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Abstract

Many critical services are necessarily long-running. However, this creates a

large temporal surface that is an alluring target for attackers, both in terms

of the increased opportunity to find an exploit and the length of time a

service is owned once exploited. While in some instances it may be possible

to perform periodic restarts to reduce the window of exploitation and return

a service to its fresh, unexploited operational status, this carries with it a

high cost. The more often it is restarted, the larger the unavailability due

to reinitialisation of the service. Furthermore, it must recover its persistent

state, which is not always possible.

In order to protect these services, we propose a form of virtual machine

disaggregation which partitions a service into two parts: code (logic) and

state (data). Each lives in its own virtual machine, with communication

performed over a narrow, well defined interface on which policy can be ex-

ternally enforced to ensure correctness. This separation enables a service to

be continually restarted by rolling back only the code virtual machine to a

snapshotted known good state, which can be measured and attested. This

prevents exploits from persisting while still maintaining good performance.
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Chapter 1

Introduction

1.1 Problem

Many critical services are necessarily long-running. These can range from

general applications, such as databases and web servers, to device drivers,

to system specific services, like XenStore.1 In some cases, these services

are intrinsically tied to the operation of the system and brought up during

boot-time or initialisation and live until the machine is shut down.

Whatever the nature of the long-running service, they all share something in

common: a large temporal surface. These services can live for days, months,

or even years without being restarted. This provides an attacker with a long

time to attempt to exploit a service and, once the attack succeeds, a long

time to own it, as he will have access until the next time it is restarted. In

addition, after the exploit has been discovered, it will be relatively quick

and easy for the attacker to regain control of the service after the restart

(again, owning it for a long time).

Other research has improved the security of long-running processes, but their

objective was not the reduction of the temporal surface. Many approaches

have implemented privilege separation, dividing out the small subset of the

program which performs privileged operations from the rest, which runs at

a reduced privileged level [5, 14, 16, 18]. However, while these approaches

may help reduce the privilege escalation attack surface, they do not address

problems associated with the long-running nature of the services. Other

1XenStore is a service for the Xen Virtual Machine Monitor.
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approaches have suggested using checkpointing and rollback as a reactive

defence against attack, however this can require hardware modifications [20].

Our work aims to overcome these limitations by proposing a novel secure

system architecture designed to address the inherent security concerns of

long-running services. In our architecture, the code (logic) and state (data)

of a program are separated. This enables us to constantly refresh the code

portion of the service, using proactive execution rollback, to reduce the

temporal surface. Furthermore, this separation makes reasoning about the

interaction between the two parts explicit, enabling information control flow

policy to be enforced on this interaction.

We show the viability of our approach by presenting a prototype implemen-

tation of a real-world service. We target XenStore, a service which not only

must exist for the entire duration of the operation of the system, but which

is intrinsically tied to it. This demonstrates that even long-running services

which are mission-critical and brought up during the initialisation of the

system as a whole can benefit from and be applied to our architecture.

1.2 Organisation

A review and discussion of related research is explored in Chapter 2, in-

cluding work in security and other areas, such as high availability. Chapter

3 presents an overview of our architecture. The specific details of the pro-

totype implementation are described in Chapter 4 along with our initial

results. Chapter 5 discusses areas of future research and Chapter 6 provides

a final overview and conclusion.

2



Chapter 2

Related Work

2.1 Privilege Separation

Privilege separation is a technique which divides a program into two parts.

The privileged operations are all placed in one part and the remainder of the

application is placed in the other. Thus, the amount of code which needs

to be trusted and verified is reduced to just that of the privileged portion.

This is an implementation of the principle of least privilege, which states

that each component in a system should only have as much privilege as it

requires to perform its function.

2.1.1 Libraries

Kilpatrick (2003) [14] presents a library designed to make privilege separa-

tion easy. A program specifies the subset of privileged operations that it

needs in order to function. It then makes calls into the library to have these

operations performed on its behalf by a privileged agent.

Murray and Hand (2008) [16] extend this concept into the virtualised envi-

ronment. Instead of just separating the privileged operations into a library,

this library is then disaggregated into its own virtual machine. The mech-

anism is extended further to allow for binary compatibility with current

operating systems and applications.

These techniques explicitly separate out privileged operations. It is reason-

able to consider that some of the long-lived state associated with these oper-

3



2.1. Privilege Separation

ations is also separated out. This prevents a compromised service from per-

forming any privileged action it likes. However, it does not protect against

attacks on the service itself. So, while this may prevent an exploited service

from gaining privileged access to the machine running the service, it does

not prevent an exploited service from providing erroneous results to clients.

2.1.2 Program Partitioning

Provos et al. (2003) [18] and Brumley and Song (2004) [5], similar to the

library approaches mentioned above, separate out a service’s privileged op-

erations. However, in these approaches, they use the idea of a monitor

and slaves. A monitor contains privileged code and little else. Its task is

to launch unprivileged slave processes which perform the rest of the oper-

ations. In both these works OpenSSH is used as their example program.

The monitor contains only the code needed to authenticate a user, which

then launches a slave process which runs at the authenticated user’s privilege

level. Provos et al. do this separation manually, while Brumley and Song use

programmer provided annotations to perform the separation automatically.

This form of privilege separation suffers from the same drawback as the

library approaches above. While it protects the privileged part of the service,

it does not prevent an attacker from hijacking the user (slave) session.

2.1.3 Wedge

Wedge (Bittau et al. (2008)) [3] is a system designed to help separate a

program into least-privilege components. It consists of a run-time compo-

nent which aids a developer to find potential compartment boundaries and a

series of OS primitives which force the privileges to be made explicit. Com-

partments are created by calling a variant of fork which only maps those

areas of memory that the security policy allows. Privileged operations are

performed using callgates, which are bits of code with a higher privilege

level. This approach addresses the principle of least-privilege, protecting

4
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high privilege operations from low privilege callers.

2.2 Information Flow Control

In order to keep high security inputs protected, Smith and Thober (2006)

[21] suggest refactoring programs into high and low security modules. The

high security modules can be accessed by the low security modules through

public method calls. This keeps the high security data protected from direct

tampering by the low security modules. This allows programmers to more

easily add information flow controls to the program. However, the low and

high security components both operate within the same address space. Thus,

if an attacker is able to break outside the bounds of a low security module,

for example through a buffer overflow exploit, then the high security data is

at risk.

2.3 Restarts

Restartable systems is a well researched area. Many systems have been

created, from restarting the entire system to restarting components of an

application, as a way of recovering from errors or promoting freshness. How-

ever, most of the work to date on this has been for high availability and not

for security.

2.3.1 Recovery Box

Baker and Sullivan (1992) [1] discuss using non-volatile memory to store

certain information which can be used to reduce the time it takes to recover

from a failure. The stored information is long-lived program state, such as

files open on client machines. The focus of this work is to reduce recovery

time from a system failure to in turn reduce the down time of provided

services. The only validation or control of information is checksumming of

5
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the data to ensure that it has not been corrupted (and if it has, to perform

a normal, full restart of the system).

2.3.2 Recursive Restartability

Candea, Fox, et al. (2001, 2002) [6, 8] extend the restart technique by

proposing that restarts be performed at multiple levels. Restarting only

the failed or failing components reduces the overall time for recovery. If

restarting at the smallest granularity does not solve the problem, then a

restart is performed at a higher granularity. However, this work requires

that the restartable components are stateless or contain only soft-state. This

makes it impractical for general usage. The focus of this work is also for

high availability, accepting that bugs in software are inevitable.

