
Role-Based Refactoring of Crosscutting Concerns
Jan Hannemann

University of British Columbia
201-2336 Main Mall

Vancouver, B.C. V6T 1Z4

jan@cs.ubc.ca

Gail C. Murphy
University of British Columbia

201-2336 Main Mall
Vancouver, B.C. V6T 1Z4

murphy@cs.ubc.ca

Gregor Kiczales
University of British Columbia

201-2336 Main Mall
Vancouver, B.C. V6T 1Z4

gregor@cs.ubc.ca

ABSTRACT
Improving the structure of code can help developers work with a
software system more efficiently and more consistently. To aid
developers in re-structuring the implementation of crosscutting
concerns using aspect-oriented programming, we introduce a role -
based refactoring approach and tool. Crosscutting concerns (CCCs)
are described in terms of abstract roles, and instructions for
refactoring crosscutting concerns are written in terms of those
roles. To apply a refactoring, a developer maps a subset of the roles
to concrete program elements; a tool can then help complete the
mapping of roles to the existing program. Refactoring instructors are
then applied to manipulate and modularize the concrete elements
corresponding to the crosscutting concern. Evaluation of the
prototype tool on a graphical editing framework suggests that the
approach helps planning and executing complex CCC refactorings.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures –
patterns, information hiding, and languages; D.3.3
[Programming Languages]: Language Constructs and Features –
patterns, classes and objects

General Terms
Design, Languages.

Keywords
Design patterns, refactoring, and aspect-oriented programming.

1. INTRODUCTION
Aspect-oriented programming (AOP) [17] enables the modular
implementation of crosscutting concerns. Refactoring [7, 24, 5]
helps programmers improve improved code structure through
behavior-preserving program transformations.

In this paper, we introduce a role -based refactoring approach to
help programmers transform scattered implementations of
crosscutting concerns (CCC) into a modular implementation in an
AOP language. We use a role -based approach for two reasons.

First, several authors have shown the value of roles in modularizing
CCCs [20, 16, 9, 21, 27]. Second, we have shown in previous work
[10] how a CCC that has been modularized conceptually by roles is
amenable to modular implementation using AspectJ.

In the approach presented here, a refactoring is defined by
describing the abstract roles of a CCC, and by providing refactoring
instructions in terms of those roles. To invoke the refactoring, a
developer maps the roles to concrete program elements in the
scattered implementation. The refactoring instructions can then be
used to operate on the program, converting it to a modular AOP
implementation.

The approach is semi-automated, in that certain choices in the
refactoring process need to be made by the developer. Options,
tradeoffs and suggestions are presented by the tool in a form of
dialogues we call conversations.

Our approach preserves intent, but in some cases not the exact
behavior of the original code. We argue that these properties are
inherent to a set of useful crosscutting concerns to modularize, a
subset of the GoF design patterns [6].

We have implemented our approach as an Eclipse plug-in1. Our
current plug-in supports Java and AspectJ, but we see nothing about
our approach that prevents it from being used with other languages.

We begin the paper with a classification of the different kinds of
aspect-oriented refactorings. We then introduce our role -based
approach, describe the tool support we have built, and discuss its
application to refactor design patterns in a graphical editing
framework. We conclude with a discussion of issues surrounding
our approach and a summary of our work.

2. REFACTORING SUPPORT FOR AOP
Refactoring support for AOP can be divided into three categories:
aspect-aware OO refactorings, new refactorings for AOP
constructs, and support for the refactoring of crosscutting concerns.

The refactoring focusthe element or elements that the refactoring
targetsdetermines the refactoring approach, as outlined in Table
1. We use this refactoring space to clarify terminology and describe
how our work relates to previous efforts.

1 www.eclipse.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AOSD’ 05, March 14-17, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-043-4/05/03....$5.00.

Table 1: The AOP refactoring space

Refactoring Focus Approach

OO
Construct

Aspect-aware OO
Refactorings Single Program

Element AOP
Construct

AOP
Refactorings

Multiple, scattered program
elements

Crosscutting
Concern
Refactorings

Existing refactorings often target modular implementations that are
usually single program constructs, such as a field, method, class,
advice or aspect. Although the focus is one program element,
refactoring the element typically requires other parts of the program
to be updated. When non-modular implementations are considered
for refactoring, the target is a set of scattered program elements
that belong together conceptually (i.e., they contribute to the
implementation of the same concern).

public class Account {
 ...
 public void deduct(int amount)
 throws InsufficientFundsException {
 acquireLock(this);
 doIt(amount);
 releaseLock(this);
 }
 private void doIt(int amount)
 throws InsufficientFundsException {
 if (amount > balance) {
 throw new InsufficientFundsException(...);
 } else {
 balance = balance - amount;
 transactions++;
 }
 }
}

public aspect TransactionLogger {
 ...
 pointcut deduction(Account acct, int amount):
 call(void Account.doIt(int)) &&
 target(acct) &&
 args(amount);

 after (Account acct, int amount) returning:
 deduction(acct, amount) {
 log(amount + " deducted from " + acct.getId());
 }
}

Figure 1: Source code fragment demonstrating logging of
deductions in a banking system

Figure 1 introduces an example in AspectJ [18] that we use to
motivate and illustrate these different types of refactorings. It shows
a part of an account class for a banking system that focuses on
handling deductions. In the method deduct(int), a lock is
acquired (to prevent race conditions), then the actual deduction is
executed (in method doIt(int)), and finally the lock is released.

If the balance is not sufficiently high, an exception is raised. Further,
an aspect logs all successful transactions; Figure 1 shows the
logging of successful deductions.

2.1 Aspect-Aware OO Refactorings
Known OO refactorings must be adjusted to account for new AOP
constructs. For instance, applying a Rename Method refactoring to
the (poorly named) doIt(int) method requires updates to
references of that construct from AOP constructs, such as the
deduction(..) pointcut. Applying a refactoring to inline the
doIt(int) method is another example where an OO refactoring
needs to become aspect-aware, as the joint points [13, 22] identified
by the pointcut cease to exist. Making OO refactorings aspect-
aware is the focus of several current research projects, for example
[8, 14, 29].

2.2 Aspect-Oriented Refactorings
New refactorings are also needed to transform AOP constructs;
many of these refactoring may parallel existing OO refactorings,
such as renaming or inlining a pointcut and advice body. With
respect to the type of refactorings that can be applied to them,
pointcuts behave very similar to methods and aspects to classes. It
is straightforward to envision the meaning of refactorings such as
Add Parameter, Pull Up Method, or Push Down Method [5] to a
pointcut declaration. Similarly, equivalents of Collapse Hierarchy,
Extract Super/Subclass, or Move Class may be modified for
aspects.

