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Abstract

Particle filters (PFs) are powerful sampling-
based inference/learning algorithms for dynamic
Bayesian networks (DBNs). They allow us to
treat, in a principled way, any type of probabil-
ity distribution, nonlinearity and non-stationarity.
They have appeared in several fields under such
names as “condensation”, “sequential Monte
Carlo” and “survival of the fittest”. In this pa-
per, we show how we can exploit the structure
of the DBN to increase the efficiency of parti-
cle filtering, using a technique known as Rao-
Blackwellisation. Essentially, this samples some
of the variables, and marginalizes out the rest
exactly, using the Kalman filter, HMM filter,
junction tree algorithm, or any other finite di-
mensional optimal filter. We show that Rao-
Blackwellised particle filters (RBPFs) lead to
more accurate estimates than standard PFs. We
demonstrate RBPFs on two problems, namely
non-stationary online regression with radial ba-
sis function networks and robot localization and
map building. We also discuss other potential ap-
plication areas and provide references to some fi-
nite dimensional optimal filters.

1 INTRODUCTION

State estimation (online inference) in state-space models is
widely used in a variety of computer science and engineer-
ing applications. However, the two most famous algorithms
for this problem, the Kalman filter and the HMM filter, are
only applicable to linear-Gaussian models and models with
finite state spaces, respectively. Even when the state space
is finite, it can be so large that the HMM or junction tree
algorithms become too computationally expensive. This is
typically the case for large discrete dynamic Bayesian net-
works (DBNs) (Dean and Kanazawa 1989): inference re-
quires at each time space and time that is exponential in the

number of hidden nodes.

To handle these problems, sequential Monte Carlo meth-
ods, also known as particle filters (PFs), have been in-
troduced (Handschin and Mayne 1969, Akashi and Ku-
mamoto 1977). In the mid 1990s, several PF algorithms
were proposed independently under the names of Monte
Carlo filters (Kitagawa 1996), sequential importance sam-
pling (SIS) with resampling (SIR) (Doucet 1998), bootstrap
filters (Gordon, Salmond and Smith 1993), condensation
trackers (Isard and Blake 1996), dynamic mixture models
(West 1993), survival of the fittest (Kanazawa, Koller and
Russell 1995), etc. One of the major innovations during the
1990s was the inclusion of a resampling step to avoid de-
generacy problems inherent to the earlier algorithms (Gor-
don et al. 1993). In the late nineties, several statistical im-
provements for PFs were proposed, and some important
theoretical properties were established. In addition, these
algorithms were applied and tested in many domains: see
(Doucet, de Freitas and Gordon 2000) for an up-to-date sur-
vey of the field.

One of the major drawbacks of PF is that sampling in
high-dimensional spaces can be inefficient. In some cases,
however, the model has “tractable substructure”, which
can be analytically marginalized out, conditional on cer-
tain other nodes being imputed, c.f., cutset conditioning in
static Bayes nets (Pearl 1988). The analytical marginal-
ization can be carried out using standard algorithms, such
as the Kalman filter, the HMM filter, the junction tree al-
gorithm for general DBNs (Cowell, Dawid, Lauritzen and
Spiegelhalter 1999), or, any other finite-dimensional opti-
mal filters. The advantage of this strategy is that it can
drastically reduce the size of the space over which we need
to sample.

Marginalizing out some of the variables is an example of
the technique called Rao-Blackwellisation, because it is
related to the Rao-Blackwell formula: see (Casella and
Robert 1996) for a general discussion. Rao-Blackwellised
particle filters (RBPF) have been applied in specific con-
texts such as mixtures of Gaussians (Akashi and Ku-
mamoto 1977, Doucet 1998, Doucet, Godsill and Andrieu



2000), fixed parameter estimation (Kong, Liu and Wong
1994), HMMs (Doucet 1998, Doucet, Godsill and Andrieu
2000) and Dirichlet process models (MacEachern, Clyde
and Liu 1999). In this paper, we develop the general theory
of RBPFs, and apply it to several novel types of DBNs. We
omit the proofs of the theorems for lack of space: please
refer to the technical report (Doucet, Gordon and Krishna-
murthy 1999).

