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Level Set Methods
• Numerical algorithms for dynamic implicit surfaces 

and time-dependent Hamilton-Jacobi / degenerate 
parabolic partial differential equations

• Applications in
– Graphics, Computational Geometry and Mesh Generation

– Differential Games

– Financial Mathematics and Stochastic Differential Equations
– Fluid and Combustion Simulation

– Image Processing and Computer Vision

– Robotics, Control and Dynamic Programming

– Verification and Reachable Sets
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Implicit Surface Functions
• Surface S(tttt) and/or set G(tttt) are defined implicitly by an 

isosurface of a scalar function ϕϕϕϕ(tttt,xxxx), with several benefits
– State space dimension does not matter conceptually

– Surfaces automatically merge and/or separate
– Geometric quantities are easy to calculate
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Implicit Surface Benefits
• Easy to represent a variety of shapes

• Unified framework for many types of motion

• Surface parameters easily approximated
• Topological changes are automatic

• Conceptual complexity independent of dimension

• Easy to visualize

• Easy to implement (?)

shrinking dumbbell contour slice through midplane
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“Hamilton-Jacobi” Equations

• Time-dependent partial differential equation (PDE)
– With second derivative terms: degenerate hyperbolic PDE

• In general, classical solution will not exist
– Viscosity solution ϕϕϕϕ will be continuous but not differentiable

• For example, classical Hamilton-Jacobi-Bellman
– Finite horizon optimal cost leads to terminal value PDE
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Viscosity Solution
• Well defined weak solution of HJ PDE

– Limit of vanishing viscosity solution, where it exists
– Kinks form where characteristics meet

• Example
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Outline
• Level set methods: dynamic implicit 

surfaces and the Hamilton-Jacobi equation

• Toolbox of level set methods: features and 
examples

• Adding schemes
– How to achieve flexibility and efficiency
– SSP RK integrators

– Monotone motion by mean curvature
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The Toolbox: What Is It?
• A collection of Matlab routines for level set methods

– Fixed Cartesian grids
– Arbitrary dimension (computationally limited)

– Vectorized code achieves reasonable speed

– Direct access to Matlab debugging and visualization

– Source code is provided for all toolbox routines

• Underlying algorithms
– Solve various forms of time-dependent Hamilton-Jacobi PDE

– First and second spatial derivatives

– First temporal derivatives

– High order accurate finite difference approximation schemes

– Explicit temporal integration

• Implements schemes from many sources
– For citations, see the 140 page indexed user manual
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The Toolbox: What Can It Do?
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Convective Flow
• Motion by externally generated velocity field

• Example: rigid body rotation about the origin
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Dimensionally Flexible
• Core code is dimensionally independent

– Cost in memory and computation is exponential
– Visualization in dimensions four and above is challenging

– Dimensions one to three are quite feasible
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Motion in the Normal Direction
• Motion by externally generated speed function

constant outward speed

constant speed switches direction
outward at first, inward thereafter
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Reinitialization Equation
• Returning the gradient to unit magnitude

initial implicit 
surface function

reinitialized to 
signed distance

compare gradient 
magnitudes
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General Hamilton-Jacobi
• Motion may depend nonlinearly on gradient

• Example: rigid body rotation about the origin

rotate a square once around compare errors of various schemes
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General Hamilton-Jacobi

Burgers’ equation Nonconvex Hamiltonian
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Motion by Mean Curvature
• Interface speed depends on its curvature κκκκ

shrinking spiral

shrinking star
speed depends on time
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Combining Terms
• Terms can be combined to generate complex but accurate 

motion
– Example: rotation plus outward motion in normal direction
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Constraints on Function Value
• Level set function constrained by user supplied implicit surface

function
– Example: masking a region of the state space

convective motion to the right mask with small circle at origin
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Constraints on Temporal Derivative
• Sign of temporal derivative controls whether implicit set can 

grow or shrink

• Example: reachable set only grows
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Stochastic Differential Equations (v1.1)
• Itô stochastic differential equation