The new programming constructs in aspect-oriented programming
languages also allow for a set of new refactorings, such as the
merging or splitting of advice and/or pointcuts. For example, imagine
a similar pair of pointcut and advice in the banking system for
logging additions of money to an account. The pointcuts, the advice,
or both could be merged with the ones for logging deductions.
Several researchers have proposed new refactorings for AOP
constructs, for example [23, 14].

2.3 Refactorings of Crosscutting Concerns
Refactorings are also needed for crosscutting concerns. As a simple
example, consider an object-oriented system that logs certain
method calls. In an object-oriented system, the calls to the logging
facilities will likely be scattered across multiple classes and
methods. Replacing all of these non-modularized with a pointcut and
advice is a CCC refactoring. In such refactorings, the multiple
program elements comprising the CCC and their individual
transformations are considered together, instead of handling each
element (method call in the logging example) separately.

For a more interesting example, consider an object-oriented instance
of the Observer design pattern [6], which is by its nature non-
modularized (as is the case for many OO design patterns). We have
shown in previous work that many design patterns can be modularly
implemented in AspectJ [10]. Moving from an object-oriented to an
aspect-oriented implementation is a CCC refactoring. The program
elements comprising the CCC have certain functions and
relationships that make it difficult to consider them separately. In a
CCC refactoring, the individual transformations for these program
elements are planned and executed together. The individual
transformations involved are all either (aspect-aware) OO or AO
refactorings.

To illustrate this, consider the steps needed to modularize an
instance of the Observer pattern in the JHotDraw framework [15].
Figure 2 shows the structure of this particular pattern instance, and
the methods comprising the concern. Relevant code elements
appear in all observers, and all subjects, plus in client code (not
shown) that sets up the subject-observer relationships.

Figure 2: The structure of an (object-oriented) instance of
the Observer pattern in the JHotDraw framework.

In this case, we have DrawingView acting as the subject. It has
methods to add and remove Observers (here:
FigureSelectionListeners), and to notify observers of a
change of interest. Further, we have a number of methods that can
trigger notification. DrawingView is an interface; concrete
subtypes implement these methods. The interface is implemented by
two types directly in the framework, and is also a primary extension
points of the framework. Concrete applications built upon the
framework are thus likely to have additional classes containing
subject code.

FigureSelectionListener acts as an Observer and
declares a method to update itself if a change of interest occurs.
This interface is implemented by a total of 31 types in the
framework plus 14 different anonymous types.

This pattern crosscuts a large number of modules, tangling the
scattered concern implementations with other code, making changes
complex. If we consider the final, modularized, implementation of
the Observer pattern CCC as an aspect, it takes a rather long list of
changes to move the code from the scattered to the modularized
aspect form:

1. Create an aspect to contain the pattern instance (named
FigureSelectionUpdate in light of the previous
example)
a. Add a field (of type HashMap) to the aspect to store the

Observers of each Subject

b. Define empty interfaces Subject and Observer in the
aspect to provide some basic internal typing

c. Use declare parents constructs to assign the
Subject and Observer interfaces to the appropriate types

d. Implement a pointcut subjectChange(Subject)
capturing all changes of interest to subjects

e. Implement a method update(Subject,
Observer) that updates the observer given a change in
the subject

f. Implement the update logic: after subjectChange, call
update(Subject, Observer) for all observers of
the subject

2. Adjust the original subject interface (DrawingView)2
a. Remove method

addFigureSelectionListener(..)
b. Remove method

removeFigureSelectionListener(..)
c. Remove method fireSelectionChanged()

3. Adjust the concrete subjects (StandardDrawingView,
NullDrawingView, all framework extensions)
a. Remove method

addFigureSelectionListener(..)
b. Remove method

removeFigureSelectionListener(..)
c. Remove method fireSelectionChanged()
d. Remove the figureSelectionListeners field or

its equivalent
e. Locate and remove calls to

fireSelectionChanged() from all methods
4. Remove the original observer interface

(FigureSelectionListener)
5. Adjust the concrete observers (AbstractCommand,

DrawingEditor, and all other types)
a. Remove the method

figureSelectionChanged(DrawingView)
6. Add appropriate code to

FigureSelectionUpdate.update(Subject,
Observer) to reflect the deleted code

7. Adjust all client code
a. Locate all calls to

addFigureSelectionListener(..) targeting a
DrawingView or a subtype and replace it with an
appropriate call to
FigureSelectionUpdate.addObserver(Subj
ect, Observer)

b. Locate all calls to
removeFigureSelectionListener(..)
targeting a DrawingView or a subtype and replace it
with an appropriate call to
FigureSelectionUpdate.removeObserver(S
ubject, Observer)

There are two things to note about this conversion: first, this is a
rather long list of changes and over 50 types are affected directly or
indirectly. Second, between the individual refactoring steps, the

2 This interface can not be entirely removed, as it contains other

code that is not related to the pattern

Drawing View: Subject

. . .
addFigureSelectionListener(FSL)
removeFigureSelcetionListener(FSL)
. . .
fireSelectionChanged ()
. . .
addToSelection(Figure)
removeFromSelection(Figure)
toggleSelection(Figure)
clearSelection()
. . .

Drawing View: Subject

. . .
addFigureSelectionListener(FSL)
removeFigureSelcetionListener(FSL)
. . .
fireSelectionChanged ()
. . .
addToSelection(Figure)
removeFromSelection(Figure)
toggleSelection(Figure)
clearSelection()
. . .

NullDrawingView StandardDrawingView: ConcreteSubject

. . .
addFigureSelectionListener(FSL)
removeFigureSelcetionListener(FSL)
. . .
fireSelectionChanged()
. . .
addToSelection(Figure)
removeFromSelection(Figure)
toggleSelection(Figure)
clearSelection()
. . .

FigureSelectionListener: Observer

. . .
figureSelctionChanged(DrawingView)
. . .

DrawingEditorConcreteObserver

. . .
figureSelctionChanged(DrawingView)
. . .

AbstractCommand : ConcreteObserver

. . .
figureSelctionChanged(DrawingView)
. . .

. . .

FigureSelectionListener: Observer

. . .
figureSelctionChanged(DrawingView)
. . .

DrawingEditorConcreteObserver

. . .
figureSelctionChanged(DrawingView)
. . .

AbstractCommand : ConcreteObserver

. . .
figureSelctionChanged(DrawingView)
. . .

. . .

system is left in an inconsistent state, suggesting that treating the
entire list as one refactoring as one is preferable.

If we were to do the same transformation for a different instance of
the Observer pattern, we would have to modify the involved
elements in the same principal way, yet we would target a different
set of program elements, with entirely different names. Ideally, we
would capture the common steps and only slightly adjust the
“modularize OO Observer pattern” refactoring each time it is
applied to a new instance of the pattern. This is the motivation for
CCC refactoring.