2 PROBLEM FORMULATION

Let us consider the following general state space
model/DBN with hidden variables ��� and observed vari-
ables ��� . We assume that ��� is a Markov process of ini-
tial distribution ���	��
�� and transition equation �������� ��������� .
The observations ���� ��� � ������������������� ��� � are assumed
to be conditionally independent given the process �!� of
marginal distribution ��"� � � � � � . Given these observations,
the inference of any subset or property of the states � 
�� � �� � 
 �#� � ����������� � � relies on the joint posterior distribution�$�	� 
%� � � � ��� � � . Our objective is, therefore, to estimate this
distribution, or some of its characteristics such as the filter-
ing density �$�"� � � � �#� � � or the minimum mean square error
(MMSE) estimate &(')� � � � ��� ��* . The posterior satisfies the
following recursion

�$�"��
�� ��� ����� � �,+-�$�"��
�� ������� ����� ������� �$�"� � � � � ���$��� � � � ����� ��$��� � � � �#� ����� �
(1)

If one attempts to solve this problem analytically, one ob-
tains integrals that are not tractable. One, therefore, has to
resort to some form of numerical approximation scheme. In
this paper, we focus on sampling-based methods. Advan-
tages and disadvantages of other approaches are discussed
at length in (de Freitas 1999).

The above description assumes that there is no structure
within the hidden variables. But suppose we can di-
vide the hidden variables ��� into two groups, .�� and /�� ,
such that ���	����� �������%�0+1���"/���� .������#� �#��/��������2����.���� .�������� and,
conditional on .�
%� � , the conditional posterior distribution�$��/�
�� �%�3���#� ��� .�
�� �4� is analytically tractable. � Then we can
easily marginalize out / 
%� � from the posterior, and only
need to focus on estimating �$�2. 
�� � � � ��� � � , which lies in a
space of reduced dimension. Formally, we are making use
of the following decomposition of the posterior, which fol-
lows from the chain rule

�$��.�
�� �5� /�
%� ��������� � �,+-�$�%/�
%� �%�3���#� ����.�
�� �4���$��.6
%� �%�3���#� � �
The marginal posterior distribution �$��. 
%� � � � �#� � � satisfies7

The problem of how to automatically identify which vari-
ables should be sampled, and which can be handled analytically,
is one we are currently working on. We anticipate that algorithms
similar to cutset conditioning (Becker, Bar-Yehuda and Geiger
1999) might prove useful.

the alternative recursion8:92;�<#= >�? @ 7 = >BA�C 8D92@ > ? @ 7 = >	E 75F ; <#= > A�8:9G; > ? ; >�E 7 A�8D92; <#= >�E 7 ? @ 7 = >	E 7 A8D92@ > ? @ 7 = >�E 7 A
(2)

If eq. (1) does not admit a closed-form expression, then eq.
(2) does not admit one either and sampling-based methods
are also required. Since the dimension of �$�".�
%� ��� ���#� �3� is
smaller than the one of �$�%. 
%� � ��/ 
�� � �3� �#� � � , we should expect
to obtain better results.

In the following section, we review the importance sam-
pling (IS) method, which is the core of PF, and quantify the
improvements one can expect by marginalizing out / 
%� � �
i.e. using the so-called Rao-Blackwellised estimate. Sub-
sequently, in Section 4, we describe a general RBPF algo-
rithm and detail the implementation issues.