• Kolmogorov or Fokker-Planck equation for expected outcome

– Example: linear DE with additive noise

final state mean final state variance
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Open Curves by Vector Level Sets (v1.1)
• Normal level set methods can only represent closed curves

• Evolve two level sets in unison to represent an open curve 
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Reinitialization with Subcell Fix (v1.1)
• Different treatment for nodes adjacent to the interface

– Distance to interface is estimated and alternative update results in 
less movement

• Compare interface locations after 160iiii iterations, iiii = 0, 1, …, 5

without subcell fix with subcell fix
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Continuous Reachable Sets
• Nonlinear dynamics with 

adversarial inputs
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Hybrid System Reachable Sets
• Mixture of continuous and discrete dynamics

switch condition:
discrete control input
initiating maneuver

switch condition:
t = ππππ

state reset:
Rotate x clockwise 90°

state reset:
Rotate x clockwise 90°

q1

straight1

q3

straight2

q2

arc1

set of states leading to collision
whether maneuver is initiated or not
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Constructive Solid Geometry
• Simple geometric shapes have simple algebraic 

implicit surface functions
– Circles, spheres, cylinders, hyperplanes, rectangles

• Simple set operations correspond to simple 
mathematical operations on implicit surface functions
– Intersection, union, complement, set difference
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High Order Accuracy
• Temporally: explicit, Total Variation Diminishing 

Runge-Kutta integrators of order one to three
• Spatially: (Weighted) Essentially Non-Oscillatory 

upwind finite difference schemes of order one to five
– Example: approximate derivative of function with kinks

maximum error average error
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Other Available Examples
• Hybrid Systems Computation & Control

– Mitchell & Templeton (2005)

– Stationary HJ PDE for minimum time to 
reach or cost to go

– Stochastic hybrid system model of 
Internet TCP transmission rate

• Journal of Optimization Theory & 
Applications
– Kurzhanski, Mitchell & Varaiya (2006)

– State constrained optimal control

• Following David Donoho’s
“Reproducible Research” initiative
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The Toolbox: How to Use It
• Cut and paste from existing examples

• Most code is for initialization and visualization

user supplied Toolbox supplied Matlab supplied

Cartesian grid
boundary conditions

(periodic, Dirichlet, Neumann, extrapolated )

initial conditions basic shapes
(sphere, cylinder, hyperplane ) constructive solid geometry

(union, intersection, complement )

integrators
(explicit TVD RK order 1–3 )

term approximation(s)
(convection, mean curvature, general HJ, forcing, su m, etc .)

dimension, range, cell size

term parameters
(dissipation , speed, flow field, etc .)

upwinded first
(minmod / ENO / WENO order 1–5 )

centered second
(curvature & Hessian order 2 )

spatial derivatives

visualization
(contour, isosurface, etc .)

CFL number, post-timestep processing (eg. masking )
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Other Level Set Software Packages
• Level Set Method Library (LSMLIB) [Chu & Prodanovic]

– C/C++/Fortran with Matlab interface, dimensions 1–3

– two types of motion, fast marching & velocity extension
– localized algorithms, serial and parallel execution

• Multivac C++ [Mallet]
– C++, dimension 2

– six types of motion, fast marching
– localized algorithms
– application: forest fire propagation and image segmentation

• “A Matlab toolbox implementing level set methods” [Sumengen]
– Matlab, dimension 2

– three types of motion
– application: vision and image processing

• Toolbox Fast Marching [Peyré]
– Matlab interface to C++, dimensions 2–3
– Static HJ PDE only
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Outline
• Level set methods: dynamic implicit 

surfaces and the Hamilton-Jacobi equation

• Toolbox of level set methods: features and 
examples

• Adding schemes
– How to achieve flexibility and efficiency
– SSP RK integrators