Our approach to CCC refactoring is role-based. The use of roles
allows a CCC refactoring to be defined separately from the
concrete systems to which it may be applied. For CCC descriptions,
roles help identify and distinguish between principal elements of the
concern, for example the Subject type or the update(..) method in
the Observer CCC. These role elements abstractly define the
structure of the CCC without tying it to a concrete implementation.
To apply a CCC refactoring, a developer must map the role
elements comprising the abstract description of the CCC to the
concrete program elements implementing the CCC. The refactoring
instructions are also defined in terms of these role elements, and the
refactored code is obtained by applying these instructions to the
mapped program elements.

We are not aware of any work on role -based refactoring support
for CCCs. Fowler touches on the issue of complex OO refactorings
with a description of what he calls “big refactorings” [5], and
presents the rough mechanics (similar to the list of changes above)
of four examples. Shepherd [26] proposes Ophir, an automated tool
for mining and extracting aspects. Based on clone detection in
program dependency graphs [4], their approach does not model
CCCs, nor utilize the CCCs’ internal structure. Laddad [19]
describes a number of OO-to-AOP refactorings that extract
scattered implementations into aspects; these descriptions are not
supported by a tool. Robillard’s concern graphs [25] are a way to
capture the structure of non-modularized crosscutting concerns, but
they do not provide any refactoring support. In [11], Hannemann et.
al. use concern graphs to plan refactorings, and discuss the role of
developer interaction in providing tool support for refactoring
scattered code to aspects. However, concern graphs do not include
any abstraction to differentiate between individual concrete program
elements, limiting the description of complex refactorings.

2.4 Properties of AOP Refactorings
We have found that AOP refactorings, and especially CCC
refactorings, have two interesting properties. One, with this kind of
refactoring there is sometimes a trade-off between behavior
preservation and preservation of intent. Two, choices in the
application of the refactoring and space of possible aspect-oriented
implementations raise the need for user interaction as part of the
refactoring process. The more complex the refactoring, the more
pronounced are these two issues. Yet, even the rather simple
inlining of the doIt(int) method in the example shown in figure
1 can illustrates both points.

To preserve the original behavior, we could define the logging to
happen before the next program statement is executed (i.e.: before
the call to releaseLock(..)), or we could decide the logging
should happen after the body of the original, inlined method (where
the transactions field gets incremented). Both approaches fail

to capture the original intent of the pointcut and make it less
readable and self-explanatory.

To maintain readability of our pointcut, we could specify that logging
should take place after the balance field is modified in method
deduct(int). This would require accepting a minor behavior
variation (which is against the fundamental principle of refactoring),
but the pointcut would remain readable, and the intent of the
pointcut remains intact.

This also illustrates the issue of required developer interaction: the
decision to choose one alternative over another is hardly
automatable. While it is conceivable that a tool can just pick one
possibility and provide reasoning for later review (e.g., using JSR
175 metadata annotations), a complex refactoring may require
multiple choices, each of which can influence subsequent
refactoring steps.

3. ROLE-BASED REFACTORING OF
CROSSCUTTING CONCERNS
Our approach helps a developer transform a scattered
implementation of a CCC into an equivalent3, but modular AOP
implementation. We describe both the CCC and the refactoring
abstractly in terms of roles. Refactorings are executed by applying
the refactoring instructions to the program elements that the roles
are mapped to, as outlined in figure 3. Dependent code elements are
changed accordingly, so the refactoring can indirectly affect non-
mapped elements as well.

Figure 3: CCC refactorings as code transformations using
role abstractions.

3.1 Workflow
Performing a CCC refactoring involves several steps. We describe
these steps using the FigureSelectionUpdate example from
the previous section.

3 in terms of preserving intent

Original program;
CCC not modularized

Refactored program;
CCC modularized

Role
Mappings

A
bs

tr
ac

t
C

on
cr

et
e

Abstract CCC description
with role elements

Refactoring instructions

CCC Refactoring Description

Original program;
CCC not modularized

Refactored program;
CCC modularized

Role
Mappings

A
bs

tr
ac

t
C

on
cr

et
e

Abstract CCC description
with role elements

Refactoring instructions

CCC Refactoring Description

1. Selecting a CCC refactoring: The developer chooses
an appropriate refactoring from a library of CCC
refactorings. The refactoring includes an abstract
description of the CCC it targets, and a set of instructions
to produce a modular AOP implementation of the
refactoring. These refactorings can be user-defined, and,
due to their abstract nature, reused for other instances of
the same CCC. In the FigureSelectionUpdate example,
the developer chooses the Observer design pattern CCC
refactoring

2. Stating a mapping: The refactoring tool helps the
developer map role elements comprising the CCC
description to program elements of the scattered
implementation. In the example, the developer might map
the Subject role type to DrawingView and the
Observer role type to the concrete type
FigureSelectionListener. The tool would then
suggest further mappings that the developer can accept or
reject.

3. Planning the refactoring: Because a CCC refactoring
involves modifying several parts of a codebase, there are
often choices that arise in the refactoring. The refactoring
tool uses impact analysis to identify choices4 in the
refactoring process, and to provide the developer with
associated tradeoffs. For example, the tool would warn
the developer if the newly created aspect’s name collides
with another entity in the program, or if one of the
introduced methods is accidentally matched by an existing
pointcut. The developer decides how to resolve these
cases.

4. Execution: Once the refactoring has been planned, the
tool transforms the code according to the refactoring
instructions, incorporating the decisions made in the
planning step. The execution of the refactoring may result
in the creation of new program elements, such as a new
aspect to contain the modularized Observer pattern, as
well as changes to the existing code, such as the
replacement of object methods with aspect methods and
the removal of obsolete interfaces.

3.2 Describing Crosscutting Concerns
To enable the refactorings to be described abstractly, we
differentiate between concrete and abstract CCCs. A concrete
CCC is the actual implementation of the concern, while an abstract
CCC description generalizes and captures the structure of concrete
CCCs. For example, in the JHotDraw framework, there are multiple
cases where the Observer pattern has been used. These are
multiple concrete scattered Observer CCCs. All of them have a
similar structure, which is captured in the abstract Observer CCC.

Each CCC refactoring in the library includes an abstract description
of the CCC it targets. The abstract CCC is described in terms of a
set of role elements and a set of relations between role elements.
Each role element abstracts part of the functionality of the concern.
We differentiate between three kinds of role elements: role types,
role methods and role fields. Table 2 depicts the possible relations of
interest between the role elements. These role elements and their

4 or potential adverse effects of changed program elements on the

rest of the system

relations are the core of the model; the model can be extended with
additional relationships and properties, such as methods modifying
fields, types extending types, or types being abstract or concrete.
The relations shown in Table 2 have been sufficient to represent the
set of design pattern CCCs we have studied to date.

