
Using Visual Momentum to Explain Disorientation in the Eclipse IDE

Brian de Alwis and Gail C. Murphy

Dept of Computer Science, University of British Columbia
E-mail:{bsd,murphy }@cs.ubc.ca

Abstract

We report on a field study about how software developers
experience disorientation when using the Eclipse Java inte-
grated development environment. We analyzed the data us-
ing the theory of visual momentum, identifying three factors
that may lead to disorientation: the absence of connecting
navigation context during program exploration, thrashing
between displays to view necessary pieces of code, and the
pursuit of sometimes unrelated subtasks.

1. Introduction

Several software developers have informally reported to
us occasions of becominglost or disorientedwhen explor-
ing a system’s source code. The disorientation occurs when
developers lose the context or relevancy of their recent ac-
tions to their overall goal.

The research literature includes only passing references
to disorientation during software development tasks (e.g.,
[1, 3, 14]), usually describing it either as a ‘loss of con-
text’ or ‘getting lost.’ Several tools appeal to preserva-
tion of context to argue the effectiveness of their tech-
niques [6, 9, 13], although their evidence provides only
indirect substantiation of this claim. The few studies that
focus on a developer’s interactions with their development
tools have either considered only relative novices working
on small programs [11], or only assessed developers’ tool
usage patterns [12] or their high-level satisfaction with sev-
eral tools [10] without any attempt to investigate reported
areas of dissatisfaction. Thus, despite acknowledgement of
the problem, there are as yet no studies reported which in-
vestigate how and when disorientation occurs for software
developers.

To help address this gap, we conducted an exploratory
field study. We observed and interviewed eight developers
from the Eclipse Project as they conducted their normal de-
velopment work using the Eclipse Java Development Tool-
ing, a popular state-of-the-practice open-source integrated
development environment (IDE) for Java. We also inter-
viewed two otherIBM developers who used Eclipse, but
who were working on a closed-source system. These expert

developers were working on their normal tasks on a large
software system.

Our qualitative study sought to answer two questions:
(Q1) Do expert developers become disoriented? Or is dis-
orientation only a phenomenon suffered by novices or new-
comers? (Q2) Are there factors of the development envi-
ronment that exacerbate or prevent disorientation, or aid in
recovery from disorientation? Half of the developers ob-
served did become disoriented during the study, and follow-
up interviews revealed that eight of the ten developers had
become disoriented on previous occasions. We examined
patterns of complaints about the Eclipse user interface (UI)
using visual momentum[16] to identify factors that con-
tribute to the disorientation. Our analysis supports previous
recommendations in the literature for designing IDEs, and
suggests the usefulness of visual momentum in analyzing
the effects ofUIs.

Although we did not find disorientation to be a fre-
quently occurring phenomenon, we believe it can have sig-
nificant impact on a developer because of the time and effort
required to recover from disorientation. Understanding the
causes of disorientation during development tasks, and how
it can be prevented, may improve the effectiveness of soft-
ware developers.

1.1. Visual Momentum

Software development tasks generally require correlat-
ing information gleaned from differentdisplays, referring to
content displayed on a part of the computer screen at some
particular time. To explain our study observations, we use
a heuristic measure for evaluating the ability of a user in-
terface to alleviate or prevent disorientation, namedvisual
momentum[16]. This concept was inspired by techniques
used in cinematography and synthesized from findings and
guidelines identified by cognitive psychology and interface
design.

Visual momentum is a qualitative measure of a user’s
ability to extract relevant information across displays. In-
terfaces with low momentum are essentially serial displays,
where each display is perceptually independent of both its
prior and subsequent displays, thus requiring the user to
carry the mental burden of transitioning and reorienting be-

tween each display, and possibly leading to disorientation.
Interfaces with high visual momentum aid in coordinating
the information displayed; users are able to focus on their
task and are not concerned with managing the interface.
Watts-Perotti and Woods [15] suggest a number of tech-
niques to improve visual momentum.

2. Study format

The field study was conducted atIBM Canada’s Ottawa
Software Laboratory in the two weeks prior to the M8 mile-
stone release of Eclipse 3.0. Of the ten participants, eight
were active developers of the Eclipse Platform (referred to
as P1–P8), and the other two were former Eclipse Platform
developers (referred to as E1,E2) now developing a closed-
source system. All participants normally use Eclipse for
Java development. Although the participants worked on the
Eclipse Platform, none were from the teams responsible for
developing the actual Eclipse Java Development Tooling.
We chose this population to eliminate the possibility of dis-
orientation occurring because of novice effects (Q1). We
chose to examine Eclipse because of its popularity and be-
cause the Eclipse Project had previously undertaken an ef-
fort to address suspected factors relating to complaints of
disorientation [2].