3 IMPORTANCE SAMPLING AND
RAO-BLACKWELLISATION

If we were able to sample H i.i.d. random sam-

ples (particles), IKJ�.!LNM)O
�� � � /PL)MNO
%� �3QSR�T +VU����)�)�N�#HXW , according to�$��.6
%� �5� /�
%� ���4����� �4� , then an empirical estimate of this distri-
bution would be given by

�ZYX�%.�
�� �5� /�
%� ���3���#� �3�,+ UH
Y[
M)\ ��]_^3`#acbNde f g h i ajb)de4f g�k �	l�.�
�� �3l�/�
�� � �

where ]m^3` acbNde f g h i ajbNde4f g k �	l�.�
�� �3l�/�
%� � � denotes the Dirac delta

function located at J .�L)MNO
%� � � /PL)M)O
%� � Q . As a corollary, an

estimate of the filtering distribution �$��. � � / � �4� ��� � � is� Y �%. � � / � �4� ��� � �n+ �Ypo YM)\ � ] ^3` ajb)dg h i aqbNdg k ��l�. � l�/ � � . Hence

one can easily estimate the expected value of any functionr � of the hidden variables w.r.t. this distribution, st� r �4� , us-
ing

s%Y�� r �4�X+vu r ���".�
%� �#��/�
�� � � �tYw��.6
%� �5� /�
%� ���4����� �4�xl�.�
�� �4l�/�
�� �
+ UH

Y[
M)\ � r � J�.!LNMNO
�� � � /PL)MNO
%� �3Q

This estimate is unbiased and, from the strong law of
large numbers (SLLN), s�Y�� r �4� converges almost surely
(a.s.) towards s:� r �4� as H y z|{ . If } �~ g �
var� L ` e f g h i e4f g � �!��f g O ' r � ��. 
%� � � / 
%� � � *V� z|{ , then a central
limit theorem (CLT) holds� H�� s%Yw� r � ���s:� r � ����+��YK���K���	� ��} �~ g#�
where ����� denotes convergence in distribution. Typi-
cally, it is impossible to sample efficiently from the “tar-
get” posterior distribution �S�%. 
%� � ��/ 
�� � �3� �#� � � at any time � .
So we focus on alternative methods.



One way to estimate �$��. 
�� � ��/ 
�� � �3� �#� � � and s:� r � � con-
sists of using the well-known importance sampling method
(Bernardo and Smith 1994). This method is based on the
following observation. Let us introduce an arbitrary impor-
tance distribution � ��.�
%� �#��/�
�� ���4����� �4� , from which it is easy
to get samples, and such that �$��. 
%� ��� /�
%� �%�4����� � ��� � implies� �%.�
%� ����/�
�� �%�3���#� �4��� � . Then

s � r � � + &�� L ` e f g h i e4f g � � �3f g O � r � ��. 
%� � � / 
%� � ���w�". 
%� � ��/ 
�� � � �&�� L ` e f g h i e4f g � �!�3f g O �	�w�".�
%� ����/�
�� �4� �
where the importance weight is equal to

�-��. 
�� � � / 
%� � � + �$��.�
�� �5� /�
%� ���3���#� �4�� ��. 
%� � � / 
%� � �4� ��� � �
Given H i.i.d. samples IKJ .!LNM)O
%� � ��/PLNMNO
�� � Q W distributed accord-

ing to � ��. 
�� � � / 
%� � �3� �#� � � , a Monte Carlo estimate of s:� r � �
is given by


s �Y � r � �,+ �� �Y � r � �� �Y � r �4� + o YM)\ � r � J . LGMNO
%� � � / LNM)O
%� �3Q � J . LNM)O
�� � � / LGMNO
%� �4Q
o YM)\ � � J .�L)MNO
%� � � /PLNM)O
%� � Q

+ Y[
M)\ � �� LNM)O
�� � r � J . LNM)O
%� � ��/ LNM)O
�� � Q

where the normalized importance weights
�� LGMNO��� � are equal to

��|LGMNO
%� � + � J . L)M)O
�� � � / L)MNO
%� � Q
o Y� \ � � J .!L � O
�� � � /PL � O
%� � Q

This method is equivalent to the following point mass ap-
proximation of �$��. 
�� � � / 
%� � �3� �#� � �


�ZYX�%.�
%� �5��/�
�� ���3���#� �4�,+ Y[
M)\ � �� LNM)O
�� � ] ^3` aqb)de4f g4h i aqbNde f g	k �	l�.�
%� �4l�/�
%� � �

For “perfect” simulation, that is � ��. 
�� � � / 
%� � �3� �#� � ��+�$��. 
%� � � / 
%� � �4� ��� � � , we would have
���LGMNO
%� � + H ��� for any T .