2.3.3 Crash-Only Software

Candea and Fox (2003) [9] propose crash-only software as a way to deal

with restartability and long-lived state. They suggest that software should

be designed to crash. This ensures that a program makes no assumptions

about resources being released cleanly and is thus able to easily recover from

a crash. This in turn makes performing restarts easier, as there is no need

to deal with long-lived state since a program will recover itself. However,

the time granularity at which restarts can be performed is limited, since the

time to recover becomes an increasingly dominant cost as the time between

restarts is reduced.

2.3.4 Microreboots

A microreboot, as described by Candea, Fox, et al. (2004) [10], is the indi-

vidual restarting of application components. These restarts are performed

at a fine granularity in order to reduce down-time due to application fail-

ure. In the example application, a web application for a modified version of

6
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JBoss, session state must be moved outside the application so that it can

survive the microreboots. Two different ways of separating out this session

state are proposed. The first is to move it inside JBoss. This allows the

state to only survive microreboots. The second method moves the session

state into a distributed store system. Stored this way, the state can survive

microreboots, JVM restarts, and even complete node restarts. However, as

in their previous work, the focus is on high-availability and speed of recovery

from application failure. They do not consider the security of the data nor

impose any information flow controls. Instead, they were considering only

ways to remove the state from their application so that when it fails and is

restarted, the session state is not lost.

2.4 Other

Chandra, Lam, et al. (2005) [17] propose The Collective, a system to cen-

trally manage virtual appliances. It uses virtual machines, which are down-

loaded from a centralised location onto a user’s machine. Each time the

machine is restarted, a fresh copy of the virtual machine is fetched (using

differences between the current image and the updated image). Thus, the

machine is always restored to a known-good state. User data (e.g., a home

directory) is stored separately and persists beyond a reboot. This helps pre-

vent viruses from persisting. Furthermore, updates can be managed more

easily. This work focuses on system-level freshness and security, rather than

on individual programs. This technique would also not be applicable to

long-running processes because the granularity is too coarse.

7



Chapter 3

Architecture

The goal of the work described in this thesis is to address the security

concerns inherent in long-running processes. In this chapter, we provide

an overview of our proposed architecture. At a high level, a long-running

process is separated into two parts. Each part is placed in its own virtual

machine to provide strong isolation between the components. A narrow

communication channel is placed between the two parts, which can be easily

monitored and subjected to policy enforcement.

3.1 Threat Model

In our work, we assume a relatively simple threat model. We consider sys-

tems that provide a long-running external service which is the target of

attack. Examples of the type of service in this model include web-servers,

device drivers, or even virtual machines.

More specifically, we target long-running exploits in long-running services

themselves. These exploits could be used in a variety of ways: to inject

attacks into web-pages by including malicious code which will be run on

the victim’s web browser; to snoop on network traffic, reads/writes from/to

disk, or private information contained within a database; or to shut down a

competitor’s running virtual machines. We are less interested in attacks on

a service for other purposes, such as privilege escalation exploits.

Our design cannot completely eliminate all exploits in our threat model.

Instead, it provides an architecture which makes it easier to reason about

8



3.2. Overview

execution and information flows. This in turn makes it easier to protect

against these exploits.

3.2 Overview

The fundamental problem with long-running processes is their very nature.

As long as they remain long-running, their temporal surface is large. Thus,

the solution is to not have long-running processes. Unfortunately, this is

a seemingly contradictory statement. Some processes are necessarily long-

running, but in order to secure them, they cannot be so. In order to solve

this conundrum, we must consider what makes a long-running process long-

running. Typically, this type of service has a processing loop which handles a

subset of the overall computation per iteration, such as one single operation.

However, associated with these computations is state. This state is what,

ultimately, is long-lived.

With the current programming architecture and paradigm, the state and

the logic of a program are entangled. We propose an architecture which

makes these two parts distinct. The actual code of the program, its logical

computation, is separated from the (long-lived) state upon which it acts.

The interaction between the two is done through an explicit, narrow com-

munication channel. We further propose to place policy enforcement on this

channel, separating it from the code and state. This separation enables the

program to essentially be run once, repeatedly.

Constantly restarting the process ensures the code being run is always fresh.

Any exploit designed to affect the operation of the program can only persist

for as long as one restart. We propose the smallest granularity of restartabil-

ity. As an example, consider Apache 1.3. The original code, with unrelated

areas removed for brevity, is shown in Figure 3.1. The while loop processes a

single client request. This loop can be removed, so that instead the program

starts, processes one client request, then terminates (see Figure 3.2). The

only change to the structure of the program is that instead of a while loop,

9



3.2. Overview

int main(int argc, char *argv[]) {

...

while ((r = ap_read_request(conn)) != NULL) {

if (r->status == HTTP_OK)

ap_process_request(r);

if (!conn->keepalive || conn->aborted)

break;

ap_destroy_pool(r->pool);

}

...

}

Figure 3.1: Unmodified Apache 1.3 code

there is an if statement. When this new program is run repeatedly, then

the overall result will be the same: client requests will be processed one at

a time, in a loop, until the program is completely terminated.

This freshness allows us to reason more easily about the code. While it is

easy to measure and attest software as it is loaded from disk, remeasuring

and reattesting it while it is running is a very difficult, if not impossible,

problem. However, by constantly reverting to a known good fresh copy of

the code, we can measure and attest it at each invocation, assuring that

the code has not been tampered with. Further more, the verifiability of the

program is made easier. Previously, the entire state-space of the program

needed to be explored, which could lead to the state space explosion problem.

Our proposed architecture reduces the state that needs to be verified to that

which can be reached within a single operation. Since each iteration only

handles one request at a time, each individual request type can be explored

independently.

The rest of this chapter will describe the architecture in more detail.

10



3.3. Separation

int main(int argc, char *argv[]) {

...

if ((r = ap_read_request(conn)) != NULL) {

if (r->status == HTTP_OK)

ap_process_request(r);

if (!conn->keepalive || conn->aborted)

break;

ap_destroy_pool(r->pool);

}

...

}

Figure 3.2: Run-once Apache 1.3 code

3.3 Separation

The portion of a program which makes it intrinsically long-lived is its state.

If all a program does is statelessly perform operations, then it is trivially

restartable since there is no difference between the first run and the mil-

lionth. However, most long-running programs also have long-lived state. In

order to be able to constantly refresh the program, this state must be stored.

One option is to store it on disk and reload it each time the program is

restarted. However, this carries with it two problems: there is a high over-

head writing to and reading from disk with such frequency and the file is

relatively easily exploitable.

Instead, we use virtual machines to perform the separation. Disaggregating

the service even into a single virtual machine is already an advantage from

a security perspective (see Figure 3.3). Virtual machines provide a strong

isolation container. Aside from a minimal operating system, the service is

the only thing running in the virtual machine. An attacker that is able to

exploit the service and escape into the rest of the system is restrained to the

11



3.3. Separation

Service

OS

Physical Machine

(a) Original

OS

Physical Machine

Virtual Machine Monitor

Service

OS

(b) Disaggregated service

Figure 3.3: The original and disaggregated versions of the architecture

virtual machine in which the service is running. To cause damage to the rest

of the system, the virtual machine must also be exploited. This layering of

isolation levels provides Defence in Depth.

We take this one step further and separate the code, which is the portion

of the program which performs the actual logical execution, and the long-

lived state into two different virtual machines (see Figure 3.4). The virtual

machine which contains the code can now be restarted, with the long-lived

state preserved in the other virtual machine.

