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Bayesian Networks

Over the last few
years, a method of
reasoning using
probabilities, vari-
ously called belief
networks, Bayesian
networks, knowl-
edge maps, proba-
bilistic causal
networks, and so on,
has become popular
within the Al proba-
bility and uncertain-
ty community. This
method is best sum-
marized in Judea
Pearl’s (1988) book,
but the ideas are a

without Tears

Eugene Charniak

I give an introduction to Bayesian networks for
Al researchers with a limited grounding in prob-
ability theory. Over the last few years, this
method of reasoning using probabilities has
become popular within the Al probability and
uncertainty community. Indeed, it is probably
fair to say that Bayesian networks are to a large
segment of the Al-uncertainty community what
resolution theorem proving is to the Al-logic
community. Nevertheless, despite what seems to
be their obvious importance, the ideas and
techniques have not spread much beyond the
research community responsible for them. This is
probably because the ideas and techniques are
not that easy to understand. I hope to rectify this
situation by making Bayesian networks more
accessible to the probabilistically unsophisticated.

understanding
(Charniak and Gold-
man 1989a, 1989b;
Goldman 1990),
vision (Levitt, Mullin,
and Binford 1989),
heuristic  search
(Hansson and Mayer
1989), and so on. It
is probably fair to
say that Bayesian
networks are to a
large segment of
the Al-uncertainty
community what
resolution theorem
proving is to the Al-
logic community.

product of many hands. I adopted Pearl’s
name, Bayesian networks, on the grounds
that the name is completely neutral about
the status of the networks (do they really rep-
resent beliefs, causality, or what?). Bayesian
networks have been applied to problems in
medical diagnosis (Heckerman 1990; Spiegel-
halter, Franklin, and Bull 1989), map learning
(Dean 1990), lan-
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Nevertheless, despite what seems to be their
obvious importance, the ideas and techniques
have not spread much beyond the research
community responsible for them. This is
probably because the ideas and techniques are
not that easy to understand. I hope to rectify
this situation by making Bayesian networks

more accessible to
the probabilis-
tically unso-
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phisticated. That is, this article tries to make
the basic ideas and intuitions accessible to
someone with a limited grounding in proba-
bility theory (equivalent to what is presented
in Charniak and McDermott [1985]).

An Example Bayesian Network

The best way to understand Bayesian networks
is to imagine trying to model a situation in
which causality plays a role but where our
understanding of what is actually going on is
incomplete, so we need to describe things
probabilistically. Suppose when I go home at
night, I want to know if my family is home
before I try the doors. (Perhaps the most con-
venient door to enter is double locked when
nobody is home.) Now, often when my wife
leaves the house, she turns on an outdoor
light. However, she sometimes turns on this
light if she is expecting a guest. Also, we have
a dog. When nobody is home, the dog is put
in the back yard. The same is true if the dog
has bowel troubles. Finally, if the dog is in the
backyard, I will probably hear her barking (or
what I think is her barking), but sometimes I
can be confused by other dogs barking. This
example, partially inspired by Pearl’s (1988)
earthquake example, is illustrated in figure 1.
There we find a graph not unlike many we see
in AL. We might want to use such diagrams to
predict what will happen (if my family goes
out, the dog goes out) or to infer causes from
observed effects (if the light is on and the dog
is out, then my family is probably out).

The important thing to note about this
example is that the causal connections are
not absolute. Often, my family will have left
without putting out the dog or turning on a
light. Sometimes we can use these diagrams
anyway, but in such cases, it is hard to know
what to infer when not all the evidence points
the same way. Should I assume the family is
out if the light is on, but I do not hear the
dog? What if I hear the dog, but the light is
out? Naturally, if we knew the relevant proba-
bilities, such as P(family-out | light-on, - hear-
bark), then we would be all set. However,
typically, such numbers are not available for
all possible combinations of circumstances.
Bayesian networks allow us to calculate them
from a small set of probabilities, relating only
neighboring nodes.

Bayesian networks are directed acyclic graphs
(DAGs) (like figure 1), where the nodes are
random variables, and certain independence
assumptions hold, the nature of which I dis-
cuss later. (I assume without loss of generality
that DAG is connected.) Often, as in figure 1,
the random variables can be thought of as
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Figure 1. A Causal Graph.

The nodes denote states of affairs, and the arcs can be interpreted as causal connections.

states of affairs, and the variables have two
possible values, true and false. However, this
need not be the case. We could, say, have a
node denoting the intensity of an earthquake
with values no-quake, trembler, rattler, major,
and catastrophe. Indeed, the variable values
do not even need to be discrete. For example,
the value of the variable earthquake might be
a Richter scale number. (However, the algo-
rithms I discuss only work for discrete values,
so I stick to this case.)

