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Level Set Methods

 Numerical algorithms for dynamic implicit surfaces
and Hamilton-Jacobi partial differential equations
* Applications Iin
— Graphics, Computational Geometry and Mesh Generation
— Differential Games
— Financial Mathematics and Stochastic Differential Equations
— Fluid and Combustion Simulation
— Image Processing and Computer Vision
— Robotics, Control and Dynamic Programming
— Verification and Reachable Sets

01 June 2005 lan Mitchell, UBC Computer Science



Implicit Surface Functions

« Surface S(t) and/or set G(t) are defined implicitly by an
Isosurface of a scalar function @(z,t), with several benefits

— State space dimension does not matter conceptually
— Surfaces automatically merge and/or separate
— Geometric quantities are easy to calculate

o R*" xR =R
G(t) ={z € R" | ¢(x,t) < 0}
S(t) = 0G(t) = {x € R" | ¢(x,t) = 0}
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Implicit Surface Benefits

 Easy to represent a variety of shapes

« Unified framework for many types of motion

« Surface parameters easily approximated

» Topological changes are automatic

» Conceptual complexity independent of dimension
e Easy to visualize

« Easy to implement (?)
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Hamilton-Jacobi Equations

Dip(x,t) + G(x,t, 0, Vi, D2p) = 0

©(x,0) = g(x) bounded and continuous

Gz, t,r,p,X) < G(x,t,s,p,Y), ifr<sand Y <X

 Time-dependent partial differential equation (PDE)
— With second derivative terms: degenerate hyperbolic PDE

* In general, classical solution will not exist
— Viscosity solution ¢ will be continuous but not differentiable

 For example, classical Hamilton-Jacobi-Bellman
— Finite horizon optimal cost leads to terminal value PDE

T
p(z(t),t) = min [g(fﬁ(T)) +/ t(z(s),u(s))ds
uw(-) t

Dip(a,t) + min [Ve(z, 6) - f(z,u) + £(z,u)] = 0
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Viscosity Solution

 Well defined weak solution of HJ PDE

— Limit of vanishing viscosity solution, where it exists
— Kinks form where characteristics cross

 Example

Dip(x,t) + (1 — br(x,1))[[Vo(z, t)|| = O
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he Toolbox: What Is It?

e A collection of Matlab routines for level set methods
— Fixed Cartesian grids
— Arbitrary dimension (computationally limited)
— Vectorized code achieves reasonable speed
— Direct access to Matlab debugging and visualization
— Source code is provided for all toolbox routines

* Underlying algorithms
— Solve various forms of Hamilton-Jacobi PDE
— First and second spatial derivatives
— First temporal derivatives
— High order accurate approximation schemes
— EXxplicit temporal integration
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he Toolbox: What Can It Do?

0 =Dip(x,t) temporal derivative

+ v(x,t) - Vo(x,t) convection
+ a(z,t)||Vo(x,t)|| normal motion
+ sign(¢(x,0))(||Vé(x,t)|| — 1) reinitialization
+ H(x,t, ¢, Vo) general HJ
— bz, t)k(z,t)||Vo(x,t)] mean curvature
— trace[L(ac,t)D%qb(a:,t)R(w,t)] stochastic DEs
+ Az, t)p(x, t) discounting
+ F(x,t, ), forcing

Dip(x,t) > 0, Dip(x,t) <O, growth constraints

o(x,t) <(x,t), o(x,t) > 1YP(x,t), masking constraints

¢ . R™ — R™ vector level sets
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Convective Flow

* Motion by externally generated velocity field

Dig(x,t) +v(x,t) - Vo(z,t) =0

 Example: rigid body rotation about the origin
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Dimensionally Flexible

e Core code is dimensionally independent
— Cost in memory and computation is exponential
— Visualization in dimensions four and above is challenging
— Dimensions one to three are quite feasible
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Motion in the Normal Direction

* Motion by externally generated speed function

Dip(z,t) + alz,1)[|[Vé(z, )| = 0
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Reinitialization Equation

* Returning the gradient to unit magnitude

($(,t) + sign(e(z, 0)) (| Vé(a, 1) — 1) =
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General Hamilton-Jacobi

 Motion may depend nonlinearly on gradient

thb(xat) + H(Cl?,t, ng(a:,t)) =0

 Example: rigid body rotation about the origin
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General Hamilton-Jacobi
Diop(x,t) + H(x,t,Vo(z,t)) =0
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Dip(x,t) — b(x,t)r(xz, t)[|¢(z, )|| = O

shrinking spiral
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Motion by Mean Curvature

* Interface speed depends on its curvature «
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Combining Terms

« Terms can be combined to generate complex but accurate
motion

— Example: rotation plus outward motion in normal direction

t=0 t=0.125

t=0.25
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Constraints on Function Value

convective motion to the right
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* Level set function constrained by user supplied implicit surface
function
— Example: masking a region of the state space
o(x,t) <P(x) ¢z, t) > P (x)
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Constraints on Temporal Derivative

« Sign of temporal derivative controls whether implicit set can
grow or shrink

 Example: reachable set only grows

2 t=0
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dt [y] P [_1] + R [—x] 7 J TSP R NI H—
+ 2We min (\/372+y2,5)a L i 011 et 11101111 |
0¢- l v
CLERQ,HCLH <1 | i 5
be[-1,+1] 1 R LT
Wp,We, R, S constant | - | -
. | 2 0 5 A