A potential vector of attack is to infect data being placed into the state

store. This data could then be used later which would cause the exploit to

have an effect. To address this, we use a narrow channel of communication

between the virtual machine with the code and the one with the state. This

communication is done using a simple wire format which is easy to inspect

and reason about. Policy can then be enforced upon this communication

(see Figure 3.5) to help keep it secure.
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3.3. Separation

OS

Physical Machine

Virtual Machine Monitor

Service
Code

OS

Service
State

OS

Communication
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Figure 3.4: Fully separated service into code and state virtual machines

3.3.1 Code Virtual Machine

The code virtual machine retains the core of the original service. Long-

lived state must be explicitly separated out and replaced with requests to

the state virtual machine. These requests can cause new memory to be

allocated, freed, or accessed. When accessing data, it must be copied over

the wire to the code virtual machine, which can then use its local copy. Any

changes which are made (and that should be kept) need to be reflected back

onto the data stored in the state virtual machine.

Since the intention of the program is to now execute only once, some of the

control flow will change. In the example above in Figures 3.1 and 3.2, the

while loop was replaced with an if statement. There may be other changes

that can or need to take place in order for the service to operate properly.

Currently, all the analysis and transformation must be done manually. It

is up to the developer to locate which pieces of state must be separated

out. For small projects, this can be a relatively simple task, but for larger

projects, it is likely to be tedious. The control flow modifications must also

13
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Figure 3.5: Fully separated service with policy enforcement

be determined by the developer. All of this requires a new way of thinking

about the normal execution flow of a program.

3.3.2 State Virtual Machine

Our architecture is designed to eliminate long-running processes. However,

long-lived state is still long-lived state. Therefore it must reside somewhere

which must necessarily be long-lived. The state store is designed to be as

simple as possible. This makes the code easy to reason about and verify.

The sole task of the state store is to store state. It performs no checks on

the data being stored or retrieved. Instead, this is left up to the policy

enforcement virtual machines or, in some cases, the code virtual machine.

3.3.3 Communication Channel

Communication between the code virtual machine and the state virtual ma-

chine happens over an explicit and narrow communication channel. This

makes it easy to monitor the communication and enforce policy upon it.

The communication protocol is designed to be as simple as possible.
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0 4 8 n
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Figure 3.6: Communication packet wire format

The general message format is shown in Figure 3.6. It consists of three

parts: a message type (4 bytes), a payload size (4 bytes), and a payload

(size bytes). The total packet size is the size of the header (8 bytes) and

the size of the payload (size bytes), for a total of n = 8 + size. The

maximum length of a message payload is 232 − 1 (or 4,294,967,295), which

is the maximum size of an unsigned 32-bit (4 byte) integer.

Only the code virtual machine communicates with the state store. It may be

desirable to have multiple code virtual machines access the same state store

(see Section 5.3), however this would require a way to authenticate which

virtual machines may communicate with which state stores. This type of

policy could be enforced by the virtual machine monitor itself.

3.3.4 Policy Enforcement

Separating the code and state and constantly restarting the code virtual

machine prevents long-lived exploits from persisting there. A key vector of

attack is to corrupt the long-lived state such that it is possible to cause the

short-lived code portion to retrieve the corrupted state and continually get

infected or exploited. However, the clean separation makes the information

flow in the service explicit.

In the original version of a service, any policy decisions enforced on the

data is most likely tangled up with the code itself. For example, limiting

the size of a URL to fetch. With this new architecture, it is possible and

desirable to remove as much of this policy as possible and place it into policy

enforcement virtual machines. This makes both the core program code and
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the specific policy being enforced easier to reason about.

Figure 3.7: Allow/deny policy enforcement on output from the code VM

Policy enforcement modules can be placed upon the communication channel

between the two virtual machines. These modules can then be used to per-

form information flow control. By using virtual machines as the containers

for policy modules, it is possible to apply this architecture to the policy mod-

ules themselves. With stateless policy, this is trivial. The policy enforcement

virtual machine can be restarted with the code virtual machine, restoring

both to known good states. If the policy requires some state, depending

on the longevity of this state, the module may run for several iterations of

the code virtual machine before being restarted or its state could be stored

either in the current state store or in a dedicated state store. The policy

enforcement module can then be restarted after each operation, as with the

code virtual machine.

The policy being enforced can be simple rules, such as an allow/deny rule

(e.g., a regular expression which matches all good HTTP requests) as in

Figure 3.7, or more complex rules, such as denying access to all or part of a

data structure based on the client attempting the access.

It is even possible to impose externally enforced semantic reasoning on the

inputs and outputs of the service (see Figure 3.8). This could be used, for

example, to verify that a request being made of the state store correctly

correlates to the web page being requested by a client. If the request data

is inconsistent with what is expected, it could indicate that the service has

been exploited and the request denied, returning an error (e.g., error 404)

to the client. This provides a powerful mechanism which allows for intricate
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Figure 3.8: Checking for consistency between the input and output

policy to be hoisted outside the execution of the service itself.

Policy which exists in the original program can now be extracted and placed

into policy enforcement modules. This could include anything from the

maximum size of a request packet to controlling which users are authorised

to access which data. This reduces the total size of the code and makes

it easier to reason about. Furthermore, each bit of policy also becomes

easier to reason about and the policy being enforced as a whole becomes

disentangled and explicit.

3.4 Restarts

Restarting a service provides freshness. When restarting the service, the

original version, that has not been tampered with, is loaded. Thus, if the

service had been exploited, it will no longer be. The copy being loaded

can be measured and attested to ensure it is the original copy. With the

separation described in Section 3.3, it is now possible to restart a service

without losing any long-lived state. This greatly simplifies the process, as

there is no need to explicitly save and reload it.

The more frequently a service is restarted, the smaller the temporal surface,

but the more significant the overhead of restarting it becomes. In order

to minimise the impact an exploit can have, the smallest possible restart
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frequency is desired. This is typically each request, operation, or task, de-

pending on the service. This reduces the time an attacker has to exploit

a system. More importantly, the lifetime of an exploit is that of a given

execution run.

The more often a service is restarted, however, the more significant the

cost of restarting it becomes. Thus, the smaller the restart overhead, the

better. In our architecture, we discuss three mechanisms to restart a process.

The first approach is to only restart the service itself. This can easily be

accomplished with a script which runs in a loop. Essentially, the processing

loop of the service is moved outside the program. The second approach is

to perform a full reboot of the entire code virtual machine. This provides

freshness not only for the service itself, but also for the entire operating

environment. The final approach is to use virtual machine snapshotting to

take a snapshot of the initialised virtual machine and service and to then

roll back to that point each time. This carries with it the same advantages

of performing a full reboot, but does so much more efficiently.

Restarting a process to maintain freshness is already a well researched area

for high availability and fault-tolerance for applications [6–10] and device

drivers [12, 13, 15, 22, 23]. However, from a security perspective, this ap-

proach is limited, which will be discussed in more detail in Section 3.4.1.

These limitations are addressed by fully restarting the virtual machine con-

taining the code portion of the program. This entails destroying the current

machine, allocating resources for a new machine, then loading the service’s

code image into that machine and running it. This can be considered as

rebooting the virtual machine. However, this carries with it a fairly high

overhead. The total cost of the amount of time to bring up the operating

system and the service is incurred with each restart.

The third approach, designed to reduce this overhead, is to take a snap-

shot of the code virtual machine just after it has initialised the operating

system and the service to the point where it is ready to start servicing re-

quests. This eliminates the cost of destroying, creating, and booting a fresh
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virtual machine and initialising the service on every restart. Freshness is

maintained, as it is possible to perform measurement and attestation on the

snapshot image. Each time the service is rolled back, it can be re-measured

and re-attested to be the original, known good version. This is very difficult

to do for long-running processes otherwise.2

The rest of this section will describe these three techniques in more detail.

3.4.1 Process Restart

The simplest approach for freshness of the service is to continually restart

the process itself. The service needs to be modified as shown in the example

in Figure 3.2 so that the event loop is removed and the program made to be

“run-once”. The event loop is essentially moved outside the service itself.