In what follows, I use a sans serif font for
the names of random variables, as in earth-
quake. I use the name of the variable in italics
to denote the proposition that the variable
takes on some particular value (but where we
are not concerned with which one), for exam-
ple, earthquake. For the special case of Boolean
variables (with values true and false), I use the
variable name in a sans serif font to denote
the proposition that the variable has the
value true (for example, family-out). I also
show the arrows pointing downward so that
“above” and “below” can be understood to
indicate arrow direction.

The arcs in a Bayesian network specify the
independence assumptions that must hold
between the random variables. These inde-
pendence assumptions determine what prob-
ability information is required to specify the
probability distribution among the random
variables in the network. The reader should
note that in informally talking about DAG, I
said that the arcs denote causality, whereas in
the Bayesian network, I am saying that they
specify things about the probabilities. The
next section resolves this conflict.

To specify the probability distribution of a
Bayesian network, one must give the prior
probabilities of all root nodes (nodes with no
predecessors) and the conditional probabilities
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P(fo) = .15

family-out (fo)

light-on (lo)

P(lo Ofo) = .6
P(lo = fo) =.05

dog-out (do)

hear-bark(hb)

P(hb O do) = .7
P(hb - do) = .01

P(bp) = .01

bowel-problem (bp)

P(do Ofo bp) = .99
P(do Ofo -bp) =.90
P(do [+ fo bp) = .97
P(do [ fo bp) =.3

Figure 2. A Bayesian Network for the family-out Problem.

I added the prior probabilities for root nodes and the posterior probabilities for nonroots given all possible values of

their parents.

of all nonroot nodes given all possible combi-
nations of their direct predecessors. Thus,
figure 2 shows a fully specified Bayesian net-
work corresponding to figure 1. For example,
it states that if family members leave our
house, they will turn on the outside light 60
percent of the time, but the light will be turned
on even when they do not leave 5 percent of
the time (say, because someone is expected).
Bayesian networks allow one to calculate
the conditional probabilities of the nodes in
the network given that the values of some of
the nodes have been observed. To take the
earlier example, if I observe that the light is
on (light-on = true) but do not hear my dog
(hear-bark = false), I can calculate the condi-
tional probability of family-out given these
pieces of evidence. (For this case, it is .5.) I
talk of this calculation as evaluating the
Bayesian network (given the evidence). In
more realistic cases, the networks would con-
sist of hundreds or thousands of nodes, and
they might be evaluated many times as new
information comes in. As evidence comes in,
it is tempting to think of the probabilities of
the nodes changing, but, of course, what is
changing is the conditional probability of the
nodes given the changing evidence. Some-
times people talk about the belief of the node
changing. This way of talking is probably

harmless provided that one keeps in mind
that here, belief is simply the conditional
probability given the evidence.

In the remainder of this article, I first
describe the independence assumptions
implicit in Bayesian networks and show how
they relate to the causal interpretation of arcs
(Independence Assumptions). I then show
that given these independence assumptions,
the numbers I specified are, in fact, all that
are needed (Consistent Probabilities). Evaluat-
ing Networks describes how Bayesian net-
works are evaluated, and the next section
describes some of their applications.

Independence Assumptions

One objection to the use of probability
theory is that the complete specification of a
probability distribution requires absurdly
many numbers. For example, if there are n
binary random variables, the complete distri-
bution is specified by 27-1 joint probabilities.
(If you do not know where this 2-1 comes
from, wait until the next section, where I
define joint probabilities.) Thus, the complete
distribution for figure 2 would require 31
values, yet we only specified 10. This savings
might not seem great, but if we doubled the
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Figure 3. A Network with 10 Nodes.
This illustration is two copies of the graph from figure 1 attached to each other. Nonsense names were given to the

nodes in the second copy.

size of the network by grafting on a copy, as
shown in figure 3, 2-1 would be 1023, but
we would only need to give 21. Where does
this savings come from?

The answer is that Bayesian networks have
built-in independence assumptions. To take a
simple case, consider the random variables
family-out and hear-bark. Are these variables
independent? Intuitively not, because if my
family leaves home, then the dog is more
likely to be out, and thus, I am more likely to
hear it. However, what if I happen to know
that the dog is definitely in (or out of) the
house? Is hear-bark independent of family-out
then? That is, is P(hear-bark | family-out, dog-
out) = P(hear-bark | dog-out)? The answer now
is yes. After all, my hearing her bark was
dependent on her being in or out. Once I
know whether she is in or out, then where
the family is is of no concern.

