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Abstract

We examine the problem of planning a path through a low di-
mensional continuous state space subject to upper bounds on several
additive cost metrics. For the single cost case, previously published
research has proposed constructing the paths by gradient descent on a
local minima free value function. This value function is the solution of
the Eikonal partial differential equation, and efficient algorithms have
been designed to compute it. In this paper we propose an auxiliary par-
tial differential equation with which we can evaluate multiple additive
cost metrics for paths which are generated by value functions; solv-
ing this auxiliary equation adds little more work to the value function
computation. We then propose an algorithm which generates paths
whose costs lie on the Pareto optimal surface for each possible destina-
tion location, and we can choose from these paths those which satisfy
the constraints. The procedure is practical when the sum of the state
space dimension and number of cost metrics is roughly six or below.

*Research supported by ONR under MURI contract N00014-02-1-0720.
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1 Introduction

Few problems are as well studied as the path planning or routing prob-
lem; it appears in engineering disciplines that vary from robotics to wireless
communication to matrix factorization. A major challenge in developing
solutions to the problem are the many, sometime subtle, variations it can
adopt: the topology of the state space and cost metrics, the types of accept-
able paths, the number of sources and destinations, the acceptable degree
of optimality, etc. While every variant has at least one solution method—
enumerate all feasible paths until an acceptably optimal one is found—the
key to developing efficient solution algorithms is to take advantage of the
particular properties of the variant of interest.

In this paper we examine the path planning problem in a continuous state
space subject to constraints on additive path integral cost metrics. The
original motivation for this work was the planning of fuel constrained flight
paths for unmanned aerial vehicles through enviroments with varying levels
of threat. Paths are generated by gradient descent on a value function (with
no local minima), which is the solution of an Eikonal partial differential
equation (PDE).* Path integral costs are evaluated by solving an auxiliary
PDE. Both PDEs can be solved quickly for low dimensional systems, thus
yielding a practical algorithm for path planning. Because both PDEs are
solved over the entire state space, paths to any possible destination can be
rapidly evaluated.

To handle constraints, we sample the Pareto optimal surface looking for
paths with feasible combinations of costs. The sampling method only reaches
the convex hull of the Pareto surface, so for nonconvex problems it may not
always find the optimal feasible path; however, in our experience the degree
of nonconvexity has not been enough to cause significant problems.

The asymptotic cost of the algorithm is O(MdN%log N), where M is the
number of sampled points on the Pareto optimal surface, d is the state space
dimension, and N is the number of grid points in each state space dimension.
To adequately sample the Pareto surface, M will typically be exponential in
the number of separate cost functions k. While these two exponentials are
daunting, in practice the algorithms described below are quite practical on

*Classical applications of the Eikonal PDE are in the fields of optics and seismology.
Its solution can be interpreted as a first arrival time or a cost to go, depending on whether
the boundary conditions represent sources or sinks.



the desktop when the sum k + d is less than around five or six; for example,
section 3 includes a problem in two dimensions with three cost functions
that is solved in less than one minute on the authors’ laptop computer.

Gradient descent on a value function solution of the Eikonal equation has
been used previously for unconstrained, single cost path planning problems.
The innovative contribution of this paper is the application of auxiliary
PDEs to calculate multiple path integral costs, and the use of those costs to
find constrained optimal paths.

In the remainder of this section we formally outline our path planning prob-
lem and examine related work. Subsequent sections describe the algorithm,
provide several examples, and discuss extensions to more general problems.

We work in a state space R?. Unless otherwise specified, norms are Euclidean
|-l =112 Let RT = (0,00) be the set of strictly positive real numbers.

1.1 Problem Definition

A path p : RT x R — R? is parameterized by an arclength s € RT and
a destination location = € R%. Assume that all paths have a single source
location x, € R? (we will relax this assumption later). The path cost func-
tions {c;(z)}¥_, where ¢; : RY — R, are continuous, bounded and strictly
positive. The cost along a path is additive, so the total cost of a path can
be evaluated by a path integral

r x = Ts,
Pi(x):/o ci(p(s, x))ds, where {pgj ) (1)

p(T,z) ==

In words, P; : R? — R is the total cost, according to path cost function ¢;(-),
of following the path p(-,z) from the source location x4 to the point z.