This can be accomplished using a simple script which continually launches

the service after each time it exits. This approach provides speed, but less

security than performing a full reboot.

It might be possible to assure the freshness of the service, but now the

operating environment in which it exists is long-running. If the measurement

and attestation software is installed in the code virtual machine, it is possible

that over time it could produce incorrect results. Even if moved outside of

the code virtual machine, it is possible for the operating system to become

corrupted, which could prevent the service from operating normally.

If we expand the threat model to include exploits which also break out of

the confines of the service itself, then this approach becomes no more secure

than allowing the service to run continually. An exploit could continually

reinfect the service or simply install itself alongside it, for example to send

spam e-mails. This also presents a large temporal surface for an attacker

to attempt an exploit to gain access to the virtual machine monitor, which

carries with it a far higher cost if exploited.

2As far as we know, this is currently an unsolved problem and, under normal conditions,
it may be impossible to solve.
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3.4.2 Reboots

In order to address the short-comings of only restarting the desired service,

the entire virtual machine in which the service operates can be restart in-

stead. This guarantees that the entire operating environment is constantly

executing from a known good state, not just the service. The same “run-

once” version of the service can be used as with the process restarting tech-

nique.

A major advantage of this approach is that the operating system is no longer

a long-lived entity. This pushes the elimination of long-lived execution one

layer lower. Instead of just measuring the service, we can now measure

the entire virtual machine, which provides much strong assurances. This

relies on the virtual machine monitor being long-lived, but without hardware

support this is necessarily the case. Furthermore, virtual machine monitors

have a far smaller code base than operating systems, which make them easier

to reason about and less prone to error. They also have no device drivers,

which account for a large percentage or operating system faults.

The major drawback of restarting the entire virtual machine is the high

overhead associated with it. Each time the service is restarted, the entire

operating system must be loaded and booted. Depending on the system

being loaded, this could take several seconds. If each operation can be

completed in a fraction of a second, the overhead imposed is several orders

of magnitude.

In the extended threat model, as discussed in Section 3.4.1, this approach

still provides protection. An attacker must now be able to break out of

both the service and the virtual machine, providing Defence in Depth. This

exploit must also occur in a very narrow time frame in order to exploit the

system. In addition, a spamming exploit cannot be installed alongside the

service, as the entire machine will be shutdown and restarted, removing the

malware.
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3.4.3 Snapshots

We have a desire for both security and speed. Process restarting (Section

3.4.1) provides speed, but not security. While entire virtual machine restart-

ing (Section 3.4.2) provides security, but not speed. To address this issue,

we implement virtual machine snapshotting, a technique whereby the state

of an entire virtual machine is captured at a given instant in time. Snap-

shotting involves saving everything from memory to disk to CPU state.

Given a snapshot, it is possible to resume execution from the saved point

in time. This can be used, for example, to suspend a virtual machine and

resume it later, much like the concept of hibernating a running system.

However, for our purposes, we use the snapshot as a template from which

to execute.

After the virtual machine has fully booted and the service launched and

initialised, a snapshot can be taken. The service is then allowed to run

forward, as in the previous cases. However, once this execution is complete,

instead of either restarting the service or the entire virtual machine, the

virtual machine is rolled back to the snapshot. Thus, each request proceeds

from the snapshot point, which is in a known good state.

The snapshot image taken can be measured and attested. Each time the

machine is rolled back, the snapshot can be remeasured to ensure that it

has not been tampered with. Reverting a snapshot is a relatively quick

operation, thus providing both security and speed.

The service must be slightly altered from the “run-once” version described

previously. Where the main event processing while loop used to be in

the original version, and was removed in the “run-once”” version, a snap-

shot/rollback ‘loop’ is added instead (see Figure 3.9). This loop has the

same general effect as the while loop, but now the code being executed is

the exact same each time. This may seem more similar to the original ver-

sion of the program than to the “run-once” version. However, the rest of

the program must look like the “run-once” version, with all the long-lived
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int main(int argc, char *argv[]) {

...

<SNAPSHOT>

if ((r = ap_read_request(conn)) != NULL) {

if (r->status == HTTP_OK)

ap_process_request(r);

if (!conn->keepalive || conn->aborted)

break;

ap_destroy_pool(r->pool);

<ROLLBACK>

}

...

}

Figure 3.9: Modified Apache 1.3 code for snapshot and rollback

state stored and accessed from the state store. Furthermore, the program

structure will need to be altered slightly from the original to make it more

amenable to being snapshotted and rolled back.

To perform virtual machine rollback, there are three major approaches. The

first is to simply copy the snapshot image over top of the active memory,

irrespective of whether the memory has been modified or not. The second

approach is to track the memory being modified and replace only that mem-

ory. The third involves preserving the original memory and remapping any

that is modified to use newly allocated memory. The new memory can be

discarded and the original mappings restored.

For the first approach, when it is time to perform the rollback, the entire

contents of the snapshotted memory image are copied over. This is a rela-

tively simple approach, but inefficient. Any memory that was not modified

during execution will be copied over unnecessarily. Depending on the size

of the memory image and the amount of memory being modified, this could
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increase the amount to copy by many orders of magnitude.

In the second approach, the memory which is written to is tracked. Then,

when rolling the virtual machine back, only the memory which has been

dirtied is replaced with the original memory stored in the snapshot. This

adds some overhead to the execution of the virtual machine, as it must trap

into the virtual machine monitor on each new memory page write. However,

if there is not a lot of memory being modified, this extra overhead will not

be significant.

The final approach requires support for copy-on-write of virtual machine

memory. This is similar to the second approach, but instead of tracking

the memory that is dirtied and reverting it, when memory is about to be

modified, it is replaced with new memory. The new memory is mapped

into the virtual machine which replaces the old mapping. Execution then

continues to run as normal. When rolling back the image, the new memory

can simply be discarded and the memory mappings restored to their original

state. A big advantage of this approach is that there is no need to maintain

a separate copy of the snapshotted memory image. If the virtual machine

running the service has a lot of memory, then keeping a separate copy could

be prohibitively expensive. It may even have to be copied to disk if there is

not enough available system memory, which would incur a huge overhead.

3.5 Verifiability

Verification of a program is desirable, but can be a difficult and time con-

suming task. From a security perspective, there are two important types

of verification. First, verifying the code for correctness to determine that it

will execute the way it was designed to. Secondly, verifying that the code

being run has not been altered, so that it will continue to execute correctly.

Formal verification of a program checks the actual code of a program against

a model of it to determine if the code matches the model. This can prove

that, given an input, the program will produce the correct output. This
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check is done statically, during the development phase.

If a program has been exploited, however, then it can be altered and this

correctness no longer applies. Measurement and attestation involve dynami-

cally analysing a program binary (e.g., performing a hash of it) and asserting

that the code being executed has not been altered in any way (e.g., by com-

paring the current hash of the program with the known-good value).

This section discusses how these two properties apply to our architecture.

3.5.1 Formal Verification

With large and/or long running-processes, there are many states the pro-

gram can be in. Furthermore, there can be side-effects between these states

which complicates the analysis. These side-effects must be considered for

each state transition. This is known as the state-space explosion problem

and with current techniques can often render a program unverifiable.

(a) Control flow model (b) Verification flow model

Figure 3.10: Verification treats common execution paths separately

Figure 3.10 shows the difference between how the program’s control flow

model is structured (Figure 3.10(a)) and how the verifier must treat the

control flow of the program (Figure 3.10(b)), as common control flow paths

must be expanded out individually due to side-effects. Notice that in Figure

3.10(a) there are only six states, but in Figure 3.10(b) there are nine. This
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is a trivial example and as the depth (and width) of the control flow graph

increases, the states in the verification model increase exponentially.

