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CS340 Machine learning
Information theory
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Announcements

• If you did not get email, contact  hoytak@cs.ubc.ca

• Newsgroup ubc.courses.cpsc.340
• Hw1 due wed – bring hardcopy to start of class

• Added knnClassify.m, normalize.m
• Add/drop deadline tomorrow
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Information theory

• Data compression (source coding)
– More frequent events should have shorter encodings

• Error correction (channel coding)
– Should be able to infer encoded event even is message 

is corrupted by noise

• Both tasks require building probabilistic models of 
data sources, p(x), and hence are related to 
machine learning

• Lower bounds on coding length and channel 
capacity depend on our uncertainty about p(x), 
defined in terms of entropy
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Info theory & ML

CUP, 2003, freely available online on David Mackay’s website
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Entropy

• Consider a discrete random variable X ∈ {1,…,K}

• Suppose we observe event X=k. The info content 
of this event is related to its surprise factor

• The entropy of distrib p is the average info content

• Max entropy = uniform, min entropy = delta fn

h(k) = log
2
1/p(X = k) = − log

2
p(X = k)

H(X) = −
K∑

k=1

p(X = k) log
2
p(X = k)

0 ≤ H(X) ≤ log2K
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Binary entropy function

• Suppose X ∈ {0,1}, p(X=1)=θ, p(X=0)=1- θ

• We say X ~ Bernoulli(θ)

H(X) = H(θ) = −[p(X = 1) log2 p(X = 1) + p(X = 0) log2 p(X = 0)]

= −[θ log2 θ + (1− θ) log2(1− θ)]
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Entropy of p(y|x,D) for kNN
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Active learning
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• Suppose we can request the label y for
any location (feature vector) x.
• A natural (myopic) criterion is to pick the
one that minimizes our predictive uncertainty

x∗ = argmin
x∈X

H(p(y|x,D))

•Implementing this in practice may be quite
difficult, depending on the size of the X
space, and the form of the probabilistic
model p(y|x)

Will cover later
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Active learning with Gaussian Processes

If we assume the yi labels are correlated with their nearest neighbors,
we can propagate information and rapidly classify all the points

Nando de Freitas Will cover later
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Entropy & source coding theorem

• Shannon proved that the minimum number of 
bits needed to encode an RV with distribution p 
is H(p)

• Example: X in {a,b,c,d,e} with distribution

• Assign short codewords (00,10,11) to common 
events (a,b,c) and long codewords (010,011) to 
rare events in a prefix-free way 

p(a) = 0.25, p(b) = 0.25, p(c) = 0.2, p(d) = 0.15, p(e) = 0.15

a→ 00, b→ 10, c→ 11, d→ 010, e→ 011

Not on exam

001011010→ 00, 10, 11, 010→ abcd

Build tree bottom up – Huffman code
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Example cont’d

• Example: X in {a,b,c,d,e} with distribution

• Average number of bits needed by this code

• Entropy of distribution: H = 2.2855

• To get closer to lower bound, encode blocks of 
symbols at once (arithmetic coding)

p(a) = 0.25, p(b) = 0.25, p(c) = 0.2, p(d) = 0.15, p(e) = 0.15

a→ 00, b→ 10, c→ 11, d→ 010, e→ 011

Not on exam

0.25 ∗ 2 + 0.25 ∗ 2 + 0.2 ∗ 2 + 0.15 ∗ 3 + 0.15 ∗ 3 = 2.30
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Joint entropy

• The joint entropy of 2 RV’s is defined as

• If X and Y are independent

then our uncertainty is maximal (since X does not 
inform us about Y or vice versa)

• In general, considering events jointly reduces our 
uncertainty

• and our joint uncertainty is >=  marginal uncertainty

H(X, Y ) = −
∑

x,y

p(x, y) log2 p(x, y)

X ⊥ Y ⇐⇒ p(X, Y ) = p(X)p(Y )

X ⊥ Y ⇐⇒ H(X,Y ) = H(X) +H(Y )

H(X,Y ) ≤ H(X) +H(Y )

H(X,Y ) ≥ H(X) ≥ H(Y ) ≥ 0

When is H(X,Y) = H(X)?

