delta X_{i}(e)
$$

until some stopping criterion is true return w_{0}, \ldots, w_{n}

Linear Classifier

- Assume we are doing binary classification, with classes $\{0,1\}$ (e.g., using indicator functions).

Linear Classifier

- Assume we are doing binary classification, with classes $\{0,1\}$ (e.g., using indicator functions).
- There is no point in making a prediction of less than 0 or greater than 1.
- A squashed linear function is of the form:

$$
f^{\bar{w}}\left(X_{1}, \ldots, X_{n}\right)=f\left(w_{0}+w_{1} X_{1}+\cdots+w_{n} X_{n}\right)
$$

where f is an activation function.

Linear Classifier

- Assume we are doing binary classification, with classes $\{0,1\}$ (e.g., using indicator functions).
- There is no point in making a prediction of less than 0 or greater than 1.
- A squashed linear function is of the form:

$$
f^{\bar{w}}\left(X_{1}, \ldots, X_{n}\right)=f\left(w_{0}+w_{1} X_{1}+\cdots+w_{n} X_{n}\right)
$$

where f is an activation function.

- A simple activation function is the step function:

$$
f(x)= \begin{cases}1 & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Error for Squashed Linear Function

The sum of squares error is:

$$
\operatorname{SSE}(E, \bar{w})=\sum_{e \in E}\left(Y(e)-f\left(\sum_{i} w_{i} X_{i}(e)\right)\right)^{2} .
$$

If f is differentiable, we can do gradient descent.

The sigmoid or logistic activation function

The sigmoid or logistic activation function

$$
f^{\prime}(x)=f(x)(1-f(x))
$$

A logistic function is the sigmoid of a linear function. Logistic regression: find weights to minimise error of a logistic function.

Error for Squashed Linear Function

Let $\widehat{Y}(e)=\operatorname{sigmoid}\left(\sum_{i=0}^{n} w_{i} * X_{i}(e)\right)$.
$\operatorname{SSE}(E, \bar{W})=\sum_{e \in E}(Y(e)-\hat{Y}(e))^{2}$
$\frac{\partial}{\partial w_{i}} \operatorname{SSE}(E, \bar{w})=$

Error for Squashed Linear Function

Let $\widehat{Y}(e)=\operatorname{sigmoid}\left(\sum_{i=0}^{n} w_{i} * X_{i}(e)\right)$.

$$
\begin{aligned}
& \operatorname{SSE}(E, \bar{w})=\sum_{e \in E}(Y(e)-\hat{Y}(e))^{2} \\
& \frac{\partial}{\partial w_{i}} \operatorname{SSE}(E, \bar{W})=\sum_{e \in E}-2 * \delta(e) * p *(1-p) * X_{i}(e)
\end{aligned}
$$

where $\delta(e)=Y(e)-\hat{Y}^{\bar{m}}(e)$ and $p=f\left(\sum_{i} w_{i} * X_{i}(e)\right)$

Error for Squashed Linear Function

Let $\widehat{Y}(e)=\operatorname{sigmoid}\left(\sum_{i=0}^{n} w_{i} * X_{i}(e)\right)$.

$$
\begin{aligned}
& \operatorname{SSE}(E, \bar{w})=\sum_{e \in E}(Y(e)-\widehat{Y}(e))^{2} \\
& \frac{\partial}{\partial w_{i}} \operatorname{SSE}(E, \bar{w})=\sum_{e \in E}-2 * \delta(e) * p *(1-p) * X_{i}(e)
\end{aligned}
$$

where $\delta(e)=Y(e)-\hat{Y}^{\bar{w}}(e)$ and $p=f\left(\sum_{i} w_{i} * X_{i}(e)\right)$

$$
\begin{aligned}
& L L(E, \bar{w})=\sum_{e \in E} Y(e) * \log \widehat{Y}(e)+(1-Y(e)) * \log (1-\widehat{Y}(e)) \\
& \frac{\partial}{\partial w_{i}} L L(E, \bar{w})=
\end{aligned}
$$

Error for Squashed Linear Function

Let $\widehat{Y}(e)=\operatorname{sigmoid}\left(\sum_{i=0}^{n} w_{i} * X_{i}(e)\right)$.