Code Virtual Machine

(a) Control flow model (b) Verification flow model

Figure 3.11: Verifying operations independently prunes the flow graph

Constantly restarting a program greatly simplifies its control flow model.

Since each request can be independently verified from an initial state, the

control flow graph can be pruned to only include the relevant states, mas-

sively reducing the state-space. This is illustrated in Figure 3.11. The

dashed lines represent states that have been pruned from the graph. Notice

that in this example, removing a single state from the control flow graph

(Figure 3.11(a)) reduces the number of states in the verification graph by

almost half (Figure 3.11(b)).

Verification is simplified further by using snapshots. The program can be

verified to the point of the snapshot independently of the rest of the code.

Once this has been completed, the snapshot image is known to be correct.

Each operation can then be verified from the point of the snapshot to the

point of the rollback.

The interface between the code virtual machine and the state store must

also be verified. However, this is a relatively simple interface with a simple

wire format (described in Section 3.3.3). Each half of the interface can be
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verified independently. That is, verify that a message will be sent correctly

and separately verify that a message will be received correctly. Furthermore,

each message type can be checked independently of the others.

State Virtual Machine

The state store is more difficult to verify as it remains long-lived (and essen-

tially has an infinite loop). However, it is designed to have very little, simple

code. This may make the code very easy to reason about, making it less

prone to bugs. Moreover, the state store is a generic, reusable component.

Thus, there is more impetus to ensure that its code is as bug free as possible.

Policy

Imposing policy externally helps to simplify and reduce the service program’s

code (further easing its verification) as well as making the policy itself ex-

plicit. Since the policy enforcement modules are independent, they can be

verified separately. Each module is also relatively simple and, in many cases,

stateless. Thus, each bit of policy can be placed in its own virtual machine,

which can be also be restarted (snapshotted and rolled back). Therefore,

only one run through each policy enforcement module’s code is required.

3.5.2 Measurement and Attestation

From an information assurance perspective, it is desirable to be able to mea-

sure and attest running programs for correctness. When loading a program,

this is a relatively easy task. The binary, or even the entire virtual machine,

being loaded can be measured. This measurement is then compared against

the known-good version. If it matches, then one can be sure that the pro-

gram has not been tampered with. However, the longer a program runs, the

more state it acquires and the more difficult it becomes to measure it.

In order to obtain accurate results, the program needs to have its execution
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suspended so that the state does not alter during measurement. If it does,

this could result in a time-of-check-to-time-of-use exploit. This problem is

currently considered to be an unsolvable problem with long-running process.

(a) After one oper-
ation

(b) After several operations

Figure 3.12: The state-space grows with execution

Figure 3.12 illustrates this problem. The boxes indicate different states

(e.g., after an operation), the arrows indicate the flow of execution, and

the grey circles represents the state-space. Initially, the state-space is small

(Figure 3.12(a)). However, over time, as the program executes, the state-

space grows (Figure 3.12(b)). The state-space will continue to grow as the

program executes, making it more and more difficult to accurately perform

measurements.

Using execution rollback, the snapshot image can be remeasured periodi-

cally. Figure 3.13 shows the state-spaces for the code virtual machine of a

snapshotted process. The dashed lines and boxes indicate execution paths

and states the process went through in the past. However, since after each

execution all the state is reverted, each path originates from the initial posi-
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(a) After one oper-
ation

(b) After several operations

Figure 3.13: The “run-once” state-space does not grow with execution

tion. This prevents the state-space from growing, enabling remeasurement.

Depending on the overhead or the desired level of assurance, it could even

be remeasured on each rollback. This ensures that the snapshot has not

been tampered with and that each time the service executes, it is running

correct, unmodified code.

3.6 Limitations

The presented architecture, while providing many benefits, also has some

limitations and drawbacks. Our architecture is unsuitable for certain types

of services. To ensure security, the policy modules are heavily relied upon

to be correct. Currently, there are some classes of attack which will succeed

despite the increased security. Addressing these limitations is a goal of our

future work (see Chapter 5).
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3.6.1 Caching

For a program which uses a cache for performance, rolling back will either

destroy the cache or storing the cache in the state store virtual machine

will lose the performance benefits. This could be solved by using a sepa-

rated, high-performance cache virtual machine or by marking the memory

containing the cache so that it is not rolled back. However, this introduces a

potential vector of attack. It may be possible to corrupt the cache, allowing

an exploit to persist.

Another approach is to aggregate several iterations per restart loop. The

cache could then be kept locally, as the iterations in the restart loop would

benefit from the cache without being subjected to any overhead caused by

externalising it.

3.6.2 Concurrent Access

The state store only supports sequential accesses. This could pose a problem

for a multi-threaded service. If multiple threads attempt to access the store

at the same time, it could be difficult to sort out which responses go to

which thread. A solution to this is discussed in Section 5.3 by using a fork

mechanism, but for whole virtual machines instead of just processes.

3.6.3 Policy

An incorrect or buggy policy module can make it possible to exploit the

service. Our architecture does not automatically guarantee security, instead

it makes the information flow and policy explicit. This enables them to

be reasoned about and more easily verified, which reduces, but does not

eliminate, the chance of errors.
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3.6.4 Attacks

Constantly reverting a service to a known good state reduces the time that

an exploit has to succeed. However, if an attack is able to break out of a

service before it restarts, then it could replace the service with a copy that

has been tampered with and will not restart as it should. Furthermore, it is

possible for the attacker to now exploit the operating system to try to break

into the virtual machine monitor. Currently, we do not protect against such

attacks. However, this is a direction for future work, discussed in Section

5.4. Essentially, the virtual machine can be forced to restart if it has not

done so within a bounded limit, returning it to its known good state.
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Chapter 4

Prototype

We have designed and built a prototype implementation of our architecture.

We targeted XenStore, an inter-virtual machine communication tool for the

Xen virtual machine monitor [2]. We used an OCaml implementation of

XenStore which we developed earlier to address some of the shortcomings

of the original C version. The state store virtual machine has also been

developed in OCaml. No external policy was implemented in this prototype,

but it is a top-priority for our on-going work on this project.

This chapter will first give an overview of Xen and XenStore, then describe

the prototype implementation in detail. Finally, we evaluate the prototype.

4.1 Xen Overview

Xen is an open-source virtual machine monitor. A virtual machine monitor is

a relatively small piece of software which runs underneath operating systems

and controls access to and allocation of resources. It can be viewed as an

operating system for operating systems. A virtual machine abstraction is

exported which can run a guest operating system. Several virtual machines

(and thus guest operating systems) can be run concurrently.

In Xen, the first virtual machine to boot, called Domain-0, is a privileged

virtual machine. This means that it can perform privileged operations, such

as creating, destroying, and mapping the memory of other virtual machines

or rebooting the physical machine. It also contains device drivers which are

exported to the other virtual machines as virtual devices.
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4.2 XenStore Overview

XenStore is an inter-virtual machine communication and information storage

system. It is primarily used for communicating configuration and status

information between virtual machines. It is a key-value store, which makes

it an ideal candidate for porting to our architecture.

Figure 4.1: Example XenStore tree

XenStore provides a hierarchical, tree-based storage system (see Figure 4.1).

The basic component of this system is the node. Each node has a path

and may have at most one value assigned to it, and may have none or

many children. According to the XenStore specification, a node should

have either a value or children, but not both. However, xend (pronounced

xen-d), a suite of tools for managing virtual machines in Xen, violates the

specification. This is due to an implementation error in the original C version

of XenStore. There is no restriction on the value stored at a node except for

its length. However, the storage of binary data in XenStore is discouraged,

and is generally not done in any current usages.