In practice, we will try to select the importance distribu-
tion as close as possible to the target distribution in a given

sense. For H finite,

s �Y � r � � is biased (since it is a ratio of

estimates), but according to the SLLN,

s Y � r � � converges

asymptotically a.s. towards s:� r � � . Under additional as-
sumptions, a CLT also holds.

Now consider the case where one can marginalize out / 
�� �
analytically, then we can propose an alternative estimate
for s � r � � with a reduced variance. As �$��. 
%� ����/�
�� �%�3���#� � � +�$��.6
%� �%�3���#� � � �$�%/�
%� ���4����� ����.6
%� �4� , where �$�%/�
�� �%�3���#� ��� .�
%� �4� is
a distribution that can be computed exactly, then an
approximation of �$��.�
%� �������#� � � yields straightforwardly
an approximation of �$��. 
%� � � / 
%� � �4� ��� � � . Moreover, if&t� L i e f g#� �!�3f g h ` e f g O � r � �	. 
�� � � / 
%� � �#� can be evaluated in a

closed-form expression, then the following alternative im-
portance sampling estimate of s � r � � can be used


s �Y � r � �%+ �� �Y � r �4�� �Y � r �4�
+ o YM)\ � & � ^ i e f g � � ��f g h ` aqbNde f g k J r �,J�. LNMNO
�� � � /�
%� � QtQ � J�. LNM)O
%� � Q

o YM)\ � � J .!LNM)O
%� � Q
where

�-��. 
%� � �X+ �$��.�
�� �%�3���#� � �� ��. 
%� � ��� �#� � �
� ��.�
%� ���4����� �4� + u�� �%.�
%� ����/�
�� �%�3���#� � �xl�/�
�� �

Intuitively, to reach a given precision,

s �Y � r �4� will require

a reduced number H of samples over

s �Y � r � � as we only

need to sample from a lower-dimensional distribution. This
is proven in the following propositions.

Proposition 1 The variances of the importance weights,
the numerators and the denominators satisfy for any H

var ����� e f g�� ����f g�� 9�� 92; <#= > A3A�� var ����� e f g � !�e f g"� ���3f g#� 9�� 92; <#= > F#$ <#= > A3A
var ����� e f g�� ����f g�� %�&'�() 9�*B>BA�+ � var ����� e f g � !�e f g"� ���3f g#� %,&' 7) 9�*	>�A�+
var ����� e f g�� ����f g�� % &-.() 9�* > A�+ � var ����� e f g � !�e f g"� ���3f g#� % &- 7) 9�* > A/+
A sufficient condition for


s �Y � r � � to
satisfy a CLT is var� L ` e f g h i e4f g � � �3f g O � r � �". 
%� � ��/ 
�� � � � � z|{
and �w�". 
%� � � / 
%� � � � z|{ for any �". 
%� � � / 
%� � � (Bernardo and

Smith 1994). This trivially implies that

s �Y � r � � also satis-

fies a CLT. More precisely, we get the following result.

Proposition 2 Under

the assumptions given above,

s �Y � r � � and


s �Y � r � � satisfy
a CLT � H J 
s �Y � r � �P��sD� r � � Q +��YK��� � �	� ��} �� �� H J 
s �Y � r � �P��sD� r � � Q +��YK����� �	� ��} �� �
where } ��10 } �� , } �� and } �� being given by

2 (7 C43 ���5� e f g � !�e f g�� � ��f g��76 939�* > 92; <#= > F"$ <#= > A98;: 9�* > A3A<� 92; <#= > F"$ <#= > A3A ( =2 (( C43 ���5� e f g�� ���3f g#� 6 939>3@? � !�e f g�� ���3f g � � e f g#� 9�*B>x92;�<#= > F�$ <#= >�A3A8A: 9�* > A3A�� > 92; <#= > A3A ( =
The Rao-Blackwellised estimate


s �Y � r � � is usually compu-

tationally more extensive to compute than

s �Y � r �4� so it is

of interest to know when, for a fixed computational com-
plexity, one can expect to achieve variance reduction. One



has} �� ��} �� + &�� L ` e f g � � �3f g O ��������� a � e4f g	� 
%��f g�� "e f g d � � r � �". 
�� � � / 
%� � ���s:� r � � ���X�". 
�� � � / 
%� � � ���
so that, accordingly to the intuition, it will be worth gen-
erally performing Rao-Blackwellisation when the average
conditional variance of the variable /�
%� � is high.