– Monotone motion by mean curvature



18 July 2007 Ian Mitchell, UBC Computer Science 31

The Toolbox: How to Extend It
• Choose appropriate class of routines to modify

• Use coding patterns to achieve compatibility & efficiency

user supplied Toolbox supplied Matlab supplied

Cartesian grid
boundary conditions

(periodic, Dirichlet, Neumann, extrapolated )

initial conditions basic shapes
(sphere, cylinder, hyperplane ) constructive solid geometry

(union, intersection, complement )

integrators
(explicit TVD RK order 1–3 )

term approximation(s)
(convection, mean curvature, general HJ, forcing, su m, etc .)

dimension, range, cell size

term parameters
(dissipation , speed, flow field, etc .)

upwinded first
(minmod / ENO / WENO order 1–5 )

centered second
(curvature & Hessian order 2 )

spatial derivatives

visualization
(contour, isosurface, etc .)

CFL number, post-timestep processing (eg. masking )
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Coding Patterns: Functions of xxxx
• All scalar functions of xxxx ∈∈∈∈ Ω ⊂⊂⊂⊂ RRRRdddd are stored in dddd-dimensional 

Matlab arrays
– Each element corresponds to a node in the grid

• Permits flexible and efficient operations—no explicit loops!
– Implement aaaa(tttt,xxxx)||DDDDxxxxϕϕϕϕ(tttt,xxxx)|| as speed .* magnitude

– Dimensionally independent
– Command interpretation overhead trivial

– Matlab implementation optimized for cache & processor efficiency

• Vector functions of x are stored in cell arrays
– For example, distance to origin for d = 2 generated by 

sqrt(grid.xs{1}.^2 + grid.xs{2}.^2)

– Also convenient for calls to Matlab functions: 
interpn(grid.xs{:},data,samples{:})

• Requires structured, dense data layout
– Unstructured and adaptive meshes are infeasible

– Localized algorithms are of dubious benefit
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Coding Patterns: Indexing
• Dimensionally independent indexing required in boundary 

conditions and finite difference derivative approximation
– Use cell vectors to generate index lists

in dimension diffDim

index0

indexL indexR

in other dimensions

index0

indexL,indexR

ghost node regular node
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Additional SSP RK Integrators
• Basic Toolbox includes standard explicit, Strong Stability 

Preserving Runge-Kutta temporal integrators
– Choices are order pppp and number of substeps ssss

– For standard schemes: ssss = pppp = 1, 2, 3

• Alternative: set ssss > pppp [Spiteri & Ruuth, SINUM 2002]
– Additional work on substeps offset by larger CFL constraint

– Schemes specified by parameters ααααikikikik and ββββikikikik
• Implemented

– Integrator for general αααα–ββββ schemes
– Integrator with αααα–ββββ tables for (ssss, pppp) schemes: (1,1), (2,2), (3,3), 

(3,2), (4,2), (4,3), (5,3), (5,4)
– ODE test problems to validate order of accuracy
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SSP RK Schemes
• To solve ODE system dddd/dtdtdtdtΦ(tttt) = L(tttt,Φ(tttt))

– Introduce substep sample times tttt(iiii)

– Scheme given by (for iiii = 1, 2, …, ssss)

– Only the forward operator LLLL is required if ββββikikikik ≥≥≥≥ 0



18 July 2007 Ian Mitchell, UBC Computer Science 36

SSP RK Examples
• Five examples

– Three initial conditions: circle, rectangle, Zalesak’s disks

– Two flow fields: rotation or rotation + normal direction

• Simple shapes and flow fields chosen to minimize effect of 
spatial derivative approximation errors
– Spatial approximation fifth order accurate WENO

rotation for Zalesak’s disks

combination for rectangle
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SSP RK Results: Accuracy
• Error measured against analytic solution

– Only measured at nodes adjacent to interface

• Combination motion for rectangle is representative
– Order of accuracy of temporal scheme makes little difference
– When differences exist, traditional schemes (blue) are slightly more 

accurate than new schemes (red)

average error maximum error
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SSP RK Results: Efficiency