We are beginning to tie the interpretation
of the arcs as direct causality to their proba-
bilistic interpretation. The causal interpreta-
tion of the arcs says that the family being out
has a direct causal connection to the dog

being out, which, in turn, is directly connected
to my hearing her. In the probabilistic inter-
pretation, we adopt the independence
assumptions that the causal interpretation
suggests. Note that if I had wanted to say that
the location of the family was directly relevant
to my hearing the dog, then I would have to
put another arc directly between the two.
Direct relevance would occur, say, if the dog is
more likely to bark when the family is away
than when it is at home. This is not the case
for my dog.

In the rest of this section, I define the inde-
pendence assumptions in Bayesian networks
and then show how they correspond to what
one would expect given the interpretation of
the arcs as causal. In the next section, I for-
mally show that once one makes these inde-
pendence assumptions, the probabilities
needed are reduced to the ones that I speci-
fied (for roots, the priors; for nonroots, the
conditionals given immediate predecessors).

First, I give the rule specifying dependence
and independence in Bayesian networks:

In a Bayesian network, a variable a is
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A path from q to r is d-con-
necting with respect to the evi-
dence nodes E if every interior
node n in the path has the proper-
ty that either

1. it is linear or diverging and
not a member of E or

2. it is converging, and either
n or one of its descendants is in E.

In the literature, the term d-separa-
tion is more common. Two nodes are
d-separated if there is no d-connect-

Figure 4. The Three Connection Types.

In each case, node b is between a and c in the undirected path between the two.
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dependent on a variable b given evidence E
= {ey ... e,} if there is a d-connecting path
from a to b given E. (I call E the evidence
nodes. E can be empty. It can not include a

or b.) If a is not dependent on b given E, a

is independent of b given E.

Note that for any random variable {f} it is
possible for two variables to be independent
of each other given E but dependent given E
O {f} and vise versa (they may be dependent
given E but independent given E O {f}. In par-
ticular, if we say that two variables a and b
are independent of each other, we simply
mean that P(a | b) = P(a). It might still be the
case that they are not independent given, say,
e (thatis, P(al b,e) # P(al e).

To connect this definition to the claim that
family-out is independent of hear-bark given
dog-out, we see when I explain d-connecting
that there is no d-connecting path from
family-out to hear-bark given dog-out because
dog-out, in effect, blocks the path between
the two.

To understand d-connecting paths, we need
to keep in mind the three kinds of connec-
tions between a random variable b and its
two immediate neighbors in the path, a and
c. The three possibilities are shown in figure 4
and correspond to the possible combinations
of arrow directions from b to a and c. In the
first case, one node is above b and the other
below; in the second case, both are above;
and in the third, both are below. (Remember,
we assume that arrows in the diagram go
from high to low, so going in the direction of
the arrow is going down.) We can say that a
node b in a path P is linear, converging or
diverging in P depending on which situation
it finds itself according to figure 4.

Now I give the definition of a d-connecting
path:

ing path between them. I find the

explanation in terms of d-connecting

slightly easier to understand. I go

through this definition slowly in a
moment, but roughly speaking, two nodes
are d-connected if either there is a causal path
between them (part 1 of the definition), or
there is evidence that renders the two nodes
correlated with each other (part 2).

To understand this definition, let’s start by
pretending the part (2) is not there. Then we
would be saying that a d-connecting path must
not be blocked by evidence, and there can be
no converging interior nodes. We already saw
why we want the evidence blocking restric-
tion. This restriction is what says that once
we know about a middle node, we do not
need to know about anything further away.

What about the restriction on converging
nodes? Again, consider figure 2. In this dia-
gram, I am saying that both bowel-problem
and family-out can cause dog-out. However,
does the probability of bowel-problem depend
on that of family-out? No, not really. (We
could imagine a case where they were depen-
dent, but this case would be another ball
game and another Bayesian network.) Note
that the only path between the two is by way
of a converging node for this path, namely,
dog-out. To put it another way, if two things
can cause the same state of affairs and have
no other connection, then the two things are
independent. Thus, any time we have two
potential causes for a state of affairs, we have
a converging node. Because one major use of
Bayesian networks is deciding which poten-
tial cause is the most likely, converging nodes
are common.

Now let us consider part 2 in the definition
of d-connecting path. Suppose we know that
the dog is out (that is, dog-out is a member of
E). Now, are family-away and bowel-problem
independent? No, even though they were
independent of each other when there was
no evidence, as I just showed. For example,
knowing that the family is at home should
raise (slightly) the probability that the dog
has bowel problems. Because we eliminated



the most likely explanation for the dog being
out, less likely explanations become more
likely. This situation is covered by part 2.
Here, the d-connecting path is from family-
away to bowel-problem . It goes through a
converging node (dog-out), but dog-out is
itself a conditioning node. We would have a
similar situation if we did not know that the
dog was out but merely heard the barking. In
this case, we would not be sure the dog was
out, but we do have relevant evidence (which
raises the probability), so hear-bark, in effect,
connects the two nodes above the converging
node. Intuitively, part 2 means that a path
can only go through a converging node if we
are conditioning on an (indirect) effect of the
converging node.