4 RAO-BLACKWELLISED PARTICLE
FILTERS

Given H particles (samples)
� . LNM)O
%� ����� ��/PLNM)O
�� ����� � at time � �U , approximately distributed according to the distribution����. LNMNO
�� ����� � / LNM)O
%� ����� � ���#� �����%� , RBPFs allow us to compute H

particles � .!LNM)O
�� � ��/PLNMNO
�� � � approximately distributed according

to the posterior ����.!LNM)O
%� � ��/PLNM)O
�� � � � ��� � � , at time � . This is ac-
complished with the algorithm shown below, the details of
which will now be explained.

Generic RBPF

1. Sequential importance sampling step� For � C�� F������ZF�� , sample:%�� ; ��� �> +���� 92;�>#? ; ��� �<#= >	E 7 F @ 7 = >�A
and set: % � ; ��� �<#= > + �"! � ; ��� �> F ; ��� �<#= >	E 7	#

� For � C � F������mF$� , evaluate the importance
weights up to a normalizing constant:

� ��� �> C 8 9 � ; ��� �<#= > ? @ 7 = >�A� 9 � ; ��� �> ? ; ��� �<#= >	E 7 F @ 7 = >BA)8 9 � ; ��� �<#= >	E 7 ? @ 7 = >	E 7 A� For � C%� F������ZF$� , normalize the importance
weights: &� ��� �> C � ��� �>(' ))*,+ 7 � � * �>.- E 7

2. Selection step� Multiply/ suppress samples 9 � ; ��� �<#= > A with high/low
importance weights

&� ��� �> , respectively, to obtain �
random samples 9 & ; ��� �<#= > A approximately distributed
according to 8 9 & ; ��� �<#= > ? @ 7 = >BA .

3. MCMC step� Apply a Markov transition kernel with invariant
distribution given by 8 92; ��� �<#= > ? @ 7 = > A to obtain 92; ��� �<#= > A ./

4.1 IMPLEMENTATION ISSUES

4.1.1 Sequential importance sampling

If we restrict ourselves to importance functions of the fol-
lowing form

� �%.�
%� ���3���#� �4�,+ � �".�
�� �01 \ � � ��. 1 �3���#� 1 � .��#� 1 ����� (3)

we can obtain recursive formulas to evaluate �w�". 
%� � � +�w��. 
%� ����� � � � and thus
�� �#� � . The “incremental weight” � �

is given by

� �32 �$�%� � �3� �#� ����� � . 
%� � ���S�%. � �3. ����� �� �%.��������#� ��� .��#� �����%��� � denotes the normalized version of � � , i.e.
���L)M)O� +4 o Y� \ � �|L � O�"5 ��� �|LGMNO� . Hence we can perform importance

sampling online.

Choice of the Importance Distribution

There are infinitely many possible choices for � �%. 
%� � ��� �#� � � ,
the only condition being that its supports must include that
of �$�%. 
%� � �4� ��� � � . The simplest choice is to just sample from
the prior, �$�%. � �3. ����� � , in which case the importance weight
is equal to the likelihood, �$�%� � �3� �#� ����� ��. 
%� � � . This is the
most widely used distribution, since it is simple to compute,
but it can be inefficient, since it ignores the most recent
evidence, ��� . Intuitively, many of our samples may end up
in a region of the space that has low likelihood, and hence
receive low weight; these particles are effectively wasted.