Table 2: Role Elements and their Relationships

 Possible Relationship with other Role
Elements

Role
Element

Type Method Field

Type extends contains contains

Method returns,
hasArgument

calls,
overrides

-

Field hasType,
aggregates

- -

For instance, the abstract CCC description of the Observer design
pattern includes the role types Observer and Subject, and the role
methods attach, detach and notify on the Subject, and update on
the Observer. Role fields are observers on Subject and
(optionally) subject on Observer. This structure is shown in figure
4. Note that the distinction between Subject and ConcreteSubject
(as in the design pattern description) is an implementation issue and
not a conceptual one; hence it is not reflected in the CCC
description.

Figure 4: Role Elements in the Observer CCC. Role types
are represented as squares, role methods as rounded

squares and role fields as hexagons. The structure reflects
the push variant of the pattern as outlined in [6].

Given the spectrum of implementation variants for CCCs, an
important question is how to deal with potentially varying concern
structure, such as known implementation variants for design
patterns. Section 5 discusses this issue in detail.

3.3 Mapping Role Elements to Code
Applying a CCC refactoring requires a mapping from the abstract
CCC description to program elements in a code base that comprise
a concrete CCC implementation.

This mapping is aided by the approach. Based on initial partial
mapping information provided by the developer, a comparison of the
structure of the abstract CCC and a static analysis of the type
hierarchy and call graph structure of the target software can be
used to suggest additional mappings. For instance, if a developer has

calls

co
nt

ai
ns

hasArgument

hasArgument

ObserverSubject

attach(Observer)

detach(Observer)

notify()

observers update(Subject)co
nt

ai
ns

aggregates

mapped the Subject.attach(Observer) role method onto
DrawingView.addFigureSelectionListener(
FigureSelectionListener), a tool can straightforwardly
infer a mapping of the Subject role type to DrawingView (via
the “contains” relationship between Subject and attach) and of the
Observer role type to FigureSelectionListener (via the
“argument” relationship between attach and Observer). Figure 5
shows the initial and derived mappings. This process can be applied
iteratively using derived mappings as the basis for further
inferences.

Figure 5: Based on an initial mapping (solid arrow), further
mappings can be inferred (dashed arrows).

A comparison of the structure in the abstract CCC and the program
structure can also reveal potentially incorrect mappings, and suggest
alternative mappings that match the abstract CCC structure more
closely. For example, it can be detected whether the concrete
methods that a role method is mapped to have the wrong argument
or enclosing type, or whether the implementation is missing parts of
the structure of the CCC, such as an explicit interface. In both
cases, the developer is presented with the current mapping and the
mapped elements that do not match the structure of the CCC
description. Potential alternatives are evaluated based on the fit of
the CCC description and the structure of the mapped elements.
Structural information inherent in the CCC description provides an
initial ranking (the mapping with the fewest deviations has the best
fit – all role element relationships are considered equal for this
purpose). Note that the algorithms for completing and checking
partial mappings are not tied to a specific CCC, but rather work on
any abstract CCCs expressed in terms of their roles..

To further facilitate the mapping process, it is also possible to
augment the abstract CCC description with non-structural
information about the role elements, such as lexical or semantic
information, as described in sections 4 and 5.

In summary, the structure of the concern description can aid in
finding scattered program elements directly corresponding to role
elements. Remaining scattered locations of the CCC, such as call
sites for a mapped method need not be explicitly identified in this
phase and will be automatically updated when the code is
transformed (see Code Manipulation, below).

3.4 Describing Refactorings for CCCs
To execute a CCC refactoring, we need a set of instructions to
transform the code base and modularize the scattered concern. The

refactoring instructions are described in terms of the role elements
of the abstract CCC. Each individual refactoring instruction is either
an aspect-aware version of an existing object-oriented refactoring
[5, 24] or an aspect-oriented refactoring. A refactoring step applies
to all program elements to which the role elements are mapped.

To aid our description of the refactoring instructions, we introduce
notation to express the mapping between program elements in the
software system to abstract role elements. We use PREm →: to
refer to the mappings m between the set of role elements RE and
the set of program elements comprising the target program P.

The set of concrete program elements that a particular role element
REre ∈ is mapped to, is expressed as

{ }ii petomappedisrePperem |)(∈= .

To illustrate the kinds of refactoring steps for a CCC, we describe
the steps involved in transforming an object-oriented instance of the
Observer pattern (shown in [10]) into an aspect-oriented version.
The refactoring instructions we use for the example assume a
library aspect that abstracts commonalities of the Observer pattern
from the aforementioned work.

Figure 6 shows the structure of this abstract library aspect. The
empty interfaces Subject and Observer are used internally to
provide a form of typing for the pattern methods, pointcuts and
advice. They do not define behavior, which is instead provided by
the aspect. The library aspect contains most of the pattern
functionality, including facilities for the addition and removal of
observers per subject, and the notification logic that triggers
observer updates when a change on interest occurs. For each
concrete instance of the pattern, a developer only need to subclass
this aspect, specify which types act as Subjects and Observers,
concretize the subjectChange pointcut to specify what
constitutes a change of interest, and override the update method to
define the update behavior.

public abstract aspect ObserverProtocol {
 ...
 protected interface Subject { }
 protected interface Observer { }

 protected List getObservers(Subject subject) {...}

 public void addObserver(Subject subject,
 Observer observer) {...}
 public void removeObserver(Subject subject,
 Observer observer) {...}

 protected abstract pointcut subjectChange(Subject s);
 after(Subject subject): subjectChange(subject) {
 Iterator iter = getObservers(subject).iterator();
 while (iter.hasNext()) {
 updateObserver(
 subject, ((Observer)iter.next()));}}

 protected abstract void updateObserver(
 Subject subject, Observer observer); }

Figure 6: The abstract library aspect for the observer pattern

The refactoring steps for Observer are described below. For
brevity, instructions for removal of program elements rendered
obsolete by the modifications are omitted (empty interfaces, unused
variables, etc.). The aspect-oriented refactorings named are
described in the appendix.

Observer

Subject Drawing View

addFigureSelectionListener(
FigureSelectionListener)

removeFigureSelcetionListener(
FigureSelectionListener)

fireSelectionChanged()

. . .

FigureSelectionListener

figureSelctionChanged(
DrawingView)

. . .

attach(Observer)

detach(Observer)

notify()

observers

update(Subject)

Observer

Subject Drawing View

addFigureSelectionListener(
FigureSelectionListener)

removeFigureSelcetionListener(
FigureSelectionListener)

fireSelectionChanged()

. . .