As an example, consider planning the flight path of an aircraft from its
base at xs to various destinations. The most obvious path cost function is
fuel, which we approximate as a constant cge(r) = cel. A second path
cost function might be the threat of inclement weather cyeather(2). A third
might be uncertainty about the enviroment, encoded as cyncertain(). The
latter two costs are inhomogenous, meaning that their value depends on .
Examples of cost functions are shown in figures 2 and 5.



There are two related problems that we might wish to solve starting from
the parameters s and {c;(x)}¥_; described above. Given some set of cost
constraints {C;}¥_,, where C; € RT, we might want to find feasible paths
such that P;(x) < C; for all t = 1...k. Alternatively, we might try to mini-
mize Pj(x) subject to constraints on the remaining costs P;(z) < C; for all
i =2...k. In either case, we will usually be interested in quantitative mea-
sures of the tradeoffs between the various path cost functions; for example,
in the second type of problem what relaxation of the constraint Cy would
be required to cut the cost Pj(x) in half?

1.2 Related Work

The significance of the most closely related algorithmic work [1, 2, 3] is
discussed in section 2.4. However, similar problems have been investigated
in several other fields.

Path planning is a central endeavor in robotics research [4], so we mention
only the most closely related work. The algorithm discussed in this paper
could be categorized as a potential field approach [5], in the sense that the
paths are determined by gradient descent on a scalar function defined over
the state space. In particular, the value function constructed in section 2 is
an example of a navigation function [6]—a potential field free of the local
minima that hinder most potential field methods (although in general it will
contain saddle points). The specific use of the Eikonal equation for robot
path planning in the single cost case was examined in [7], and is equivalent
to the approach used in [8].

Independently, the networking community has been solving constrained short-
est path planning on discrete graphs [9, 10, 11|, primarily for the purpose of
network routing. While this research involves problems with multiple costs,
it makes the assumption that the number of distinct cost values possible at
any node in the graph is finite and bounded. The resulting algorithms are
pseudo-polynomial time: polynomial in the size of the graph and in the value
of any constraints. If we seek a convergent approximation for the continuous
path planning problem, we cannot assume that the value function can be
discretized and thus we cannot use pseudo-polynomial time algorithms. It
should be noted, however, that our method for exploring the Pareto optimal
surface of possible path costs by sampling values of A (see section 2.3) is



equivalent to the fastest algorithm proposed for finding constrained short-
est paths in [11]. The distinction between their algorithm and ours is the
underlying shortest path problem: discrete in their case, continuous in ours.

The related work that is closest mathematically is a tomographic applica-
tion [12], which uses the Eikonal equation (2) to calculate travel time and
a version of the path integral PDE (4) to determine perturbations of a lin-
earized form of the Eikonal equation. To our knowledge, the use of (4) for
evaluating path integral costs is original.

2 Value Function Solution

We discuss the value function method for finding the shortest path in the
single cost case, and then how to compute path integrals along value function
generated paths. With these tools we can explore the range of paths that
might meet the constraints when multiple cost functions are involved. This
section concludes with a discussion of an efficient algorithm for solving the
required differential equations.

2.1 Single Objective Shortest Path

Consider the simplest case & = 1 with a single path cost function c(x) =
c1(z) (because it will be used to generate a value function, we call this cost
c(x) the value cost function). It can be shown that the minimum cost to go
from the source x4 to any point x in the state space is the solution of the
inhomogenous Eikonal equation

IVV(2)|| = e¢(z) for z € RY, @)
with boundary condition V(xs) = 0.

The solution V : R¢ — R of this PDE is called the value function. In practice
V' is rarely differentiable and therefore (2) does not have a solution in the
classical sense. The viscosity solution [13] is the appropriate weak solution
for the shortest path problem. In section 2.4 we shall discuss algorithms
for computing accurate numerical approximations of the viscosity solution
of (2), but for now the important fact is that efficient schemes exist for
problems of reasonably low dimension.