01 June 2005 lan Mitchell, UBC Computer Science 18



t=0.25

Stochastic Differential Equations (v1.1)
» |t0 stochastic differential equation
dz(t) = f(z(t),t)dt + o(x(t),t)dB(t)
 Kolmogorov or Fokker-Planck equation for expected outcome
D + fTVqS — %trace [aaTDggb} =0
— Example: linear DE with additive noise
f(x,t) = ax, o(x,t) =bwherea=1, b=0.1

value

final state mean final state variance
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Open Curves by Vector Level Sets (v1.1)

 Normal level set methods can only represent closed curves
* Evolve two level sets in unison to represent an open curve [

Do — sign(v) [Asign(y)k(¢) — 1] |[Vé| =0
Dyp —sign(¢) [Asign(¢)k(y) + 1] |[Vy| =0

M(t) = {:c| O(x,t) = 0A ¢=(m,t) > 0}
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Continuous Reachable Sets

e Nonlinear dynamics with
adversarial inputs

Dip(z,t) + min [0, H(z, Vé(z,t))] =0

H(x,p) = maxm n[p f(x,a,b)]

A
d _ajl_ vy + vp COS 3 + CLCUQ_
— |z | = vp SiN x3 — axq
at r3 ] b—a |
— f(x7 a’? b)

ace A= [-1,+1]
be B=[-1,41]
Va, Vp CONStant
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Hybrid System Reachable Sets

e Mixture of continuous and discrete dynamics
switch condition:

discrete control input switch condition:
initiating maneuver t=om
straightl straight2
T = fs(x) g T = fs(x)
s state reset: state reset: s
Rotate x clockwise 90° Rotate x clockwise 90°

20

151

Vg SIN Yy

fu(2) = [—va + v, COS Yy

Vo SIN Yy — wxq

Fu(z) = [—va -+ vp COS Y + wwgl |

Va, Vp, Yr,w Cconstant

set of states leading to collision ™|
whether maneuver is initiated or not -
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Constructive Solid Geometry

o Simple geometric shapes have simple algebraic
iImplicit surface functions
— Circles, spheres, cylinders, hyperplanes, rectangles

o Simple set operations correspond to simple
mathematical operations on implicit surface functions
— Intersection, union, complement, set difference
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High Order Accuracy

« Temporally: explicit, Total Variation Diminishing
Runge-Kutta integrators of order one to three

o Spatially: (Weighted) Essentially Non-Oscillatory
upwind finite difference schemes of order one to five
— Example: approximate derivative of function with kinks
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Other Available Examples
e Hybrid Systems Computation & Control

— Mitchell & Templeton (2005)

— Stationary HJ PDE for minimum time to
reach or cost to go

— Stochastic hybrid system model of
Internet TCP transmission rate

» Journal of Optimization Theory &
Applications

— Kurzhanski, Mitchell & Varaiya (to
appear 2006)

— State constrained optimal control

aaaaaaaa

medium files
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he Toolbox: How to Use It

e Cut and paste from existing examples
* Most code is for initialization and visualization

h 2

4

Cartesian grid

| | boundary conditions
(periodic, Dirichlet, Neumann, extrapolated

)

basic shapes

4

initial conditions

A

(sphere, cylinder, hyperplane )

constructive solid geometry

(union, intersection, complement )

integrators .
(explicit TVD RK order 1-3 )

(eg. masking )

*

term approximation(s)
(convection, mean curvature, general HJ, forcing, su

term parameters

m, etc.) (dissipation )

5
I

spatial derivatives

4

upwinded first

v

(minmod / ENO / WENO order 1-5 )
1 centered second
(curvature & Hessian order 2 )
visualization
(contour, isosurface, etc ) Toolbox supplied Matlab supplied

01 June 2005 lan Mitchell, UBC Computer Science 26




Future Work

e Algorithms
— Implicit temporal integrators
— Fast methods for stationary Hamilton-Jacobi
— General boundary conditions
— Other numerical Hamiltonians
— Monotone schemes for second derivatives
— ENO /WENO function value interpolation
— Particle level set methods
— Adaptive grids
 More application examples
— Surfaces of codimension two
— Hybrid system reachable sets and verification
— Path planning for robotics
— Image processing, financial math, fluid dynamics, etc.
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he Toolbox is not a Tutorial

 Users will need to read the literature

e Two textbooks are available
— Osher & Fedkiw (2002)
— Sethian (1999)

Rpplied
Mathematical
St cranley Osher
153 Ronald Fedkiw

Evalving Iaterfaces in Compatational beomerry,
Level Set Methods and : Floid Mechanics, Compater Vision, and Materials Sivnee
Dynamic Implicit Surfaces
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he Toolbox: Why Use It?

* Dynamic implicit surfaces and Hamilton-Jacobi
equations have many practical applications

* The toolbox provides an environment for exploring
and experimenting with level set methods
— Fourteen examples
— Approximations of most common types of motion
— High order accuracy
— Arbitrary dimension
— Reasonable speed with vectorized code
— Direct access to Matlab debugging and visualization
— Source code for all toolbox routines

e The toolbox is free for research use
http://ww. cs. ubc.ca/~mtchel |/ Tool boxLS
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