Consistent Probabilities

One problem that can plague a naive proba-
bilistic scheme is inconsistent probabilities.
For example, consider a system in which we
have P(a | b) =.7, P(b | a) = .3, and P(b) = .5.
Just eyeballing these equations, nothing looks
amiss, but a quick application of Bayes’s law
shows that these probabilities are not consis-
tent because they require P(a) > 1. By Bayes’s
law,

P(a) P(bla)/P(b)=P(alb) ;

SO,
P(@) = P(b) P(b1a)/ Pbla)y=.5*.7/.3=
.35/.3).

Needless to say, in a system with a lot of
such numbers, making sure they are consistent
can be a problem, and one system (PROSPECTOR)
had to implement special-purpose techniques
to handle such inconsistencies (Duda, Hart,
and Nilsson 1976). Therefore, it is a nice
property of the Bayesian networks that if you
specify the required numbers (the probability
of every node given all possible combinations
of its parents), then (1) the numbers will be
consistent and (2) the network will uniquely
define a distribution. Furthermore, it is not
too hard to see that this claim is true. To see
it, we must first introduce the notion of joint
distribution.

A joint distribution of a set of random vari-
ables v; ... v, is defined as P(v; ... v, ) for all
values of v; ... v,,. That is, for the set of
Boolean variables (a,b), we need the probabili-
ties P(a b), P(~ab), P(@a—-b), and P(-a - b). A
joint distribution for a set of random vari-
ables gives all the information there is about
the distribution. For example, suppose we
had the just-mentioned joint distribution for
(a,b), and we wanted to compute, say, P(a | b):

P(a | b) = P(a b) / P(b) = P(ab)/ (P@ab) +
P(-ab) .
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Figure 5. A Topological Ordering.

In this case, I made it a simple top-down numbering.

Note that for n Boolean variables, the joint
distribution contains 2" values. However, the
sum of all the joint probabilities must be 1
because the probability of all possible out-
comes must be 1. Thus, to specify the joint
distribution, one needs to specify 2, -1 num-
bers, thus the 27 -1 in the last section.

I now show that the joint distribution for a
Bayesian network is uniquely defined by the
product of the individual distributions for
each random variable. That is, for the net-
work in figure 2 and for any combination of
values fo, bp, lo, hb (for example, ¢, f, f, t, 1),
the joint probability is

P(fo bp lo do hb) = P(fo)P(bp)P(lo | fo)P(do | fo
bp)P(hb | do) .

Consider a network N consisting of vari-
ables v; ... v,. Now, an easily proven law of
probability is that

P(vq ... v) = PPy 1 v1) ... P(v, | vy o vy q).

This equation is true for any set of random
variables. We use the equation to factor our
joint distribution into the component parts
specified on the right-hand side of the equa-
tion. Exactly how a particular joint distribution
is factored according to this equation depends
on how we order the random variables, that
is, which variable we make vy, v,, and so on.
For the proof, I use what is called a topological
sort on the random variables. This sort is an
ordering of the variables such that every vari-
able comes before all its descendants in the
graph. Let us assume that v; ... v, is such an
ordering. In figure 5, I show one such order-
ing for figure 1.

Let us consider one of the terms in this
product, P(v; | vi.1). An illustration of what
nodes v; ... v; might look like is given in
figure 6. In this graph, I show the nodes
immediately above v; and otherwise ignore
everything except v, which we are concen-
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Figure 6. Node v; in a Network.
I show that when conditioning v; only on its successors,

its value is dependent only on its immediate successors,
Vi .pandv;_,.

trating on and which connects with v; in two
different ways that we call the left and right
paths, respectively. We can see from figure 6
that none of the conditioning nodes (the nodes
being conditioned on in the conditional
probability) in P(v; [vy ... vi-1)is below v; (in
particular, v,, is not a conditioning node).
This condition holds because of the way in
which we did the numbering.