We can show that the “optimal” proposal distribution, in
the sense of minimizing the variance of the importance
weights, takes the most recent evidence into account:

Proposition 3 The distribution that minimizes the vari-
ance of the importance weights conditional upon . 
�� �����
and ���#� � is

�$�%. � �3. 
%� ����� ��� ��� � � + �$�%�����4����� ����� � .�
%� � � �$�%.��%�3.���������S�%� � �3� �#� ����� � . 
�� ����� �
and the associated importance weight � � is

�$��� � �4� ��� ����� ��. 
%� ����� �5+ u �$��� � �3� �#� ����� � . 
�� � ���S�%. � �3. ����� �xl�. �
Unfortunately, computing the optimal importance sampling
distribution is often too expensive. Several deterministic
approximations to the optimal distribution have been pro-
posed, see for example (de Freitas 1999, Doucet 1998).

Degeneracy of SIS

The following proposition shows that, for importance func-
tions of the form (3), the variance of �w��. 
%� �4� can only in-
crease (stochastically) over time. The proof of this propo-
sition is an extension of a Kong-Liu-Wong theorem (Kong



et al. 1994, p. 285) to the case of an importance function of
the form (3).

Proposition 4 The unconditional variance (i.e. with the
observations ���� � being interpreted as random variables)
of the importance weights �-�	. 
�� �4� increases over time.

In practice, the degeneracy caused by the variance increase
can be observed by monitoring the importance weights.
Typically, what we observe is that, after a few iterations,
one of the normalized importance weights tends to 1, while
the remaining weights tend to zero.

4.1.2 Selection step

To avoid the degeneracy of the sequential importance sam-
pling simulation method, a selection (resampling) stage
may be used to eliminate samples with low importance ra-
tios and multiply samples with high importance ratios. A
selection scheme associates to each particle . LNMNO
�� � a num-
ber of offsprings, say H M�� �

, such that o YMN\ � H M + H .
Several selection schemes have been proposed in the lit-
erature. These schemes satisfy & � H M � + H �� LNM)O� , but
their performance varies in terms of the variance of the
particles, var � H M � . Recent theoretical results in (Crisan,
Del Moral and Lyons 1999) indicate that the restriction& � H M �S+1H ��|LGMNO� is unnecessary to obtain convergence re-
sults (Doucet et al. 1999). Examples of these selection
schemes include multinomial sampling (Doucet 1998, Gor-
don et al. 1993, Pitt and Shephard 1999), residual resam-
pling (Kitagawa 1996, Liu and Chen 1998) and stratified
sampling (Kitagawa 1996). Their computational complex-
ity is � �	H � .
4.1.3 MCMC step

After the selection scheme at time � , we obtain H par-
ticles distributed marginally approximately according to����. 
�� � � � �#� � � . As discussed earlier, the discrete nature of the
approximation can lead to a skewed importance weights
distribution. That is, many particles have no offspring
( H M + � ), whereas others have a large number of off-
spring, the extreme case being H M + H for a particular
value T . In this case, there is a severe reduction in the di-
versity of the samples. A strategy for improving the re-
sults involves introducing MCMC steps of invariant distri-
bution ����.�
%� �%� ����� � � on each particle (Andrieu, de Freitas and
Doucet 1999b, Gilks and Berzuini 1998, MacEachern et al.
1999). The basic idea is that, by applying a Markov tran-
sition kernel, the total variation of the current distribution
with respect to the invariant distribution can only decrease.
Note, however, that we do not require this kernel to be er-
godic.

4.2 CONVERGENCE RESULTS

Let
 ������� be the space of bounded, Borel measurable

functions on ��� . We denote �
	�� ������������� � 	0��� ��� . The fol-

lowing theorem is a straightforward consequence of Theo-
rem 1 in (Crisan and Doucet 2000) which is an extension
of previous results in (Crisan et al. 1999).