We observed P1–P8 separately for two hours each as
they pursued their normal development tasks, collecting
video tapes, screen captures, and detailed notes. We were
unable to observe E1,E2 at work due to confidentiality con-
cerns. We also conducted semi-structured interviews: a
brief interview was conducted after one hour to ask about
the developer’s progress and current approach, and a longer
interview took place at the end of the session to obtain more
detail. This study design allowed us to stress realism, an
important consideration as we assumed disorientation was
more likely to occur as developers work on larger systems
in their actual work environment.

During the interviews participants were asked about their
program navigation approach, tools used, difficulties they
encountered, and specifics of their chosen change tasks.
Only towards the conclusion of the final interview were
the participants asked outright if they had experienced any
episodes of lostness during the session, and for specific
details. All interviews were taped and subsequently tran-
scribed word for word, including features such as pauses
and inflection.

Our analysis in brief involved analyzing the interview
transcripts and field notes to identify difficulties described
in using the Eclipse user interface, correlating them with
the screen captures. The screen captures were analyzed to
gather information on how developers use features of their
development tools or other applications, including count-
ing the number of transitions between Eclipse windows and
other applications such as e-mail readers or web browsers,
as well as the number of times where there was a total re-

placement of content—where information in a window be-
came completely obscured. We then used visual momentum
to assess the situations around the occurrences of disorien-
tation.

3. Overview of study results

The developers observed chose what they believed
would be relatively small to medium tasks, able to be com-
pleted in a day: none were observed to have modified more
than 25 files or classes during the study period. The first
three rows of Table 1 describe the tasks performed: whether
they were working on code they had written, the number of
files modified during the study, and whether they had been
interrupted by others during the study.

During the study, four of the eight developers either re-
ported (P2,P8) or were observed (P4,P6) becoming disori-
ented. The follow-up interviews revealed that eight of the
ten developers had experienced disorientation on previous
occasions. The fourth and fifth row of Table 1 summarize
which subjects experienced disorientation. A value ofrep in
the row labelled‘Disoriented in study?’that disorientation
was self-reported during the interview; a value ofobs in-
dicates that evidence of disorientation was observed by the
researcher. The following row, labelled‘Disoriented previ-
ously?’, refers to a developer self-reporting having experi-
enced disorientation in their past.

We asked each developer whether he felt supported by
Eclipse, and whether he customized Eclipse’s appearance
beyond setting predefined preferences. Only four of the de-
velopers customize Eclipse’s appearance in terms of tool
layouts (e.g., an Eclipse view or plug-in). Most of the
developers felt that the tools generally provided just the
right amount of information (P1,P2,P5,P7,P8) – or even
too much (E1, who used a minimal setup so as to avoid
distractions). Most developers ran Eclipse as a single win-
dow maximized to occupy the full screen. The final row de-
scribes the amount ofthrashingobserved; this is described
in more detail in Section 4.2.

Developers also spent time on other related tasks during
the study period, such as responding to queries from users
and other developers via e-mail, instant messaging, visits
by other developers, and triaging and responding to prob-
lem reports. These other tasks were often interleaved dur-
ing down-time, such as occurred during builds, waiting for
Eclipse to start, or when fetching and committing files to
or from the version control system. Although not formally
verified, many of the e-mails received seemed to pertain to
e-mails generated in response to changes to problem reports
(P1,P3).

4. Analysis of study results

Eclipse provides many features that support high visual
momentum, such as overlays of related information (e.g.,

Table 1. General summary of observations and responses.
P2 P8 P6 P4 P1 P3 P5 P7 E1 E2

Modifying own code? 75% 50% no yes yes yes yes yes shared shared
Files modified 5 8 25 6 1 13 2 2 – –

Interrupted? yes yes yes yes yes no no no – –

Disoriented in study? rep rep obs obs – – – – N/A N /A
Disoriented previously? yes yes yes yes yes yes no no yes yes

Feels supported by Eclipse? no yes yes no yes yes yes yes yes yes
Customizes Eclipse yes yes no no no yes no no yes no

Runs Eclipse full-screen no yes yes no yes no yes no no –

Thrashing high high high med low med med med – –

problem markers), bookmarks, and overview bars. From
our observation and comments in interviews, these non-
obscuring information presentation techniques were used
and appreciated by developers. However, through our anal-
ysis, we identified three factors contributing to the Eclipse
UI becoming a set of serial displays, which may lead to de-
veloper disorientation.

