
Learning Objectives

At the end of the class you should be able to:

define a directed graph

represent a problem as a state-space graph
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Searching

Often we are not given an algorithm to solve a problem, but
only a specification of what is a solution — we have to search
for a solution.

A typical problem is when the agent is in one state, it has a
set of deterministic actions it can carry out, and wants to get
to a goal state.

Many AI problems can be abstracted into the problem of
finding a path in a directed graph.

Often there is more than one way to represent a problem as a
graph.
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State-space Search

flat or modular or hierarchical

explicit states or features or individuals and relations

static or finite stage or indefinite stage or infinite stage

fully observable or partially observable

deterministic or stochastic dynamics

goals or complex preferences

single agent or multiple agents

knowledge is given or knowledge is learned

perfect rationality or bounded rationality

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.1 3 / 12



State-space Problem

A state-space problem consists of

a set of states

a subset of states called the start states

a set of actions

an action function: given a state and an action, returns a new
state

a set of goal states, specified as function, goal(s)

a criterion that specifies the quality of an acceptable solution.
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Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of
room 123.
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Directed Graphs

A (directed) graph consists of a set N of nodes and a set A of
ordered pairs of nodes, called arcs.

Node n2 is a neighbor of n1 if there is an arc from n1 to n2.
That is, if 〈n1, n2〉 ∈ A.

A path is a sequence of nodes 〈n0, n1, . . . , nk〉 such that
〈ni−1, ni 〉 ∈ A.

Given start nodes and goal nodes, a solution is a path from a
start node to a goal node.

When there is a cost associated with arcs, the cost of a path
is the sum of the costs of the arcs in the path:

cost(〈n0, n1, . . . , nk〉) =
k∑

i=1

cost(〈ni−1, ni 〉)

An optimal solution is one with minimum cost.
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What is a state?

A state needs to include enough information to

determine what is the next state

determine whether the goal is achieved

determine the cost.

Often there are many options for what to include in the state.
Keep the states as simple as possible but no simpler.
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Example Problem for Delivery Robot
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State-Space Graph for the Delivery Robot
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Example: Google Maps

single start location and goal location

cost is estimated time

state needs to include direction because the cost depends on
directions (e.g., turning left).
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Partial Search Space for a Video Game

Grid game: Rob is on a grid and can move up, down, left or right
and needs to collect coins C1, C2, C3, C4, without running out of
fuel, and end up at location (1, 1):

State: < X -pos, Y -pos, Fuel ,C1, C2, C3, C4 >
Goal: < 1, 1, ?, t, t, t, t>

Fuel
Rob
C3

54

9
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7

〈5,8,6,f,t,f,f 〉

〈5,9,5,f,t,f,f 〉 〈5,7,5,f,t,t,f 〉

〈4,9,20,f,t,f,f 〉
〈5,8,4,f,t,f,f 〉

〈5,8,4,f,t,t,f 〉

〈6,8,5,f,t,f,f 〉

〈5,9,19,f,t,f,f 〉

up down right

left
up

right

up
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Robot Cleaner

2 rooms, one cleaning robot

rooms can be clean or dirty

robot actions:
suck: makes the room that the robot is in clean
move: move to other room

Goal: have both rooms clean

How many states are there? What are they?
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