Theorem 5 If the importance weights �K� are upper
bounded and if one uses one of the selection schemes de-
scribed previously, then, for all � 0 � , there exists ��� inde-

pendent of H such that for any 	 � �  J�������� � ����� Q
3  !#" �� )) � + 7%$ > % ; ��� �<#= > +�8�& $ > 92; <#= > A%8:95; <#= > ?B@ 7 = > A�' ; <#= >�( (*)+

��, >�- $ > - (�
where the expectation is taken w.r.t. to the randomness in-
troduced by the PF algorithm. This results shows that, un-
der very lose assumptions, convergence of this general par-
ticle filtering method is ensured and that the convergence
rate of the method is independent of the dimension of the
state-space. However, � � usually increases exponentially
with time. If additional assumptions on the dynamic sys-
tem under study are made (e.g. discrete state spaces), it
is possible to get uniform convergence results ( � � +.� for
any � ) for the filtering distribution �$��/ � �3� �#� � � . We do not
pursue this here.

5 EXAMPLES

We now illustrate the theory by briefly describing two ap-
plications we have worked on.

5.1 ON-LINE REGRESSION AND MODEL
SELECTION WITH NEURAL NETWORKS

Consider a function approximation scheme consisting of
a mixture of / radial basis functions (RBFs) and a linear
regression term. The number of basis functions, /!� , their
centers, 0 � , the coefficients (weights of the RBF centers
plus regression terms), 1 � , and the variance of the Gaussian
noise on the output, } �� , can all vary with time, so we treat
them as latent random variables: see Figure 1. For details,
see (Andrieu, de Freitas and Doucet 1999a).

In (Andrieu et al. 1999a), we show that it is possible to
simulate 0 � , / � and 2 � with a particle filter and to com-
pute the coefficients 1 � analytically using Kalman filters.
This is possible because the output of the neural network
is linear in 1 � , and hence the system is a conditionally lin-
ear Gaussian state-space model (CLGSSM), that is it is a
linear Gaussian state-space model conditional upon the lo-
cation of the bases and the hyper-parameters. This leads to
an efficient RBPF that can be combined with a reversible
jump MCMC algorithm (Green 1995) to select the number
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Figure 1: DBN representation of the RBF model. The
hyper-parameters have been omitted for clarity.
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Figure 2: The top plot shows the one-step-ahead output
predictions [—] and the true outputs [ ����� ] for the RBF
model. The middle and bottom plots show the true val-
ues and estimates of the model order and noise variance
respectively.

of basis functions online. For example, we generated some
data from a mixture of 2 RBFs for � + U���������� � ��� , and
then from a single RBF for � + � � U�������� ��U ����� ; the method
was able to track this change, as shown in Figure 2. Further
experiments on real data sets are described in (Andrieu et
al. 1999a).

5.2 ROBOT LOCALIZATION AND MAP
BUILDING

Consider a robot that can move on a discrete, two-
dimensional grid. Suppose the goal is to learn a map of
the environment, which, for simplicity, we can think of as
a matrix which stores the color of each grid cell, which
can be either black or white. The difficulty is that the color

L1 L2 L3

Y2 Y3Y1

M1(1) M2(1) M3(1)

M2(2)M1(2) M3(2)

Figure 3: A Factorial HMM with 3 hidden chains. � � � T �
represents the color of grid cell T at time � , � � represents
the robot’s location, and �t� the current observation.

sensors are not perfect (they may accidentally flip bits), nor
are the motors (the robot may fail to move in the desired di-
rection with some probability due e.g., to wheel slippage).
Consequently, it is easy for the robot to get lost. And when
the robot is lost, it does not know what part of the matrix to
update. So we are faced with a chicken-and-egg situation:
the robot needs to know where it is to learn the map, but
needs to know the map to figure out where it is.

The problem of concurrent localization and map learn-
ing for mobile robots has been widely studied. In (Mur-
phy 2000), we adopt a Bayesian approach, in which we
maintain a belief state over both the location of the robot,
�,� � � U����������#H�� � , and the color of each grid cell, �-�5� T � �� U�������� ��H
	 � , T + U�����������H � , where H � is the number
of cells, and H
	 is the number of colors. The DBN we
are using is shown in Figure 3. The state space has size� ��H Y�

	 � . Note that we can easily handle changing envi-
ronments, since the map is represented as a random vari-
able, unlike the more common approach, which treats the
map as a fixed parameter.