Next, we want to show that all and only
the parents of v; need be in the conditioning
portion of this term in the factorization. To
see that this is true, suppose v, is not immedi-
ately above v; but comes before v; in the num-
bering. Then any path between v, and v; must
either be blocked by the nodes just above v;
(as is the right path from v, in figure 6) or go
through a node lower than v; (as is the left
path in figure 6). In this latter case, the path
is not d-connecting because it goes through a
converging node v,,, where neither it nor any
of its descendants is part of the conditioning
nodes (because of the way we numbered).
Thus, no path from v, to v; can be d-connect-
ing, and we can eliminate v, from the condi-
tioning section because by the independence
assumptions in Bayesian networks, v; is inde-
pendent of v, given the other conditioning
nodes. In this fashion, we can remove all the
nodes from the conditioning case for P(v; | v;
... Vi _ 1) except those immediately above v; .
In figure 6, this reduction would leave us
with P(v; I v; .1 vj.2). We can do this for all

Figure 7. Nodes in a Singly Connected Network.
Because of the singly connected property, any two nodes

connected to node e have only one path between them—
the path that goes through e.

the nodes in the product. Thus, for figure 2,
we get

P(fo bp lo do hb) = P(fo)P(bp)P(lo | fo)P(do | fo
bp)P(hb | do) .

We have shown that the numbers specified
by the Bayesian network formalism in fact
define a single joint distribution, thus
uniqueness. Furthermore, if the numbers for
each local distribution are consistent, then
the global distribution is consistent. (Local
consistency is just a matter of having the
right numbers sum to 1.)

Evaluating Networks

As I already noted, the basic computation on
belief networks is the computation of every
node’s belief (its conditional probability)
given the evidence that has been observed so
far. Probably the most important constraint
on the use of Bayesian networks is the fact
that in general, this computation is NP-hard
(Cooper 1987). Furthermore, the exponential
time limitation can and does show up on
realistic networks that people actually want
solved. Depending on the particulars of the
network, the algorithm used, and the care
taken in the implementation, networks as
small as tens of nodes can take too long, or
networks in the thousands of nodes can be
done in acceptable time.

The first issue is whether one wants an
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exact solution (which is NP-hard) or if one
can make do with an approximate answer
(that is, the answer one gets is not exact but
with high probability is within some small
distance of the correct answer). I start with
algorithms for finding exact solutions.

Exact Solutions

Although evaluating Bayesian networks is, in
general, NP-hard, there is a restricted class of
networks that can efficiently be solved in
time linear in the number of nodes. The class
is that of singly connected networks. A singly
connected network (also called a polytree) is one
in which the underlying undirected graph has
no more than one path between any two
nodes. (The underlying undirected graph is
the graph one gets if one simply ignores the
directions on the edges.) Thus, for example,
the Bayesian network in figure S is singly con-
nected, but the network in figure 6 is not.
Note that the direction of the arrows does not
matter. The left path from v, to v;requires one
to go against the direction of the arrow from
Vv to v;. Nevertheless, it counts as a path from
Vin to Vi'

The algorithm for solving singly connected
Bayesian networks is complicated, so I do not
give it here. However, it is not hard to see
why the singly connected case is so much
easier. Suppose we have the case sketchily
illustrated in figure 7 in which we want to
know the probability of e given particular
values for a, b, ¢, and d. We specify that a and
b are above e in the sense that the last step in
going from them to e takes us along an arrow
pointing down into e. Similarly, we assume c
and d are below e in the same sense. Nothing
in what we say depends on exactly how a and
b are above e or how d and c are below. A
little examination of what follows shows that
we could have any two sets of evidence (pos-
sibly empty) being above and below e rather
than the sets {a b} and {c d}. We have just
been particular to save a bit on notation.

What does matter is that there is only one
way to get from any of these nodes to e and
that the only way to get from any of the
nodes a, b, ¢, d to any of the others (for exam-

ple, from b to d) is through e. This claim fol-
lows from the fact that the network is singly
connected. Given the singly connected condi-
tion, we show that it is possible to break up
the problem of determining P(e | a b ¢ d) into
two simpler problems involving the network
from e up and the network from e down.
First, from Bayes'’s rule,

Pelabcd)y=Pl)Plabcdle)/Plabcd) .
Taking the second term in the numerator, we
can break it up using conditioning:

Plelabcd)=Ple)Pable)Pcdlabe)/

Pabcd .
Next, note that P(cdlabe) =P(cdle)
because e separates a and b from c and d (by
the singly connected condition). Substituting
this term for the last term in the numerator
and conditioning the denominator on a, b,
we get

Pelabcd)=Pe)Plable) P(cdle)/ Pab)
P(cdlab) .

Next, we rearrange the terms to get

Plelabcd)=(P)Pable)/Pab)) (Pcdl
e)(P(cdlab)) .

Apply Bayes’s rule in reverse to the first col-
lection of terms, and we get

Plelabcdy=Pelab)P(cdle) (1 /Plcdl
ab)) .