FigureSelectionListener

figureSelctionChanged(
DrawingView)

. . .

attach(Observer)

detach(Observer)

notify()

observers

update(Subject)

1. Create a new aspect to modularize the CCC and assign it a
name selected by the developer. In the case of the Observer
CCC, we can extend an existing library aspect
implementation. We call the new aspect
FigureSelectionUpdate.

2. For the mapped role types, specify which internal interface
they should implement to represent the role types in the
modular implementation. This is realized by the Add
Internal Interface refactoring. Here, we specify which
types act as Subjects and which act as Observers:

:)(Subjectmpei ∈∀ Add Internal Interface: Subject

to FigureSelectionUpdate

:)(Observermpei ∈∀ Add Internal Interface:

Observer to FigureSelectionUpdate

3. For mapped role methods, replace methods with aspect
methods. For the Observer CCC, replace the existing
methods for adding, removing, and updating observers with
the provided aspect methods:

:)(attachmpei ∈∀ Replace Object Method ipe

with Aspect Method
FigureSelectionUpdate.addObserver(
Subject, Observer)

:)(detachmpei ∈∀ Replace Object Method ipe

with Aspect Method
FigureSelectionUpdate.removeObserver(
Subject, Observer)

:)(updatempei ∈∀ Replace Object Method
ipe with

Aspect Method
FigureSelectionUpdate.updateObserver(
Subject, Observer)

4. Consider and update other parts of the abstract CCC
structure, such as the call structure. In the Observer case,
replace the update logic. Changes of interests occur within
methods on the Subjects that call the notify role method.
The implementing method(s) (and explicit calls to it) is/are
replaced by a pointcut and advice code:

:)(notifympei ∈∀ Replace Method Call to
ipe with

Pointcut
FigureSelectionUpdate.subjectChange(..) and
Advice.

3.5 Impact Analysis and Conversations
At various points in the workflow of role-based refactoring for
CCCs, we utilize static program analysis to assess the impact of a
possible change to the code base. Based on the phase in the
workflow, different kinds of analyses are employed. The impact
analysis employed during the refactoring phase checks for a number
of decision points that require developer interaction to resolve.

Whenever a check performed by impact analysis discovers a
decision to be made by the programmer, it will initiate a
conversation with the developer, presenting the associated
information to allow a decision to be reached. Concretely, the
developer is always presented with four pieces of information: the

situation, the alternatives, the associated tradeoffs, and a
recommendation.

In the refactoring planning phase, impact analysis helps identify
proposed changes that can have an undesired impact on other parts
of the system. Simple examples include the detection of naming
collisions or unintentional pointcut matches. For the former, the
developer would be presented with the new and old program
element in question (the situation), the choice to rename either one
(alternatives), the impacted references in the rest of the program in
each case (tradeoffs), and the suggestion to rename the one with
fewer dependencies (recommendation). An extensive set of
potential problems associated with altering program elements in an
aspect-oriented environment during the refactoring can be found in
[12]. Note that the system is not changed in the planning phase, and
the analyses are instead performed the on proposed program’s
AST.

Although most decision points can be sufficiently analyzed using
existing static analysis techniques, more complicated checks may
require more sophisticated analysis methods. For instance, aspect
interference can be problematic: if a newly introduced pointcut
matches a joinpoint that is also matched by an existing pointcut,
aspect/advice ordering may have an effect on program behavior.
Unless precedence is declared, the repercussions on the system are
difficult to determine without asking the developer. Similarly,
introducing additional interfaces via the declare parents construct
can change the dynamic behavior of the system. In general,
potential problems like these are often easy to detect, but their
actual implication on the system can be hard to determine with static
analysis alone [12]. In such cases, it is often easier to present the
case as a decision point to the developer.

Although user interaction during a refactoring is not restricted to
CCC refactorings, a developer might have to make a number of
choices over the course of a complex refactoring,. Since some
choices can influence later decisions, the communication flow
between developer and supporting technology can be seen a
dialogue5. We call this form of interaction a conversation.

3.6 Code Manipulation
Once the refactoring has been planned and all of the associated
decision points in its realization have been resolved, a supporting tool
can perform the code manipulations. It follows the refactoring
description, performing the instructions on the mapped concrete
program elements. Other, non-mapped, program elements that
reference the changing portions of the program will be updated
accordingly.

4. THE REFACTORING TOOL
We have developed a tool for role -based refactoring of CCCs and
realized it as a plugin for the Eclipse IDE. Figure 7 shows an
overview of architecture of the tool.

The tool relies on three forms of representation of the program that
are derived from the source, all via existing tools. The Eclipse
parser produces two models of the program sources, an AST and
the Java Development Tools (JDT) model. We mostly rely on the
JDT model in our tool as it provides a suitable and easily accessible

5 In the traditional, non-UI sense.

interface to obtain information about program elements. The AST
representation is used only within the refactoring engine for certain
searches. The JavaDB module utilizes the AST information to
generate a database of program facts that complements the other
models6. The AutoMapper uses this database to find methods based
on their argument or return type(s), and to determine call
relationships between methods.

The AutoMapper module facilitates the mapping of role elements
onto concrete program elements. Based on one or more initial
mappings provided by the developer, it attempts to match the CCC
structure with the structure of the target program. The program
structure used comprises hierarchical relationships derived from the
ASTs and method call relationships as provided by the JavaDB
program facts database. This structural analysis generates
candidate program elements for unmapped roles. To rank multiple
candidates for a single role, we use lexical information about the
role elements stored in the abstract CCC descriptions. Lexical
information is a set of name fragments (currently just substrings)
that are likely to be used for concrete program elements playing a
particular role. For example, it is more likely that a concrete
implementation of the role method attach(Observer) has a name
containing either “add” or “attach”, than “remove”, or “detach”. If
the developer accepts one or more suggestions, the analysis starts
over, taking into account the new mappings.

Figure 7: The CCC refactoring tool architecture. Existing
software used is shown in gray.

The Refactoring Engine is responsible for planning and executing
the CCC refactorings. Each CCC refactoring is currently realized
as a set of hard coded calls to a number of elementary aspect-
oriented refactorings (see appendix). These elementary refactorings
are implemented as Eclipse refactorings; they are extensions of the
abstract Refactoring Eclipse class. When planning a
refactoring, the Refactoring Engine has each instruction checked by
the Impact Analysis module, which can reveal decision points to
present to the developer. Once all potential decision points have
been resolved, the source code is changed to reflect the refactoring
instructions. We currently realize these changes as buffer
manipulations of the affected compilation units, such as text changes

6 JavaDB is part of the FEAT tool [4].

to the Java files. We chose to use the buffer manipulation approach
because of the current flux in the components we use, specifically
AJDT7 and the Eclipse refactoring framework. The Refactoring
Engine executes all necessary code transformations to create the
target concern structure. This includes creating aspects, modifying
or removing original program elements, and updating references to
them. In a few cases, the developer might have to adjust the
created code slightly, for example when an object method is
replaced with an aspect method as this may affect scoping of
statements within the original method. These adjustments usually
have a granularity of statements rather than types or methods.