$$
\begin{aligned}
& \operatorname{SSE}(E, \bar{w})=\sum_{e \in E}(Y(e)-\hat{Y}(e))^{2} \\
& \frac{\partial}{\partial w_{i}} \operatorname{SSE}(E, \bar{W})=\sum_{e \in E}-2 * \delta(e) * p *(1-p) * X_{i}(e)
\end{aligned}
$$

where $\delta(e)=Y(e)-\hat{Y}^{\bar{w}}(e)$ and $p=f\left(\sum_{i} w_{i} * X_{i}(e)\right)$

$$
\begin{aligned}
& L L(E, \bar{w})=\sum_{e \in E} Y(e) * \log \widehat{Y}(e)+(1-Y(e)) * \log (1-\widehat{Y}(e)) \\
& \frac{\partial}{\partial w_{i}} L L(E, \bar{w})=\sum_{e \in E} \delta(e) * X_{i}(e)
\end{aligned}
$$

Logistic Regression: Incremental Gradient Descent

1: procedure Logistic_regression (X, Y, E, η)
2:
3:
4: - \quad : set of examples
5: - η : learning rate
6:
7:
8:
9: initialize w_{0}, \ldots, w_{n} randomly
for each example e in E do

$$
p \leftarrow f\left(\sum_{i} w_{i} X_{i}(e)\right)
$$

$10:$
11:
12:
13:
14:

- $\quad X$: set of input features, $X=\left\{X_{1}, \ldots, X_{n}\right\}$
- Y : target feature

repeat

$\delta \leftarrow Y(e)-p$
for each $i \in[0, n]$ do

$$
w_{i} \leftarrow w_{i}+\eta \delta p(1-p) X_{i}(e)
$$

until some stopping criterion is true
return $w_{0}, \ldots, w_{n} \quad$ SSE and LL SSE only

Simple Example

Ex	new	short	home	reads Predicted		Obs	
e1	0	0	0	$f(0.4)=0.6$	0	-0.6	0.36
e2	1	1	0		0		
e3	1	0	1		1		

Simple Example

Ex	new	short	home	reads Predicted		Obs	
				SSE			
e1	0	0	0	$f(0.4)=0.6$	0	-0.6	0.36
e2	1	1	0	$f(-1.2)=0.23$	0		
e3	1	0	1	$f(0.9)=0.71$	1		

Simple Example

Ex	new	short	home	reads		δ	SSE
				Predicted	Obs		
e1	0	0	0	$f(0.4)=0.6$	0	-0.6	0.36
e2	1	1	0	$f(-1.2)=0.23$	0	-0.23	0.053
e3	1	0	1	$f(0.9)=0.71$	1	0.29	0.084

Linearly Separable

- A classification is linearly separable if there is a hyperplane where the classification is true on one side of the hyperplane and false on the other side.
- For the sigmoid function, the hyperplane is when:

Linearly Separable

- A classification is linearly separable if there is a hyperplane where the classification is true on one side of the hyperplane and false on the other side.
- For the sigmoid function, the hyperplane is when:

$$
w_{0}+w_{1} X_{1}+\cdots+w_{n} X_{n}=0
$$

This separates the predictions >0.5 and <0.5.

- linearly separable implies the error can be arbitrarily small

Linearly Separable

- A classification is linearly separable if there is a hyperplane where the classification is true on one side of the hyperplane and false on the other side.
- For the sigmoid function, the hyperplane is when:

$$
w_{0}+w_{1} X_{1}+\cdots+w_{n} X_{n}=0
$$

This separates the predictions >0.5 and <0.5.

- linearly separable implies the error can be arbitrarily small

Kernel Trick: use functions of input features (e.g., product)

Variants in Linear Separators

Which linear separator to use can result in various algorithms:

- Perceptron
- Logistic Regression
- Support Vector Machines (SVMs)

Bias in linear classifiers and decision trees

- It's easy for a logistic function to represent "at least two of X_{1}, \ldots, X_{k} are true":

$$
\begin{array}{llll}
w_{0} & w_{1} & \cdots & w_{k} \\
\hline
\end{array}
$$

Bias in linear classifiers and decision trees

- It's easy for a logistic function to represent "at least two of X_{1}, \ldots, X_{k} are true":

$$
\begin{array}{llll}
w_{0} & w_{1} & \cdots & w_{k} \\
\hline-15 & 10 & \cdots & 10
\end{array}
$$

This concept forms a large decision tree.

- Consider representing a conditional: "If X_{7} then X_{2} else X_{3} ":
- Simple in a decision tree.
- Complicated (possible?) for a linear separator