We have now done what we set out to do.
The first term only involves the material from
e up and the second from e down. The last
term involves both, but it need not be calcu-
lated. Rather, we solve this equation for all
values of e (just true and false if e is Boolean).
The last term remains the same, so we can
calculate it by making sure that the probabili-
ties for all the values of E sum to 1. Naturally,
to make this sketch into a real algorithm for
finding conditional probabilities for polytree
Bayesian networks, we need to show how to
calculate P(e | a b) and P(c d | e), but the ease
with which we divided the problem into two
distinct parts should serve to indicate that
these calculations can efficiently be done. For
a complete description of the algorithm, see
Pearl (1988) or Neapolitan (1990).

Now, at several points in the previous dis-
cussion, we made use of the fact that the net-
work was singly connected, so the same
argument does not work for the general case.
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Figure 8. A Multiply Connected Network.
There are two paths between node a and node d.

However, exactly what is it that makes multi-
ply connected networks hard? At first glance,
it might seem that any belief network ought
to be easy to evaluate. We get some evidence.
Assume it is the value of a particular node. (If
it is the values of several nodes, we just take
one at a time, reevaluating the network as we
consider each extra fact in turn.) It seems that
we located at every node all the information
we need to decide on its probability. That is,
once we know the probability of its neigh-
bors, we can determine its probability. (In
fact, all we really need is the probability of its
parents.)

These claims are correct but misleading. In
singly connected networks, a change in one
neighbor of e cannot change another neigh-
bor of e except by going through e itself. This
is because of the single-connection condition.
Once we allow multiple connections between
nodes, calculations are not as easy. Consider
figure 8. Suppose we learn that node d has
the value true, and we want to know the con-
ditional probabilities at node c. In this net-
work, the change at d will affect ¢ in more
than one way. Not only does c have to
account for the direct change in d but also
the change in a that will be caused by d
through b. Unlike before, these changes do
not separate cleanly.

To evaluate multiply connected networks
exactly, one has to turn the network into an
equivalent singly connected one. There are a
few ways to perform this task. The most
common ways are variations on a technique

Figure 9. A Clustered, Multiply
Connected Network.

By clustering nodes b and c, we turned the graph of
figure 8 into a singly connected network.

called clustering. In clustering, one combines
nodes until the resulting graph is singly con-
nected. Thus, to turn figure 8 into a singly
connected network, one can combine nodes
b and c. The resulting graph is shown in
figure 9. Note now that the node {b c} has as
its values the cross-product of the values of b
and c singly. There are well-understood tech-
niques for producing the necessary local
probabilities for the clustered network. Then
one evaluates the network using the singly
connected algorithm. The values for the vari-
ables from the original network can then be
read off those of the clustered network. (For
example, the values of b and c can easily be
calculated from the values for {b c}.) At the
moment, a variant of this technique pro-
posed by Lauritzen and Spiegelhalter (1988)
and improved by Jensen (1989) is the fastest
exact algorithm for most applications. The
problem, of course, is that the nodes one
creates might have large numbers of values.
A node that was the combination of 10
Boolean-valued nodes would have 1024
values. For dense networks, this explosion
of values and worse can happen. Thus, one
often considers settling for approximations
of the exact value. We turn to this area next.

Approximate Solutions

There are a lot of ways to find approxima-
tions of the conditional probabilities in a
Bayesian network. Which way is the best
depends on the exact nature of the network.



However, many of the algorithms have a lot
in common. Essentially, they randomly posit
values for some of the nodes and then use
them to pick values for the other nodes. One
then keeps statistics on the values that the
nodes take, and these statistics give the
answer. To take a particularly clear case, the
technique called logic sampling (Henrion
1988) guesses the values of the root nodes in
accordance with their prior probabilities.
Thus, if v is a root node, and P(v) = .2, one
randomly chooses a value for this node but in
such a way that it is true about 20 percent of
the time. One then works one’s way down the
network, guessing the value of the next lower
node on the basis of the values of the higher
nodes. Thus, if, say, the nodes a and b, which
are above ¢, have been assigned true and
false, respectively, and P(c | = b) = .8, then we
pick a random number between 0 and 1, and
if it is less than .8, we assign c to true, other-
wise, false. We do this procedure all the way
down and track how often each of our nodes
is assigned to each of its values. Note that, as
described, this procedure does not take evi-
dence nodes into account. This problem can
be fixed, and there are variations that improve
it for such cases (Shacter and Peot 1989; Shwe
and Cooper 1990). There are also different
approximation techniques (see Horvitz, Suer-
mondt, and Cooper [1989]). At the moment,
however, there does not seem to be a single
technique, either approximate or exact, that
works well for all kinds of networks. (It is
interesting that for the exact algorithms, the
feature of the network that determines perfor-
mance is the topology, but for the approxima-
tion algorithms, it is the quantities.) Given
the NP-hard result, it is unlikely that we will
ever get an exact algorithm that works well
for all kinds of Bayesian networks. It might be
possible to find an approximation scheme
that works well for everything, but it might
be that in the end, we will simply have a
library of algorithms, and researchers will
have to choose the one that best suits their
problem.