The Impact Analysis module ensures that a refactoring does not
adversely affect the rest of the system. Currently, for each
elementary refactoring, the module checks a number of
preconditions, such as ensuring that the targeted method for
Replace Method with Intertype Declaration is not protected. If a
new program element is created, the module checks the name
space to avoid conflicts with existing elements. The module
generates the appropriate conversations so that identified decision
points can be resolved by the developer.

5. JHOTDRAW STUDY
To ensure that our approach and tool are adequate to refactor
scattered CCCs in a non-trivial code base (over 240 types in 15
KLOC) not written by us, used our tool to refactor six instances of
three different design patterns in the open source JHotDraw
graphical editor framework [15]. In addition to Observer discussed
above, we investigated instances of Singleton and Template Method
[6]. In this sample, all of the CCC refactorings were behavior
preserving. However, as we described earlier (Section 2), behavior
preservation may not always be possible.

5.1 Singleton
Singleton is a simple pattern. Our description of the pattern as an
abstract CCC was based on our previous work [10]. It consists of
the role type Singleton and the role method instance(), as shown in
Figure 8. The figure also shows concrete program elements mapped
to the role elements, such as the Clipboard class mapping to the
Singleton role type.

Figure 8: The Singleton CCC structure with a sample

mapping

The CCC’s refactoring instructions were:

1. Generate an aspect to modularize the pattern

2. Change the access modifier of the singleton’s
constructors to public

7 www.eclipse.org/ajdt/

Abstract CCC
Descriptions

(XML)

Program
Sources

Refactoring
Engine

Eclipse
ParserJavaDB

Automapper

Impact
Analysis

JavaDB

AST +
JDT Model

Developer

Abstract CCC
Descriptions

(XML)

Program
Sources

Refactoring
Engine

Eclipse
ParserJavaDB

Automapper

Impact
Analysis

JavaDB

AST +
JDT Model

DeveloperDeveloperDeveloper

3. Replace calls to instance() with calls to the constructors

We refactored two instances of this pattern in JHotDraw. We
found these instances using a simple text search over the program
sources for the word “Singleton”.

The refactored instances use different variants of the pattern. One
uses a protected non-parameterized constructor and an instance()
method, as outlined in [6]. The second features a non-protected,
parameterized constructor. We determined that this variant
represented a singleton only when we found a comment explaining it
was a Singleton in the source code documentation. We assume that
the constructor was not protected to ensure that proper arguments
were passed upon generation of the singleton instance. The CCC
library refactoring instructions did cover this case and did not have
to be adjusted.

Since the structure of the CCC is minimal, we did not use auto-
mapping in this case. The type names of the original singletons did
not indicate their singleton nature, so the lexical rules did not match
in these two cases8. The refactorings of the two instances changed
three and four types, respectively, in the JHotDraw code base as it
was transformed to the AOP version.

5.2 Template Method
The Template Method CCC has the role types AbstractClass and
ConcreteClass, plus the role method templateMethod(). Figure 9
shows the CCC structure, with the mappings from a concrete
instance.

Again we scanned the sources to find an instance of the pattern and
to provide an initial partial mapping. Starting with a mapping of
abstractClass to a concrete type, the automapping properly
identified the four immediate subtypes as candidates for the
concreteClass role. We mapped the role method templateMethod
by hand as the defining characteristic (a concrete method calling
non-concrete methods) was too complex to be captured by our
automapping rules.

The library CCC refactoring involved the following instructions:

1. Create an aspect to modularize the pattern

2. For all concrete methods that the role method
templateMethod() is mapped to: Replace Method with
Intertype Declaration

3. For all fields on AbstractClass: Replace Field with
Intertype Declaration

4. If AbstractClass has no remaining members, change it
from abstract class to an interface.

5. If AbstractClass changed to an interface: For all types
that the role type ConcreteClass is mapped to: update
references to AbstractClass

In the occurrence we investigated, the concrete type playing the
abstractClass role had four fields and provided implementations for
31 methods, 10 of which are template implementations (i.e., they

8 It is conceivable to add more information to the CCC model, such

as the fact that instance() is a static method or that Singleton’s
constructor is protected and search for types matching these
criteria, so that the automapping can search the entire project for
potential refactoring candidates.

refer to abstract methods that subtypes implement). We found the
refactoring to be straightforward, although we required developer
interaction in two cases: it is not possible in AspectJ to use inter-
type declarations to declare a protected method or static fields using
that mechanism, so the developer needs to adjust the code
accordingly. For the two cases, a total of 5 and 4 types were
changed for this reason, respectively.

Figure 9: The Template Method CCC with a sample mapping

5.3 Observer
The Observer case was more complex, as the pattern has
considerably more internal structure. The CCC comprises two role
types, five role methods and one role field, as shown in figure 10.

All four instances of the pattern we investigated deviated in one or
more ways from the description in the abstract CCC. We address
the deviations in section 6.1. The necessary refactoring instructions
for this pattern were presented in section 3.4.

Figure 10: The Observer CCC with a sample mapping

In three of the four instances, we were aided in the mapping by the
AutoMapper. One instance deviated so much from the pattern
description that the CCC structure did not match the
implementation. Lexical information in the abstract CCC description
was helpful to distinguish between role methods attach and detach,
for which the structural information is identical. Some of the lexical
rules used to automap this CCC are shown below. The weights of
each matching rule are summed to determine the score of the
mapping candidate. We assigned the weights based on our
expectations of the likelihood that the rule would be indicative:

Role method attach():
w "add": weight=1
w "attach": weight=2
w "remove": weight=-1
w "detach": weight=-2
w "observer": weight=1
w "listener": weight=1

Role method notify():
w "notify" weight=3
w "change" weight=1
w "observer" weight=1
w "listener" weight=1

Role type Observer:
w "observer" weight=2
w "listener" weight=2

In total, the three instances we refactored resulted in changes to 12,
10, and 23 types, respectively.

6. DISCUSSION
We demonstrated that our proof-of-concept tool can refactor some
CCC in a non-trivial system. A number of issues remain to improve
the applicability and robustness of the approach.