(non trivial proof – see later)
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Example

• Let X(n) be the event that n is even, and Y(n) be 
the event that n is prime, for n ∈ {1,…,8}

• The joint distribution = normalized counts

H(X,Y ) = −[
1

8
log2

1

8
+
3

8
log2

3

8
+
3

8
log2

3

8
+
1

8
log2

1

8
] = 1.8113

What is H(X) + H(Y)?
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Example cont’d

• The joint and marginal distributions are

• Hence H(X)=H(Y)=1, so

H(X,Y ) = 1.8113 < H(X) +H(Y ) = 2
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Conditional entropy

• H(Y|X) is expected uncertainty in Y after seeing X
H(Y |X)

def
=

∑

x

p(x)H(Y |X = x)

= −
∑

x

p(x)
∑

y

p(y|x) log p(y|x)

= −
∑

x,y

p(x, y) log p(y|x)

= −
∑

x,y

p(x, y) log
p(x, y)

p(x)

= −
∑

x,y

p(x, y) log p(x, y)−
∑

x

p(x) log
1

p(x)

= H(X,Y )−H(X)

When is H(Y|X)=0?  When is H(Y|X) = H(Y)?
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Information never hurts

• Conditioning on data always decreases (or at least, 
never increases) our uncertainty, on average

H(X, Y ) ≤ H(Y ) +H(X) from before

H(Y |X) = H(X,Y )−H(X) from above

≤ H(Y ) +H(X)−H(X)

≤ H(Y )
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Mutual information

• I(X,Y) is how much our uncertainty about Y 
decreases when we observe X

• Hence

I(X,Y )
def
=

∑

y

∑

x

p(x, y) log
p(x, y)

p(x)p(y)

= −H(X,Y ) +H(X) +H(Y )

= H(X)−H(X|Y ) = H(Y )−H(Y |X)

H(X,Y ) = H(X|Y ) +H(Y |X) + I(X,Y )

Mackay 9.1
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Mutual information

• MI captures dependence between RVs in the 
following sense:

• If X ⊥ Y ⇒ I(X,Y)=0 is easy to show; 
I(X,Y)=0 ⇒ X ⊥ Y is harder.

• This is more general than a correlation coefficient, 
ρ ∈ [-1,1]  which is only captures linear dependence

• For MI, we have
0 ≤ I(X,Y ) ≤ H(X) ≤ log2K

When is I(X,Y) = H(X)?

I(X, Y ) ≥ 0 and I(X,Y ) = 0 ⇐⇒ X ⊥ Y
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Example

• Recall the even/ prime example with joint, 
marginal and conditional distributions

• Hence

H(Y |X) = −[
1

8
log2

1

4
+
3

8
log2

3

4
+
3

8
log2

3

4
+
1

8
log2

1

4
] = 0.8113

I(X, Y ) = H(Y )−H(Y |X) = 1− 0.8113 = 0.1887

cond = normalize(joint) = joint ./ repmat(sum(joint,2), 1, Y)
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Relative entropy (KL divergence)

• The Kullback-Leibler (KL) divergence is defined as

• where ∑x p(x) log q(x) is the cross entropy
• KL is the average number of extra bits needed to 

encode the data if we think the distribution is q, but 
it is actually p.

• KL is not symmetric and hence not a distance.

• However, KL(p,q) >= 0 with equality iff p=q.

D(p||q) =
∑

x

p(x) log
p(x)

q(x)
= −H(p)−

∑

x

p(x) log q(x)
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Jensen’s inequality

• A concave function is one which lies above any 
chord

• Jensen: for any concave f,

• Proof by induction: set

f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2)

E[f(X)] ≤ f(E[X])
∑

x

p(x)f(x) ≤ f(
∑

x

p(x))

λ = p(x = 1), 1− λ =
K∑

x=2

p(x)

Not on exam
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Proof that KL >= 0

• Let f(u)= log 1/u be a concave fn, and u(x)=p(x)/q(x)

• Hence

and

D(p||q) = E[f(q(x)/p(x))]

≥ f

(
∑

x

p(x)
q(x)

p(x)

)

= log(
1∑
x q(x)

) = 0

I(X,Y ) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
= D(p(x, y)||p(x)p(y)) ≥ 0

H(X) +H(Y ) = I(X,Y ) +H(X,Y ) ≥ H(X,Y )

Not on exam