Given the viscosity solution V', the optimal path p*(-, x) can be determined
by gradient descent of V from a fixed target location x. In practical terms,
let p(s, x) be a path that starts at a particular x and terminates at xs. Then
p is the solution to the ordinary differential equation (ODE)
dp(s, ) = VV(IT(S’QJ)) for s € RT and fixed z € R?,
ds IVV(B(s, )] (3)

with initial condition p(0,z) = =.

We stop extending the solution at some § such that p($,z) = x5. Then
§ =T is the arclength of the shortest path from z, to x, and that path is
given by p*(s,x) = p(T — s,z). Because V(x) is the cost to get to x from
xs along path p*, the path integral for this path is P*(x) = V(x). The
gradient descent (3) cannot get stuck in local minima because V' has none. "
In theory, (3) can get stuck at saddle points of V', but the stable manifolds of
such points are of measure zero in the state space, and are thus unlikely to
be a problem in practical implementations subject to floating point roundoff
noise.

2.2 Computing Path Integrals

Throughout the remainder of this paper, we consider only paths generated
by (3) for some value function V. In this section we examine how to compute
the path integral when the value cost function is not the same as the path
cost function. To differentiate the two cost functions, we denote the value
cost function in (2) by ¢(x) and the path cost function in (1) by ¢;(x). Both
must use the same source location .

Starting from the differential form of (1), we formally derive a PDE for the
path integral P;(x)

dP;(p(s,x))

ds = Ci(p(s7x))a

OP;(p(s,x)) dp(s,z)
ap(s,x) ’ ds - c,(p(s,a:)),
VRp(s.0)) - e e = cip(s,2)

VPi(p(s,z)) - VV(p(s,x)) = ci(p(s, z))e(p(s, 2)),

TEasily seen if V is differentiable, since a local minimum would require VV(z) =0,
but ¢(z) > 0. A more rigorous argument based on the positivity of ¢ can be constructed
when V' is a viscosity solution.




where (3) is used in the second step and (2) is used in the third. Conse-
quently, for all reachable points in the state space,

VP(z)-VV(z) = ¢i(z)c(x) for z € RY, )

with boundary condition P;(zs) = 0.
Because the cost structure is isotropic (independent of path direction) the
system is small time controllable and for our single source version all states
will be reachable. The derivation above assumes that all the functions in-
volved are differentiable, but as was stated earlier this assumption will fail
for V(x) and therefore likely also for P;(x). We are in the process of de-
veloping a robust proof that the viscosity solution of (4) is the path cost
integral we seek.

When solving (4), P;(x) is the unknown while V' (z), ¢;(x) and ¢(z) are all
known. Not surprisingly, (2) can be recovered from (4) for the single cost
case of the previous section by substituting ¢;(z) = ¢(x) and Pj(z) = V (z).

2.3 Exploring Potential Paths

As discussed in section 1.1, one of our goals was an algorithm to generate
feasible paths subject to a collection of cost constraints. In the previous two
sections we described PDEs whose solutions were a path generating value
function V' in (2) and the path integrals P; for those paths in (4). The
remaining missing ingredient is the value cost function ¢(x) in (2). In this
section we discuss the results of using convex combinations of the path cost
functions as the value cost function.

We start with the simplest multiobjective case, k = 2. Let
AMz) = Xer(z) + (1 — Nea(z)  for some A € [0, 1].

Then evaluate (2) and (4) for V*(x), P{(x) and Pg(x). The first thing to
notice is that A = 1 calculates paths optimal in ¢; and A = 0 paths optimal
in cy. Therefore, if PM=1(z) > C; or P3=0(x) > Cy for some point z, there
cannot be any feasible paths from xs to z. Intermediate values of A will
generate paths lying somewhere between these two extremes.

Testing all possible values of A would effectively construct the convex hull of
the Pareto optimal tradeoff curve between the two cost functions. Figure 1
shows a possible Pareto curve for a single point x, the points on that curve
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Figure 1: Pareto optimal curve for a particular destination state x. Left:
each value of A samples a point on the curve. Right: testing all values of A
would yield a convex approximation of the Pareto curve.

determined by several values of A, and the convex hull of that curve. A point
on the curve is a pair (P(x), P;\(z)) and lies where a line of slope ﬁ is
tangent to the Pareto curve. Therefore, A is a quantitative measure of the
tradeoff between the two cost functions.