6.1 Variant Implementations of CCCs
The abstract description of the CCC is intended to capture the
structural essence of several different ways to implement the CCC.
However, some implementations of a CCC may still vary enough
from the abstract definition so as not to be recognized as applicable
by a tool implementing our approach. It is an open question as to
how flexible the description of an abstract CCC should be to
capture the different variants..

The JHotDraw variants of the Observer pattern are sufficiently
diverse to discuss some of the range of implementation variants that
need to be considered. Consider these five (selected) divergences
from the pattern as documented in [6]:

1. Subject accepts only a single Observer

2. notify() role implementation appears only on concrete subjects
but not on Subject interface

3. Multiple notify() and update() methods exist within the same
pattern instance

4. the observers role field implementation is used outside of the
pattern context

5. Non-observer content is stored in the concrete observers role
field

It seems reasonable to expect the abstract CCC description to be
flexible enough to capture at least variant one and two. The fifth
variant, on the other hand, has so little in common with the original
pattern, that a separate CCC description is necessary to capture the
variant.

In the third variant, the subject provides multiple update methods for
the same set of observers, which is a special case of the push
model ([6], pp. 298). Although the structure of the pattern is similar
to the CCC pattern description, the associated refactoring
instructions did not cover this case. Since the structure is similar, the
refactoring description should likely be extended to cover this
variant.

In the fourth variant, references to the observers field from outside
the pattern context can be detected by an impact analysis; before
the field is considered for deletion, dealing with such references to it
would constitute decision points and a conversation with the
developer would be initiated.

Ideally, to keep refactoring descriptions simple, it seems better to
address as much of the variant implementation within the
refactoring engine as possible. Certain common themes in CCC
variants can be covered this way, such as a missing explicit
interface for certain design patterns. Other variants will have to be
addressed by explicitly providing multiple CCC descriptions.

More experience with a broader base of CCC as they occur in
different kinds of systems is needed to better extrapolate
commonalities with respect to implementation alternatives and to
handle those in the refactoring engine in a more general way.

6.2 Other CCC Refactorings
For this paper, we have investigated only one particular kind of
CCCs, namely design patterns. Patterns make good candidate
CCCs because many profit from an AOP implementation [10] and
they have a clear (albeit flexible) structure to leverage. In particular,
pattern elements are usually named and map cleanly to role
elements. Role-based refactoring can conceivably be applied to
restructure other CCC as well, as long as the CCC has at least
some structure. A refactoring that replaces scattered calls to a
particular method (e.g., a logging method) with an equivalent
pointcut and advice is a simple example of a non-pattern CCC
refactoring.

Similarly, the idea that complex refactorings can be planned via an
abstract description of the concern (using roles) and a set of
refactoring instructions is not restricted to OO-to-AOP refactorings.
We plan to investigate “big refactorings” [5] as future work to get
an idea of how useful the approach is for complex refactorings in
general.

6.3 Suggesting Refactorings
Currently our approach requires the developer to choose an
appropriate CCC refactoring. It is conceivable that the tool could be
extended to integrate an aspect-mining approach (see for example
[2, 26, 28], so that non-modularized CCC could be identified and
refactorings could be suggested. Current aspect mining approaches
do not use role abstractions, and picking an appropriate CCC
refactoring would still be necessary. The refactoring tool’s library of
CCC refactorings could direct mining approach, suggesting the
CCCs for which to mine.

6.4 Describing and Executing Refactorings
Refactorings are described as elemental AOP refactoring steps,
referring to the role elements identified in the CCC description.
Currently, they are hard coded calls to a library of primitive
refactorings we have developed. The declarative nature of these
descriptions suggests that a language could be developed for them.
This would allow us to perform some basic consistency checks
during parsing, and would allow the tool to reason over the language,
generating elements of the conversation structure and queries
directly from the refactoring description.

6.5 Mapping Roles
Our current model for the auto-completion of mappings between
roles and concrete program elements uses both structural and
lexical information. This approach has made the mapping step
tractable for the examples we have investigated. However, we may
be able to improve this step by using semantic information about the
internals of role elements, in particular role methods. For example,
we know that within the scope of the attach(Observer) method in
the Observer pattern, the argument object has to be added to some
sort of data structure. In other words, a candidate method whose
scope contains calls to an add(..), put(..), or insert(..) method of an
aggregate data structure is a more likely candidate than one whose
scope does not. This additional information could be used to rank
candidate matching methods and to suggest likely matches to the
developer.

We did consider using a subgraph-matching approach as utilized in
[1], but this did not provide us with feedback on the level of single
program elements, making it difficult to combine it with other
analyses and utilizing the lexical information available.

6.6 Preservation of Behavior vs. Intent
As mentioned in section 2.4, some transformations may result in
minor behavior variations to the code base. In such cases,
preservation of intent takes the role of the (for traditional
refactorings integral) preservation of behavior, in the sense that the
transformation preserves the overall requirements of the system, but
may change the semantics of the program locally.

As the impact analysis should point out any behavior variations to
the developer, it is usually possible to avoid behavior implications by
adjusting or relaxing the original CCC implementation before
performing the refactoring. The tradeoffs are obvious: such initial
refactorings require knowledge of the problem and additional effort,
while otherwise the behavior of the system might vary slightly.
Further analysis of cases that do not preserve behavior is future
work

7. CONCLUSIONS
Transforming a scattered implementation of a crosscutting concern
into a modular AOP implementation requires many changes to the
code. In this paper, we have introduced an approach for refactoring
CCCs based on roles. The roles allow the abstract description of the
CCC; without this abstraction, each time a similar scattered
implementation of a CCC appears in the code for a system, a
refactoring would have to be built from scratch. We have shown
that the approach is viable for non-trivial code by using our tool to
refactor instances of three different design pattern CCCs in the
JHotDraw graphical editing framework.

8. ACKNOWLDGEMENTS
This research was funded by NSERC and by IBM. We would like
to thank Jonathan Sillito and the referees for their comments on
drafts of this paper.

9. REFERENCES
[1] Baniassad, E. Design Pattern Rationale Graphs: Linking

Design to Source. PhD Dissertation, University of British
Columbia, Canada, 2002.

[2] van Deursen, A., Marin, M., and Moonen L. Aspect Mining
and Refactoring. First International Workshop on
REFactoring: Achievements, Challenges, Effects (REFACE
‘03), at 10th Working Conference on Reverse Engineering
(WCRE ’03), Victoria, BC, Canada, 2003.

[3] Feature Exploration and Analysis Tool. Web site.
www.cs.ubc.ca/labs/spl/projects/feat

[4] Ferrante, J., Ottenstein, K. J., and Warren, J. D. The Program
Dependence Graph and its Uses in Optimization. In ACM
Transactions on Programming Languages and Systems ,
3(9): pp.319—349, July 1987.