4.1. Absence of connecting navigation context

The first factor identified pertains to a lack of connect-
ing context when switching between files. This problem
occurred most often during program exploration, as devel-
opers follow program relationships to understand or assess
parts of the source code.

Eclipse supports many sophisticated program navigation
traversals such as finding all callers of a method, all refer-
ences to a field, or the declaration of a class. Many such
functions are tied to hot-keys, meaning that they can be in-
voked with little effort, enabling rapid descents through a
call chain. All developers that we observed made use of
these program navigation operations.

These rapid descents led to a flurry of different files be-
ing examined, causing many interface changes as the differ-
ent views recontextualize themselves to the changing files.
There is rarely any visible connection as to how the devel-
oper came to the current file, and the developer must in-
stead remember the connections or rebuild them, which can
be difficult. Thus each file switch isperceptually indepen-
dent from the previous: this is what is meant by low vi-
sual momentum. Eclipse’s editor tabs are inadequate for re-
orienting as they are not maintained in most recently used
order.

These issues explain the behaviour observed of P5 and
P6, both of whom would periodically clear their open-file
lists of unimportant files during a long period of source ex-
ploration. This periodic clearance ensured their file lists
contained only those files relevant to their task.

4.2. Thrashing to view necessary context

The second factor identified pertains to an inability to si-
multaneously view all the information necessary for a task.

Developers complained about not being able to see more
of the surrounding context of the source code being viewed,
and P2,P3,E1 customized their Eclipse window layouts to
increase available screen space for source code. But given
the sizes of these large systems, developers are effectively
limited examining the system as a whole through a limited
keyholeview [15]. As a result, developers must frequently
switch between displays, maintaining relevant information
in their working memory. P2,P4,P8 were observed to re-
peatedly scroll and jump both between and within files to
correlate content from several windows or files. This fre-
quent switching indicates low visual momentum.

We use the termthrashing[7] to refer to frequent and
recurring switching. We assigned a subjective rating of the
thrashing exhibited by each participant (Table 1), withlow
indicating little to no thrashing,med for some thrashing,
andhigh for wild thrashing.1 Note that developers who ex-
hibited high degrees of thrashing also reported or were ob-
served being disoriented. The switching generally involved
switching between files in Eclipse, or between Eclipse and
either their problem reporting system or their e-mail ap-
plication to record information. The thrashing generally
occurred when they appeared to forget information to be
copied across, and had to return to the original source.

One potential way to avoid thrashing is to use more than
one window. P4 was the only developer observed to use
more than one Eclipse window, but his two windows were
nearly completely overlapping and were used instead to

1This subjective measure was assessed after counting the number of
transitions between Eclipse editors and other applications, as well as the
number of times where there was a total replacement of content. We did
not incorporate a measure of time nor did we take into account the context
to eliminate false positives. For example, some developers would process
e-mail while waiting for a regression test pass to complete; although this
would technically result in total or near-total replacement, it was not a
genuine switch as the old information was not being carried forward.

manage different aspects of his work, rather that provide
complementary information. This developer still exhibited
a medium degree of thrashing as a result.

4.3. Pursuit of digressions

The third factor we identified involved the absence of
support for managing developers’ switches in work. These
switches occur at a lower-level than those between working
spheres as noted by [5].

We found developers often managing several tasks at any
particular moment. Some tasks are suspended to pursue
subtasks, called anembedded digression[4]. These digres-
sions are usually related to the task: for example, attending
a problem report may require some exploration to view the
implications of a change. Some digressions may become
more substantial or spawn further digressions: we observed
P1 and P8 fixing or diagnosing bugs, and what were ex-
pected to be five minute jobs took more than an hour and a
half.

Developers were observed to pursue embedded digres-
sions without recording the task they had suspended. Be-
cause Eclipse had no knowledge of this digression, the de-
velopers had to remember to resume their suspended task,
which is known to be unreliable [8]. If the environment had
high visual momentum, the displays associated with a com-
mon task would be perceptually tied and displays related
to other tasks would appear perceptually independent, such
that a developer will be able to discern whether a particular
display pertains to their current subtask or original task.