• Timing platform
– 2012 grid with rectangular initial conditions and CFL factor 0.75
– Matlab 7.2 (R2006a) in Windows XP version 2002 SP2

– Intel Pentium M laptop, 1.7 GHz with 1 GB memory

• Significant time savings achieved with large CFL numbers
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Motion by Mean Curvature
• Traditional approach

– Use centered differences to approximate partial derivatives
– Not monotone, so convergence theory does not apply

• Alternative [Oberman, Numerische Mathematik 2004]
– Gather circular stencil Sxxxx of nodes around xxxx

– Let ϕϕϕϕ*(xxxx) = median{ ϕϕϕϕ(xxxxkkkk) | xxxxkkkk ∈∈∈∈ Sxxxx }

– Then monotone approximation is
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Adapting Median-Based Approach
• How to construct stencils when ∆∆∆∆xxxx not constant?

– Define stencil width wwww, ∆∆∆∆xxxxmax = maxiiii ∆xxxx(iiii) and ddddxxxx = wwww ∆∆∆∆xxxxmax

– Initial stencil S contains all nodes at distance ddddxxxx ±±±± ½∆∆∆∆xxxxmax

– Nodes are discarded if they are in a similar direction as another 
node whose distance is closer to ddddxxxx

• Stencils S for various ratios of horizontal ∆xxxx to vertical ∆xxxx
– Also, initial stencil S on 1:5 grid before discarding nodes

S (1:1) S (1:5)S (1:5)S (1:2)
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Quantitative Results are Disappointing
• Test on polynomial with known analytic curvature

• Error for standard centered difference approximation ~10-10

• Median-based approximation has only eight distinct directions

ϕ1 (rotated) analytic ∆∆∆∆1ϕ1 median-based ∆∆∆∆1ϕ1
with wwww = 3
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Is Consistency Possible?
• Can we achieve O(ddddxxxx2 + ddddθθθθ) →→→→ 0 through some combination of 

∆∆∆∆xxxx→→→→ 0 and wwww→→→→ ∞∞∞∞?

– Let ddddxxxx = ∆∆∆∆xxxxγγγγ and note ddddθθθθ = (|S|-1), so error is O(∆∆∆∆xxxx2γγγγ + ∆∆∆∆xxxx1 - γγγγ)

– Balancing exponents leads to γγγγ = , consistent asymptotic error 
O(∆∆∆∆xxxx ), and choice ∆∆∆∆xxxx = wwww-1.5
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Why Use Median-Based Approach?
• Qualitative results are quite reasonable
• CFL bound O(ddddxxxx2) = O(wwww2∆xxxx2), so for large wwww new scheme can 

be much faster
– Simulations on 2012 grid with (2,2) time integrator

standard centered difference (132 seconds)

circular stencil wwww = 5 with interpolation (35 seconds)
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Future Work
• Algorithms

– Implicit temporal integrators
– Fast methods for stationary Hamilton-Jacobi

– General boundary conditions

– Other numerical Hamiltonians

– ENO / WENO function value interpolation

– Particle level set methods

• More application examples
– Surfaces of codimension two

– Hybrid system reachable sets and verification

– Path planning for robotics

– Image processing, financial math, fluid dynamics, etc.
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The Toolbox is not a Tutorial
• Users will need to read the literature
• Two textbooks are available

– Osher & Fedkiw (2002)

– Sethian (1999)
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The Toolbox: Why Use It?
• Dynamic implicit surfaces and Hamilton-Jacobi 

equations have many practical applications
• The toolbox provides an environment for exploring  

and experimenting with level set methods
– More than twenty examples

– Approximations of most common types of motion

– Extensive, indexed user manual
– High order accuracy

– Arbitrary dimension

– Reasonable speed with vectorized code

– Direct access to Matlab debugging and visualization

– Source code for all toolbox routines

• The toolbox is free for research use
http://www.cs.ubc.ca/~mitchell/ToolboxLS
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