4.2.1 C XenStore

The original version of XenStore is written in C. Unfortunately, it has many

drawbacks and security flaws. The store is implemented as a file using
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Trivial Database. On each transaction, this file is copied in its entirety.

When a transaction commits, its file replaces the main store file. This

introduces overhead, as the program must constantly go to disk. Moreover,

this provides a vector of attack. The file can be directly altered, subverting

all of XenStore’s security mechanisms.

Domain-0 tools communicate with XenStore through a socket interface while

other virtual machines must use XenBus, a simple communication bus. This

complicates the code base and an attacker capable of connecting to XenStore

through the socket interface will automatically be granted privileged access.

CPU Consumption Attack

An attack on XenStore has been demonstrated to be capable of completely

exhausting Domain-0’s CPU availability. Since XenStore runs as a process

in Domain-0, if it is excessively accessed by a guest virtual machine, it will

consume all the CPU. This has an impact on the performance of the entire

system since all services run in Domain-0.

While it may be possible to curtail this attack by throttling guest virtual

machine access to XenStore or by reducing the priority level of XenStore,

each of these solutions has their own drawbacks. When throttling guests,

the responsiveness of XenStore for each virtual machine will be affected. If

there are only a few virtual machines running on the system, then maximal

performance will not be achieved. This can be improved by allocating virtual

machines a proportional share of XenStore rather than fixed quanta. Re-

ducing the priority level of XenStore within Domain-0 will cause an overall

decrease in XenStore responsiveness.

Denial-of-Service Attack

It is possible for a guest virtual machine to attack XenStore such that Xen-

Store itself becomes unavailable. The attack repeatedly starts a transac-
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tion, writes a small amount of data, then commits the transaction. Due

to the nature in which concurrent transactions are handled in XenStore, all

other transactions are prevented from committing. Concurrent transactions,

whether they interfere with each other or not, cannot all commit. Instead,

the first transaction to commit will succeed and all other on-going transac-

tions will fail when they try to commit. Since the attack uses a very short

transaction, it will constantly be the only one allowed to commit.

Critical management tasks such as starting, terminating, and migrating vir-

tual machines are thus rendered impossible to perform. These tasks require

longer, more complex transactions which are prevented from ever success-

fully committing. Improving the way in which transactions are handled

would prevent this attack from denying access to XenStore.

4.2.2 OCaml XenStore

To address some of the drawbacks of the original version of XenStore, we

reimplemented it in OCaml. OCaml provides efficient support for tree struc-

tures. The file-based backing store was completely removed. This is a per-

formance gain as well as removing it as an attack vector.

Denial-of-Service Attack

The main focus of our initial OCaml XenStore implementation was to ad-

dress the denial-of-service attack. To solve this problem, we implemented

an ACID (atomic, consistent, isolated, durable) transactional system. This

new transaction system allows for the committing of concurrent but non-

interfering transactions. Thus, when subjected to the denial-of-service at-

tack described in Section 4.2.1, the transactions of other virtual machines,

including Domain-0, are unaffected. However, the persistent access to Xen-

Store will still result in a successful CPU resource consumption attack, as

described in Section 4.2.1.
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4.2.3 Disaggregated XenStore

The OCaml XenStore described above (Section 4.2.2) is an improvement on

the original C version (Section 4.2.1). However, it is still vulnerable to some

of the same attacks. In order to increase the security of XenStore, and the

system as a whole, we disaggregated XenStore into its own virtual machine.

By doing so, some simplifications can be made. For example, the tools in

Domain-0 were modified to use the XenBus interface instead of sockets. This

allowed for the complete removal of socket code from XenStore. Reducing

the interface of XenStore to only XenBus allows for easy modelling of the

external interface.

Since the file-backed store was removed in the OCaml version of XenStore

and now the socket interface has been removed, XenStore requires neither

a disk nor a network device. Thus, the virtual machine in which the dis-

aggregated XenStore runs does not require these components either. This

reduces the complexity of the operating system and removes potential vec-

tors of attack.

CPU Consumption Attack

There exists an attack on XenStore which can consume Domain-0’s CPU

(discussed in Section 4.2.1). By running XenStore in its own virtual machine,

its CPU usage is independent of Domain-0’s CPU usage. Thus, the attack

will no longer affect Domain-0.

It may still be possible to consume all of the disaggregated XenStore’s vir-

tual machine’s CPU. However, the physical CPU usage can be controlled and

throttled by Xen. To further prevent the attack from consuming XenStore’s

CPU, XenStore can be modified to stall communication with a virtual ma-

chine which consumes more than a certain threshold of CPU cycles. It is

possible to extend this modification even further to monitor each guest vir-

tual machine’s usage of XenStore and deduct accordingly from the guest

virtual machine’s schedulable CPU time. Thus, if a guest virtual machine
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bombards XenStore with requests, its own CPU time will be used up and

Xen will disallow it from executing further, preventing any significant dis-

ruption to XenStore.

4.2.4 Split-Virtual Machine XenStore

Our disaggregated XenStore offers many security advantages over the origi-

nal C version. It is now able to withstand both the CPU resource consump-

tion attack (Section 4.2.1) and the denial-of-service attack (Section 4.2.1).

However, it is still a long-running process and therefore susceptible to long-

lived exploits. Furthermore, as a long-running process, it is difficult to verify

its code and measure its running state and attest it to be correct.

4.3 Code Virtual Machine

Our prototype is a proof-of-concept implementation. Therefore, perfor-

mance was not our main concern. The separation of state from code was

divided into three major milestones: separate out state, perform full reboots,

and implement snapshot and rollback.

4.3.1 State

The first milestone was concerned only with separating out state. This en-

abled us to test the interface between the two virtual machines and ensure

the serialisation/deserialisation of data was working correctly. To simplify

this process, all state was separated out. Any data retrieved was only kept

long enough to perform whatever operation required it. This is a very inef-

ficient implementation, but would ensure that when attempting to perform

full reboots, errors would be due to mechanistic fault and not due to a

misconception of the length of life of some state.
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4.3.2 Reboots

Rebooting the code virtual machine required a method of determining when

execution had completed. Normally, xend and XenStore are used to detect

a terminated virtual machine. However, since XenStore is the service being

restarted (and XenStore is required to be operational before xend can run),

this approach was not possible. Instead, extra support needed to be added

to the XenStore program itself.

Xen provides event channels, which are much like hardware interrupts, to

enable inter-virtual machine event notification. An event channel was cre-

ated between XenStore and a tool in Domain-0. XenStore notifies the tool

once it has completed its execution (one request/response). The tool then

calls into Xen to destroy the code virtual machine and rebuild it.

Doing full reboots adds a tremendous amount of overhead. This was to be

expected and motivated the snapshot and rollback mechanism. However, it

proved that the concept was possible.

4.3.3 Snapshots

The final milestone was to reduce the major cause of overhead with the archi-

tecture: full reboots. Xen has support for saving a running virtual machine

to disk and restoring it at a later point in time. However, this mechanism

requires the co-operation of the guest operating system. XenStore has been

implemented on top of Mini-OS, a minimal operating system designed for

use with Xen. Mini-OS has no support for save/restore. Furthermore, con-

stantly saving to and restoring from disk would be expensive.

The Domain-0 tool previously created to reboot the XenStore virtual ma-

chine was modified to instead perform snapshot and rollback. The tool

contains a memory buffer which is used to store the snapshot image of the

XenStore virtual machine. When Xenstore has been initialised, it notifies

the tool over the event channel. The tool then takes a snapshot of the entire
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let process_add store payload =

try (

let (key, value) = Utils.split_first payload in

Hashtbl.add store key value;

Kvmessage.ok

)

with _ -> Kvmessage.err

Figure 4.2: Add operation for state store

virtual machine, including CPU state. Once XenStore has completed its

execution, it once again notifies the tool, which, instead of rebooting the

virtual machine, performs a rollback.