The observation model is �t� + 	P�����5��� �3��� , where 	P���j� is
a function that flips its binary argument with some fixed
probability. In other words, the robot gets to see the color
of the cell it is currently at, corrupted by noise: � � is a
noisy multiplexer with � � acting as a “gate” node. Note
that this conditional independence is not obvious from the
graph structure in Figure 3(a), which suggests that all the
nodes in each slice should be correlated by virtue of sharing
a common observed child, as in a factorial HMM (Ghahra-
mani and Jordan 1997). The extra independence informa-
tion is encoded in � � ’s distribution, c.f., (Boutilier, Fried-
man, Goldszmidt and Koller 1996).

The basic idea of the algorithm is to sample � �#� � with a PF,
and marginalize out the ����� T � nodes exactly, which can be
done efficiently since they are conditionally independent
given � ��� � :
� 9�� >49 �%A F������mF � > 9 ��� A5? � 7 = > F�� 7 = >BA�C��

)
�� + 7 � 9�� > 9 � A5? � 7 = > F�� 7 = >BA

Some results on a simple one-dimensional grid world are
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Figure 4: Estimated position as the robot moves from cell
1 to 8 and back. The robot “gets stuck” in cell 4 for two
steps in a row on the outgoing leg of the journey (hence the
double diagonal), but the robot does not realize this until
it reaches the end of the “corridor” at step 9, where it is
able to relocalise. (a) Exact inference. (b) RBPF with 50
particles. (c) Fully-factorised BK.

shown in Figure 4. We compared exact Bayesian infer-
ence with the RBPF method, and with the fully-factorised
version of the Boyen-Koller (BK) algorithm (Boyen and
Koller 1998), which represents the belief state as a product
of marginals:

� 9 � > F � > 9 �%A F������ZF � > 9 � � A5? @ 7 = > ABC � 9 � > ? @ 7 = > A
)
��� + 7 � 9�� > 9 � A5? @ 7 = > A

We see that the RBPF results are very similar to the ex-
act results, even with only 50 particles, but that BK gets
confused because it ignores correlations between the map
cells. We have obtained good results learning a U ��� U �
map (so the state space has size

� ��� �4
#
 � ) using only 100
particles (the observation model in the 2D case is that the
robot observes the colors of all the cells in a � � � neighbor-
hood centered on its current location). For a more detailed
discussion of these results, please see (Murphy 2000).

5.3 CONCLUSIONS AND EXTENSIONS

RBPFs have been applied to many problems, mostly in
the framework of conditionally linear Gaussian state-space
models and conditionally finite state-space HMMs. That is,
they have been applied to models that, conditionally upon
a set of variables (imputed by the PF algorithm), admit a
closed-form filtering distribution (Kalman filter in the con-
tinuous case and HMM filter in the discrete case). One can
also make use of the special structure of the dynamic model
under study to perform the calculations efficiently using the
junction tree algorithm. For example, if one had evolv-
ing trees, one could sample the root nodes with the PF and
compute the leaves using the junction tree algorithm. This
would result in a substantial computational gain as one only
has to sample the root nodes and apply the juction tree to
lower dimensional sub-networks.

Although the previoulsy mentioned models are the most

famous ones, there exist numerous other dynamic systems
admitting finite dimensional filters. That is, the filtering
distribution can be estimated in closed-form at any time �
using a fixed number of sufficient statistics. These include� Dynamic models for counting observations (Smith

and Miller 1986).� Dynamic models with a time-varying unknow covari-
ance matrix for the dynamic noise (West and Harrison
1996, Uhlig 1997).� Classes of the exponential family state space models
(Vidoni 1999).

This list is by no means exhaustive. It, however, shows that
RBPFs apply to very wide class of dynamic models. Con-
sequently, they have a big role to play in computer vision
(where mixtures of Gaussians arise commonly), robotics,
speech and dynamic factor analysis.
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