Finally, I should mention that for those
who have Bayesian networks to evaluate but
do not care to implement the algorithms
themselves, at least two software packages are
around that implement some of the algo-
rithms I mentioned: IDEAL (Srinivas and Breese
1989, 1990) and HUGIN (Andersen 1989).

Applications

As I stated in the introduction, Bayesian net-
works are now being used in a variety of
applications. As one would expect, the most
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Figure 10. Map Learning.

Finding the north-south corridor makes it more likely that there is an intersection

north of the robot’s current location.

common is diagnosis problems, particularly,
medical diagnosis. A current example of
the use of Bayesian networks in this area is
PATHFINDER (Heckerman 1990), a program to
diagnose diseases of the lymph node. A
patient suspected of having a lymph node
disease has a lymph node removed and exam-
ined by a pathologist. The pathologist exam-
ines it under a microscope, and the information
gained thereby, possibly together with other
tests on the node, leads to a diagnosis.
PATHFINDER allows a physician to enter the
information and get the conditional probabil-
ities of the diseases given the evidence so far.
PATHFINDER also uses decision theory. Deci-
sion theory is a close cousin of probability
theory in which one also specifies the desir-
ability of various outcomes (their utility) and
the costs of various actions that might be per-
formed to affect the outcomes. The idea is to
find the action (or plan) that maximizes the
expected utility minus costs. Bayesian net-
works have been extended to handle decision
theory. A Bayesian network that incorporates
decision nodes (nodes indicating actions that
can be performed) and value nodes (nodes
indicating the values of various outcomes) is
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Figure 11. Bayesian Network for a Simple Story.

Connecting “straw” to the earlier context makes the drink-straw reading more likely.

called an influence diagram, a concept invent-
ed by Howard (Howard and Matheson 1981).
In PATHFINDER, decision theory is used to
choose the next test to be performed when the
current tests are not sufficient to make a diag-
nosis. PATHFINDER has the ability to make treat-
ment decisions as well but is not used for this
purpose because the decisions seem to be sen-
sitive to details of the utilities. (For example,
how much treatment pain would you tolerate
to decrease the risk of death by a certain
percentage?)

PATHFINDER’S model of lymph node diseases
includes 60 diseases and over 130 features
that can be observed to make the diagnosis.
Many of the features have more than 2 possi-
ble outcomes (that is, they are not binary
valued). (Nonbinary values are common for
laboratory tests with real-number results. One
could conceivably have the possible values of
the random variable be the real numbers, but
typically to keep the number of values finite,
one breaks the values into significant regions.
I gave an example of this early on with earth-
quake, where we divided the Richter scale for
earthquake intensities into 5 regions.) Various
versions of the program have been implement-
ed (the current one is PATHFINDER-4), and the
use of Bayesian networks and decision theory
has proven better than (1) MyCIN-style certainty
factors (Shortliffe 1976), (2) Dempster-Shafer
theory of belief (Shafer 1976), and (3) simpler
Bayesian models (ones with less realistic inde-
pendence assumptions). Indeed, the program
has achieved expert-level performance and
has been implemented commercially.

Bayesian networks are being used in less
obvious applications as well. At Brown Uni-
versity, there are two such applications: map
learning (the work of Ken Basye and Tom
Dean) and story understanding (Robert Gold-
man and myself). To see how Bayesian net-
works can be used for map learning, imagine
that a robot has gone down a particular corri-
dor for the first time, heading, say, west. At
some point, its sensors pick up some features
that most likely indicate a corridor heading
off to the north (figure 10). Because of its cur-
rent task, the robot keeps heading west. Nev-
ertheless, because of this information, the
robot should increase the probability that a
known east-west corridor, slightly to the
north of the current one, will also intersect
with this north-south corridor. In this domain,
rather than having diseases that cause certain
abnormalities, which, in turn, are reflected as
test results, particular corridor layouts cause
certain kinds of junctions between corridors,
which, in turn, cause certain sensor readings.
Just as in diagnosis, the problem is to reason
backward from the tests to the diseases; in
map learning, the problem is to reason back-
ward from the sensor readings to the corridor
layout (that is, the map). Here, too, the intent
is to combine this diagnostic problem with
decision theory, so the robot could weigh the
alternative of deviating from its planned
course to explore portions of the building for
which it has no map.

My own work on story understanding
(Charniak and Goldman 1989a, 1991; Gold-
man 1990) depends on a similar analogy.