In order to ensure correctness, the entire memory contents from the snap-

shot image is copied back over top of the virtual machine’s current memory

and the CPU state is restored. The virtual machine then runs forward

again, from the point in time that the snapshot was taken. This snapshot

and rollback is equivalent to performing full reboots, but with much less

overhead.

4.4 State Virtual Machine

The state store virtual machine is small and simple. It has been developed

in OCaml so that it can be more readily verified. To store the data, the

built-in hash table module is used. Leveraging existing modules enables the

code to remain simple and to benefit from well tested and efficient data

structures.

Figure 4.2 gives the code for the add operation. As can be seen, there are

only seven lines of code. The Utils.split first function splits a string

into two parts on the first occurrence of the null character (‘\0’). The

function returns an ok message if everything is successful. If an error occurs,

an exception is thrown. This is caught and an err message is returned.
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4.5 Communication Channel

Figure 4.3: Communication channel as mapped buffers

The design of the communication channel is similar to that of XenBus.

There are two buffers, send and receive. The buffers are actually contained

in the state store virtual machine. The code virtual machine maps the page

of memory containing them into its address space. The state store and code

treat the buffers as opposites. The send buffer in the code virtual machine

is the receive buffer in the state virtual machine and vice versa. Figure 4.3

illustrates this configuration. The dashed lines represent memory that has

been mapped. Notice that the send and recv buffers are inverted.

If a packet is larger than the length of the buffer, which is 1,024 bytes, then it

is broken up into pieces and reassembled at the other end. If, while sending,

the packet would go past the end of the buffer, then as much as will fit is

sent and the rest is wrapped around to the beginning of the buffer (i.e., this

is a circular buffer).

There are seven messages types, as outlined in Table 4.1. The top four

message types (add, get, put, del) are used by the code virtual machine

to make requests of the state store. The bottom three message types (ok,

ret, err) are response messages. It is important to note that the space seen

between key and value is a null character (‘\0’) in the actual payload. The

payload for an ok message is empty (and thus the size field is 0).

If the request completes successfully, then an ok message is returned, except

for get which will return a ret message containing the associated value for
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Type Bits Payload Description

add 000 key value Add a new key-value pair to the store. If
the key already exists, return an error.

get 001 key Retrieve the stored value associated with
the given key.

put 010 key value Replace the value associated with the
given key. If no association exists, create
it.

del 011 key Delete a key-value pair. An error is re-
turned if the association does not exist.

ok 100 Return than an operation completed suc-
cessfully.

ret 101 value Return a value, which is contained in the
payload (from a get request)

err 110 errno Return that an error occurred.

Table 4.1: Message types

the given key as the payload. If an error occurred, then an err message is

returned with the appropriate errno set in the payload field (see Table 4.2).

Figure 4.4: Request/response flow between code and state VMs

Request messages always flow from the code virtual machine to the state vir-

tual machines and response messages from the state virtual machine to the

code virtual machine (see Figure 4.4). It is a violation of protocol for either

type of message to flow in the opposite direction or for any other message

type to be sent. Each request receives a response and messages are delivered

in order. Typically a full request/response interchange is completed before

the next request is sent, however this is not a requirement.
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Request Error errno Description

add

EEXIST 17 The key is already associated with a value.
ENOMEM 12 The store is out of memory.
EINVAL 22 The input was invalid.

get
ENOENT 2 There is no mapping for the specified key.
EINVAL 22 The input was invalid.

put
ENOMEM 12 The store is out of memory.
EINVAL 22 The input was invalid.

del ENOENT 2 There is no mapping for the specified key.

Table 4.2: Error response types for each request type

4.6 Evaluation

Version Time

Reboot (Mini-OS) 40ms

Rollback 4ms

Table 4.3: Times for mechanisms

The prototype implementation has two variants: full reboots and snap-

shot/rollback. Table 4.3 gives the time required by each raw mechanism.

The results are the average of ten trials. The rollback technique used in

these trials is the näıve implementation which copies the entire memory

contents of the snapshot. Thus, the least efficient rollback mechanism is

an order of magnitude faster than performing a full reboot. Note that the

operating system being rebooted is Mini-OS, which is very small and simple.

Performing a reboot of even a stripped down Linux would be of the order

of seconds. Also note that the amount of memory for the virtual machine is

4MB.

We have done some preliminary evaluation of our prototype. We first

evaluate the length of time it takes for xend to start. For stress-testing,

xenstore-ls is used. xenstore-ls is a program which lists all the nodes

in XenStore, displaying them in hierarchical order. To accomplish this, it

first reads the root node, then it requests its children (see Figure 4.1). For
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each child, this process repeats recursively using depth-first traversal of the

tree. Each operation is done independently (no transactions). Finally, we

evaluate the creation and booting of a virtual machine to test a “real-world”

use.

Version xend start xenstore-ls ls/entry xm create

Original 16.5s 0.04s 1.0ms 1.28s

Reboots 39.4s 10.80s 93.9ms 20.17s

Snapshots 22.7s 1.37s 11.5ms 4.41s

Reboots (1s) ∼600.0s ∼230.0s ∼2050ms ∼460.0s

Table 4.4: Times for tasks

The results are shown in Table 4.4. Each result is the average of three

trials. Three versions of XenStore are evaluated: the original C version,

the split-virtual machine implementation with full reboots, and split-virtual

machines using snapshotting. A fourth, hypothetical version is also provided

illustrating what the costs would be using full reboots if a reboot took one

second.

The “ls/entry” column is an average of the time taken for each operation

during xenstore-ls. Since XenStore stores information about virtual ma-

chines existing on the system, when split virtual machines are being used

there is more information to be stored (since there are more virtual machines

running on the system). Thus, this column corrects for time differences as a

result of the difference in the amount of information stored (and retrieved).

The overhead of using snapshots is an order of magnitude greater than the

original version. The overhead of using reboots is an order of magnitude

greater than that (and two orders of magnitude greater than the original).

Using a reboot time of just one second produces an overhead of another

order of magnitude. However, even with a one second reboot time, rolling

back would still take the same amount of time.

Starting a virtual machine incurs a three and a half times slowdown using

snapshots, and a twenty times slowdown using reboots (and almost a five

hundred times slowdown with a one second reboot time). This overhead
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is less than for just performing one xenstore-ls operation because there

are other factors in the creation of a virtual machine that just accessing

XenStore.

These initial results are promising, especially considering that the current

prototype implementation is far from optimised. We believe it should be

possible to approach near-native speed. This is discussed in greater detail

in Section 5.2.
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Future Work

Our prototype implementation shows that the proposed architecture is vi-

able. However, there are currently some limitations to this system and many

exciting directions this research could take in the future.

5.1 Policy

An important part of this architecture is the ability to impose policy on the

communication. However, we currently do not have a concrete mechanism

or an explicit example of policy enforcement. This is an important direction

for our future work. The external nature of the enforcement enables intricate

policy decisions to be made and the enforcement of the policies themselves

to be secure from direct exploitation (see Section 3.3.4).

It should be possible to create a policy virtual machine with two communi-

cation channels, as described in Section 4.5. The code virtual machine would

connect to one channel of the policy module instead of to the state store’s

channel. The state store would connect to the other channel. The policy

module could then intercept and analyse the communications between the

code and state virtual machines.

This section aims to present an overview of example policies that the capa-

bility check system in XenStore might enforce. The following sections will

provide a detailed description of each policy proposed below.