[5] Fowler, M. Refactoring – Improving the Design of Existing
Code. Addison-Wesley, Boston, MA, 2000.

[6] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns – Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

[7] Griswold, W. G. Program Restructuring as an Aid to
Software Maintenance. Ph.D. Thesis and Technical Report
91-08-04, University of Washington, WA, 1991.

[8] Hanenberg, S., Oberschulte, C., and Unland, R.. Refactoring
of Aspect-Oriented Software. NetObject Days. Erfurt,
Germany, 2003.

[9] Hanenberg, S., Unland, R. Roles and Aspects: Similarities,
Differences, and Synergetic Potential, In: Proceedings of the
8th International Conference on Object-Oriented
Information Systems, pp. 507 – 520, LNCS Volume 2425 /
2002. Springer-Verlag, London, UK, 2002.

[10] Hannemann, J. and Kiczales, G. Design Pattern
Implementation in Java and AspectJ. In Proceedings of the
17th Annual ACM conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA ‘02), pp. 161-173. Seattle, WA, November 2002.

[11] Hannemann, J., Fritz, T., Murphy, G. Refactoring to Aspects –
an Interactive Approach. Eclipse Technology eXchange (ETX)
Workshop at OOPSLA 2003.

[12] Hannemann, J., Chitchyan, R., and Rashid, A. Report on the
Workshop on Analysis of Aspect-Oriented Software. In:
Object-Oriented Technology: ECOOP 2003 Workshop
Reader, pp. 154 - 164. Buschmann, F., Buchmann, A. P.,
Cilia, M. A. (Editors). LNCS Volume 3013 / 2004. Springer-
Verlag, Heidelberg, Germany, 2004.

[13] Hilsdale, E., Hugunin, J. Advice Weaving in AspectJ. In
Proceedings of the 3rd International Conference on
Aspect-Oriented Software Development (AOSD ‘04), pages
26-35. Lancaster, UK, 2004.

[14] Iwamoto M. and Zhao, J. Refactoring Aspect-Oriented
Programs, 4th AOSD Modeling With UML Workshop, at
UML '03, San Francisco, CA, October 2003.

[15] JHotDraw open source project. Web site. www.jhotdraw.org

[16] Kendall, E. A. Role Model Designs and Implementations with
Aspect-oriented Programming. In Proceedings of the ACM
conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ‘99), pages 353-369.
Denver, CO, 1999.

[17] Kiczales, G., Lamping, J., Mendhekar, A., Maede, C., Lopes,
C., Loingtier, J.-M., Irwin, J. Aspect-Oriented Programming.
In Proceedings of the 11th European Conference on
Object-Oriented Programming (ECOOP ’97), pages 220-
242. Jyväskylä, Finland, 1997.

[18] Kiczales, G., Hilsdale, E., Hugunin, J, Kersten, M, Griswold,
W. G., An Overview of AspectJ. In Proceedings of the 15th
European Conference on Object-Oriented Programming
(ECOOP ’01), LNCS Volume 2072 / 2001, pp. 327-353.
Springer Verlag, 2001.

[19] Laddad, R. Aspect-Oriented Refactoring Series. Part 1 and 2.
The Server Side, 2003. http://www.theserverside.com/

[20] Lieberherr, K., Lorenz, D.H., and Mezini, M. Programming
with Aspectual Components. Technical report NU-CCS-99-01,
College of Computer Science, Northeastern University,
Boston, MA, 1999.

[21] Lieberherr, K., Lorenz, D.H., and Ovlinger, J. Aspectual
Collaborations: Combining Modules and Aspects. In The
Computer Journal, volume 46, issue 5: pp. 542-565, Oxford
University Press, 2003.

[22] Masuhara, H. and Kiczales, G. Modeling Crosscutting in
Aspect-Oriented Mechanisms. In Proceedings of the 17th
European Conference on Object-Oriented Programming
(ECOOP ’03), pp. 2-28. Darmstadt, Germany, 2003.

[23] Monteiro, M. P., Fernandes, J. M. Object-to-Aspect
Refactorings for Feature Extraction. Industry track paper at
the 3rd International Conference on Aspect-Oriented Software
Development. Lancaster, UK, 2004.

[24] Opdyke, W. F. Refactoring Object-Oriented Frameworks.
PhD Dissertation, University of Illinois, IL, 1992.

[25] Robillard, M. P., and Murphy, G. C. Concern Graphs: Finding
and Describing Concerns Using Structural Program
Dependencies. In Proceedings of the 24th International
Conference on Software Engineering (ICSE ’02), pp. 406-
416. Orlando, FL, 2002.

[26] Shepherd, D., and Pollock, L. Ophir: A Framework for
Automatic Mining and Refactoring of Aspects. Technical
Report No. 2004-03. Dept. of Computer & Information
Sciences, University of Delaware, Newark, DE, 2003.

[27] Tamai, T., Ubayashi, N. and Ichiyama, R. An Adaptive Object
Model with Dynamic Role Binding. To appear in Proceedings
of the International Conference on Software Engineering
(ICSE ’05), St. Louis, MO, 2005.

[28] Tonella, P., and Ceccato, M. Aspect Mining though the Formal
Concept Analysis of Execution Traces. IRST Technical
Report, May 2004.

[29] Wloka, Jan. Refactoring in the Presence of Aspects. 13th
Workshop for PhD Students in Object-Oriented Systems
(PhDOOS), at ECOOP ‘03, Darmstadt, Germany, 2003.

10. Appendix
To date, we have used the following aspect-oriented refactorings in
the CCC refactorings we have investigated

w Create Subaspect: creates a concrete subaspect from an
existing abstract aspect. We used this primitive when a
reusable AOP pattern implementation in the form of a library
aspect was available

w Add Internal Interface: most reusable AOP pattern
implementations utilize empty interfaces internally to provide a
primitive form of typing. This refactoring adds an aspect-
defined interface to a concrete type in the system.

w Replace Object Method with Aspect Method: replaces a
non-static method on a type with a static method on an aspect.
This involves adding a parameter representing the target object
of the original call.

w Replace Method Call with Pointcut and Advice: generates a
pointcut and advice code that replaces explicit calls to a given
method.

w Replace Method with Intertype Method Declaration:
removes a method from a type and creates an appropriate
inter-type declaration for it.

w Replace Field with Intertype Field Declaration: as above,
but for fields.

A list of 24 aspect-oriented refactorings is proposed in [14], some of
which are confirmed by our findings. A detailed comparison is not
possible without a more complete description of the refactorings in
[14]. Besides differences in their naming, we further confirmed Add
Internal Interface, Replace Method with Intertype Method
Declaration, and Replace Field with Intertype Field
Declaration. The latter two are also mentioned in [23].