5. Conclusions

This paper provides an initial examination of the phe-
nomenon of disorientation in software development, and
confirms that disorientation affects expert developers (Q1).
Using visual momentum, we have identified three factors
in the EclipseUI that we believe lead to the environment
becoming a series of perceptually independent display that
contribute to inducing disorientation (Q2):

1. the absence of connecting navigation context during
program exploration,

2. thrashing between displays to view necessary pieces of
code, and

3. the pursuit of sometimes unrelated subtasks.

Although the occurrences described in this paper are spe-
cific to Eclipse, we believe an understanding of how disori-
entation occurs can lead to better ways to manage or prevent
the disorientation across a variety of development tools.

Acknowledgments. Thanks are owed to our study partic-
ipants, and to Elisa Baniassad for helpful comments on an
earlier version of this paper. This research has been sup-
ported byNSERCandIBM .

References

[1] R. K. Bellamy and J. M. Carroll. Restructuring the
programmer’s task.Int. J. Man-Mach. St., 37:503–527,
1992.

[2] T. Creasy. Request for comments: Loss of context. Online
document:http://dev.eclipse.org/viewcvs/
index.cgi/˜checkout˜/platform-ui-home/
loss-of-context/Proposal.html , Nov. 2001.

[3] R. DeLine, M. Czerwinski, and G. Robertson. Easing
program comprehension by sharing navigation data. In
Proc. IEEE Symp. on Visual Lang. and Human-Centric
Comput. (VLHCC), pages 241–248, Sept. 2005.

[4] C. L. Foss. Tools for reading and browsing hypertext.
Inform. Process. and Manag., 25(4):407–418, 1989.

[5] V. M. González and G. Mark. “Constant, constant,
multi-tasking craziness”: managing multiple working
spheres. InProc. Conf. on Human Factors in Computing
Systems (CHI), pages 113–120, Apr. 2004.

[6] W. G. Griswold, J. J. Yuan, and Y. Kato. Exploiting the map
metaphor in a tool for software evolution. InProc. Int.
Conf. Softw. Eng. (ICSE), pages 265–274, Mar. 2001.

[7] D. Henderson Jr., Austin and S. K. Card. Rooms: The use
of multiple virtual workspaces to reduce space contention in
a window-based graphical user interface.ACM Trans. Gr., 5
(3):211–241, 1986.

[8] D. Herrmann, B. Brubaker, C. Yoder, V. Sheets, and A. Tio.
Devices that remind. In F. T. Durso et al., editors,Handbook
of Applied Cognition, pages 377–407. Wiley, 1999.

[9] D. Janzen and K. De Volder. Navigating and querying code
without getting lost. InProc. Conf. Aspect-Oriented Softw.
Dev. (AOSD), pages 178–187, 2003.

[10] R. B. Kline and A. Seffah. Evaluation of integrated software
development environments: Challenges and results from
three empirical studies.Int. J. Hum.-Comput. St., 63(6):
607–627, Dec. 2005.

[11] A. J. Ko, H. H. Aung, and B. A. Myers. Eliciting design
requirements for maintenance-oriented IDEs: A detailed
study of corrective and perfective maintenance tasks. In
Proc. Int. Conf. Softw. Eng. (ICSE), pages 126–135, 2005.

[12] G. C. Murphy, M. Kersten, and L. Findlater. How are Java
software developers using the Eclipse IDE?IEEE Software,
(to appear), July/Aug. 2006.

[13] M.-A. D. Storey, F. D. Fracchia, and H. A. M̈uller.
Cognitive design elements to support the construction of a
mental model during software visualization.J. Softw. &
Systems, 44(3):171–185, 1999.

[14] O. Turetken, D. Schuff, R. Sharda, and T. T. Ow.
Supporting systems analysis and design through fisheye
views. Commun. ACM, 47(9):72–77, Sept. 2004.

[15] J. Watts-Perotti and D. D. Woods. How experienced users
avoid getting lost in large display networks.Int. J.
Hum.-Comput. Int., 11(4):269–299, 1999.

[16] D. D. Woods. Visual momentum: A concept to improve the
cognitive coupling of person and computer.Int. J.
Man-Mach. St., 21:229–244, 1984.

http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-ui-home/loss-of-context/Proposal.html
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-ui-home/loss-of-context/Proposal.html
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-ui-home/loss-of-context/Proposal.html

	1 Introduction
	1.1 Visual Momentum

	2 Study format
	3 Overview of study results
	4 Analysis of study results
	4.1 Absence of connecting navigation context
	4.2 Thrashing to view necessary context
	4.3 Pursuit of digressions

	5 Conclusions
	References