Imagine, to keep things simple, that the story
we are reading was created when the writer
observed some sequence of events and wrote
them down so that the reader would know
what happened. For example, suppose Sally is
engaged in shopping at the supermarket. Our
observer sees Sally get on a bus, get off at the
supermarket, and buy some bread. He/she
writes this story down as a string of English
words. Now the “disease” is the high-level
hypothesis about Sally’s task (shopping). The
intermediate levels would include things such
as what the writer actually saw (which was
things such as traveling to the supermarket—
note that “shopping” is not immediately
observable but, rather, has to be put together
from simpler observations). The bottom layer
in the network, the “evidence,” is now the
English words that the author put down on
paper.

In this framework, problems such as, say,
word-sense ambiguity, become intermediate
random variables in the network. For exam-
ple, figure 11 shows a simplified version of
the network after the story “Sue ordered a
milkshake. She picked up the straw.” At the
top, we see a hypothesis that Sue is eating
out. Below this hypothesis is one that she will
drink a milkshake (in a particular way called,
there, straw-drinking). Because this action
requires a drinking straw, we get a connection
to this word sense. At the bottom of the net-
work, we see the word straw, which could
have been used if the author intended us to
understand the word as describing either a
drinking straw or some animal straw (that is,
the kind animals sleep on). As one would
expect for this network, the probability of
drinking-straw will be much higher given the
evidence from the words because the evidence
suggests a drinking event, which, in turn,
makes a drinking straw more probable. Note
that the program has a knowledge base that
tells it how, in general, eating out relates to
drinking (and, thus, to straw drinking), how
straw drinking relates to straws, and so on.
This knowledge base is then used to construct,
on the fly, a Bayesian network (like the one in
figure 11) that represents a particular story.

But Where Do the Numbers
Come From?

One of the points I made in this article is the
beneficial reduction in the number of param-
eters required by Bayesian networks. Indeed,
if anything, I overstated how many numbers
are typically required in a Bayesian network.
For example, a common situation is to have
several causes for the same result. This situation
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pneumonia

Figure 12. Three Causes for a Fever.

Viewing the fever node as a noisy-Or node makes it easier to construct the posterior

distribution for it.

occurs when a symptom is caused by several
diseases, or a person’s action could be the
result of several plans. This situation is shown
in figure 12. Assuming all Boolean nodes, the
node fever would require 8 conditional proba-
bilities. However, doctors would be unlikely
to know such numbers. Rather, they might
know that the probability of a fever is .8 given
a cold; .98 given pneumonia; and, say, .4 given
chicken pox. They would probably also say
that the probability of fever given 2 of them
is slightly higher than either alone. Pearl sug-
gested that in such cases, we should specify
the probabilities given individual causes but
use stereotypical combination rules for com-
bining them when more than 1 case is pre-
sent. The current case would be handled by
Pearl’s noisy-Or random variable. Thus, rather
than specifying 8 numbers, we only need to
specify 3. We require still fewer numbers.
However, fewer numbers is not no numbers
at all, and the skeptic might still wonder how
the numbers that are still required are, in fact,
obtained. In all the examples described previ-
ously, they are made up. Naturally, nobody
actually makes this statement. What one
really says is that they are elicited from an
expert who subjectively assesses them. This
statement sounds a lot better, but there is
really nothing wrong with making up num-
bers. For one thing, experts are fairly good at
it. In one study (Spiegelhalter, Franklin, and
Bull 1989), doctors’ assessments of the num-
bers required for a Bayesian network were
compared to the numbers that were subse-
quently collected and found to be pretty close
(except the doctors were typically too quick
in saying that things had zero probability). I
also suspect that some of the prejudice
against making up numbers (but not, for
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...the major drawback to their use is the time of evaluation...

example, against making up rules) is that one
fears that any set of examples can be
explained away by merely producing the
appropriate numbers. However, with the
reduced number set required by Bayesian
networks, this fear is no longer justified; any
reasonably extensive group of test examples
overconstrains the numbers required.

In a few cases, of course, it might actually
be possible to collect data and produce the
required numbers in this way. When this is
possible, we have the ideal case. Indeed, there
is another way of using probabilities, where
one constrains one’s theories to fit one’s data-
collection abilities. Mostly, however, Bayesian
network practitioners subjectively access the
probabilities they need.

Conclusions

Bayesian networks offer the Al researcher a
convenient way to attack a multitude of
problems in which one wants to come to
conclusions that are not warranted logically
but, rather, probabilistically. Furthermore,
they allow you to attack these problems with-
out the traditional hurdles of specifying a set
of numbers that grows exponentially with
the complexity of the model. Probably the
major drawback to their use is the time of
evaluation (exponential time for the general
case). However, because a large number of
people are now using Bayesian networks,
there is a great deal of research on efficient
exact solution methods as well as a variety of
approximation schemes. It is my belief that
Bayesian networks or their descendants are
the wave of the future.
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