The first proposed policy provides the same security checks as the existing,
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hard-coded checks in XenStore. This policy is known as the legacy policy.

This will enable safe removal of the hard-coded security checks from Xen-

Store in favour of the policy module, completing the separation of XenStore.

The second policy proposed is the exclusionary policy. This policy disallows

all communication between virtual machines using XenStore. Communica-

tion between virtual machines is allowed only if it is explicitly permitted.

This policy is similar to the Simple Type Enforcement policy in the sHype

[19] security subsystem in Xen.

Lastly, and most interestingly, a protocol enforcement policy for XenStore is

proposed. This policy enforces the correct usage of XenStore by all virtual

machines. This is similar to a stateful firewall ruleset in that it allows

certain operations only if they follow a well defined protocol. This policy

could, for example, enforce correct usage of the split-level block driver and

the split-level network driver.

We propose a human-readable interface for creating and modifying poli-

cies in XenStore. This would be similar to policy generation in SELinux,

but with a more user-friendly format. Because we would like the policy en-

forcement to be stateful, we may wish to look at policy module configuration

using firewall-like semantics. This could be used to enforce rate-limiting and

well known driver protocols and to dynamically group virtual machines.

It is worth noting that the intention of this design is that policies be compos-

able. In most deployments a coarse-grained universal policy will be applied

to the entire XenStore namespace, along the lines of an exclusionary policy

that severely restricts the ability of virtual machines to communicate with

one another. Then, where they do communicate through specific sub-trees

in the store, more fine-grained policy modules may be used to enforce partic-

ular communication semantics, for instance the device protocol for a specific

split-driver implementation.
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5.1.1 Legacy Policy

As a first step we propose the implementation of the legacy policy. This

policy will implement all current security checks in XenStore, allowing us to

safely remove the existing permission enforcement code from the XenStore

code base in favour of policy modules. The existing permission enforce-

ment code must be removed in order to fulfil our goal of policy/code/state

separation.

5.1.2 Exclusionary Policy

The Exclusionary Policy works by forbidding all communication between

virtual machines using XenStore, unless explicitly specified. This policy is

similar in nature to the simple type enforcement (STE) policy in the sHype

security subsystem of Xen. In this policy, virtual machines are labelled

by groups and communication is only permitted within groups. A virtual

machine may be a member of multiple groups, in which case it is able to

communicate with the members of each of those groups. In terms of Xen-

Store behaviour, a virtual machine will not be able to read or manipulate

any node owned by a virtual machine outside of its groups, regardless of the

permissions of that node. Virtual machines are assigned groups when they

are booted, and they cannot join or leave groups over their lifetimes.

This policy could easily be extended to provide a Chinese Wall policy [4],

whereby conflicting groups are not allowed to use XenStore concurrently. In

order to support this policy, certain data structures in XenStore need to be

modified. Additional security information needs to be stored in nodes and

connections.

5.1.3 Protocol Enforcement Policy

All drivers that use XenStore use it in a specific, well-defined way. With the

protocol enforcement policy, we can leverage this fact to ensure that only
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well-behaving virtual machines may use XenStore. This policy tracks the

state of all connections to XenStore and ensures that they are behaving in

an appropriate manner. It can be thought of as being similar to a stateful

packet filter.

This policy is aware of the protocols used by all device drivers when accessing

XenStore. Device drivers that communicate using XenStore follow a state-

based protocol. This policy is given a formal encoding of all protocols used

in XenStore, and assigns states to virtual machines accessing the database.

Much like a finite state machine, the protocol enforcement policy decides

whether an operation should succeed or fail based on the virtual machines’s

current state and the operation requested (the virtual machine’s input). For

example, in a virtual machine that has a frontend block driver, the driver

would only be able to write its ring buffer and event channel details into the

store when it is in the initialising state.

This policy could be used to ensure that only authorised domains are able

to export backend drivers, and ensure that only authorised frontend drivers

are able to connect to the respective backend drivers.

5.1.4 Filter Policy

The ideas presented in the protocol enforcement policy can be generalised

to provide an extensible, stateful mechanism to configure XenStore security

policies. This is similar to a stateful firewall in that permissions, labels,

groups, and states can be specified in an abstract, human readable way.

Rate limits can be enforced for misbehaving connections and malicious or

unauthorised connections can be dropped or refused outright.

The syntax used by this policy is general enough such that all previous

policies can be expressed as specific instances of the filter policy.
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5.2 Performance

The initial prototype was not designed with performance in mind. Realising

that doing a full boot sequence on each restart would introduce significant

overhead, a snapshotting technique was developed. This increased perfor-

mance by an order of magnitude. We believe that there are many other

areas which can be targeted to further increase performance. It should be

possible to achieve near-native speed, with the only major overhead being

the communication channel between the code and state virtual machines.

5.2.1 Communication

The current prototype accesses most state, long-lived or not, from the state

store. Furthermore, in many cases it refetches the same data multiple times

during one execution. This was done to help debug the separation. How-

ever, after some analysis it became clear that short-lived state (e.g., local

variables) did not need to be stored at all. It is also possible in many cases

to retrieve long-lived state only once per execution and, further, to fetch

this state lazily so that only the data that is actually required is requested

and retrieved.

The communication mechanism is based on XenBus, which is used primar-

ily by XenStore. XenBus was designed to communicate configuration data

between virtual machines, not to transport large amounts of data. It was

chosen as the basis for our communication mechanism because it is relatively

simple with well-tested code. However, a mechanism designed for large data

transfers will likely decrease the overhead associated with communication.

5.2.2 Snapshots

Further analysis of the snapshot mechanism is required to determine if there

is a performance advantage, and if so how much, to using copy-on-write on

the code virtual machine’s memory. With copy-on-write, only the pages
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which have been modified are reverted. For example, in a typical run of the

prototype only three pages of memory are dirtied. This reduces the total

amount of memory that needs to be copied from 4MB to 12KB (pages are

4KB).

5.3 Virtual Machine Fork

Our current architecture is not well suited for services with concurrency. For

example, a multi-threaded service would not be easily adapted to it if mul-

tiple threads need to access the state store at the same time. Implementing

a version of fork, but for virtual machines, could solve this problem. Each

thread could then be launched in its own forked version of the code and

state virtual machines. However, this would require a mechanism to merge

the forked state stores back together.

5.4 Attack Prevention

An attacker capable of breaking out of the service into the operating system

can currently prevent the service from restarting. Furthermore, the service

could be replaced with an infected version which does not restart. However,

there are several ways to prevent this type of attack. The total execution

time for the code virtual machine can be limited. For example, if no request

takes longer than 50ms, then if the service has been running for longer than

that amount of time without restarting, it can be forced to restart from the

outside.

A more complicated approach is to use static analysis of the program to

create an abstract model of execution bounds. For example, the total num-

ber of branches or the number of instructions of the longest (correct) path

through the code. These attributes can then be monitored and the virtual

machine forced to restart if any of the conditions are violated.
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Conclusion

As attackers become more sophisticated and attacks more available, it is

clear that we need a better way of protecting systems. Long-running pro-

cesses are an alluring target as they provide both a large temporal surface

to attack and a long time to own the service once it is successfully exploited.

Restarting a service restores it to a fresh state. However, once an exploit

has been discovered it is relatively easy for the attacker to regain control of

the service.

We have presented a new architecture designed to help secure this class of

service. By separating the code and state of a program into two virtual

machines it is possible to constantly restart the code portion, bringing it

back to a fresh, unexploited state. Moreover, it is easier to reason about the

interaction between the two parts and policy can be externally enforced upon

this interaction. Simplifying the code, and thus the program model, allows

for easier verification of correctness. This architecture enables dynamically

measuring and attesting that the software has not been tampered with.
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