In general the Pareto curve is not convex, so this method may fail to detect
a feasible path even if one exists. Nonconvexity in the Pareto curve will
manifest itself by jumps in the values of the path integrals P(x) and Py(x)
for fixed x as A is varied continuously; for example, consider the jump in
path integrals as A is varied in the range [A2—¢, A2 +¢€] for some small € > 0 in
figure 1. However, neighboring values of A can be used to bound the error in
the convex approximation and nonconvexity has not been a problem in our
experience. It should be pointed out that the Pareto curve characterised
above is for a single point z in the state space. Because V* and Pl-)‘ are
calculated over the entire state space, the technique actually approximates
a separate Pareto curve for all points x.

To handle the case k > 2, we simply choose a set {); }é?:l such that \; € [0, 1]
for all j and Z?:l \j = 1. Then N} (z) = Z?:l Ajcj(x), and we can solve
for the corresponding value function and path cost integrals. In this case it

is the convex hull of the Pareto optimal surface that is explored as the set
{A;} is varied.



2.4 Numerical Algorithms

The discussion above would be nothing more than a mathematical diversion
if it were not possible to solve (2), (3) and (4) numerically for some practical
problems. In this section we briefly outline an existing efficient algorithm
for solving (2), and modify that algorithm slightly to handle (4) as well. We
postpone implementation details to section 3.4.

To treat (3), we assume that (2) and (4) can be computed for a variety of
A values to generate V*(x) and {P(z)}¥_;. Then a particular \ is chosen

such that any path integral constraints are satisfied (Pl/\(w) < C;). A path

is determined by solving (3) for value function V*(z) with a standard ODE
integration method, such as Runge-Kutta.

Solving (2) efficiently relies on an algorithm first described in [1], although
the explanation that follows is based on an independently developed equiva-
lent version [2] commonly known as the Fast Marching Method (FMM). This
algorithm is basically the Dijkstra algorithm for computing shortest paths
in a discrete graph [14], suitably modified to deal with a continuous state
space. For readers interested in alternatives, there are other algorithms for
solving (2); for example, [15, 16].

The value function V' (z) is approximated on a Cartesian grid over the state
space with N nodes in each dimension, for a total of N¢ nodes. Direct ap-
plication of Dijkstra’s algorithm on this discrete Cartesian graph remains a
popular approximation method for this problem; however, the paths gener-
ated by such an approximation measure their cost metrics in a coordinate
dependent manner,t and are visibly segmented at the grid’s resolution. In
contrast, FMM approximations can generate paths with subgrid resolution
(see section 3.1); paths that are reasonably smooth for practically sized grids.
Furthermore, these approximations are theoretically convergent, meaning
that the approximation approaches the true value function solution of (2)
as N — oo on all of the state space except a subset of measure zero.

We initialize the FMM by setting V(zs) = 0 and V(x,,) = oo for all other
nodes x,, (in practice we choose a large floating point value for co). We also

tFor example, Dijkstra on a square Cartesian grid measures distance with the Man-
hattan or 1-norm; in this norm the distance between two points depends on the alignment
of the coordinate axes. While this axis alignment bias can be reduced by adding more
edges to the graph, it will persist unless every possible path is enumerated by making the
graph completely dense. The solution of the Eikonal equation (2) measures distance in
the Euclidean or 2-norm, which is independent of axis alignment.



place x5 into a list £. At each iteration of the FMM we remove the node x;,
in ¢ with minimum value V' (x,,); this value is now fixed. We update V(zy,)
for each neighbor x,, of z,, with V(z,) > V(x,,). If any of those neighbors
were not in £ already, we place them in . We then repeat, taking the node of
next smallest value from ¢ and updating its neighbors, until no more nodes
remain in £. This procedure is the basis of Dijkstra’s algorithm. Each node
is removed from ¢ only once and has a constant number of neighbors. As
we will see, updating each neighbor takes a constant amount of time. If a
heap [17] or something similar is used to sort ¢, the smallest node can be
determined in logarithmic time, for a total cost O(dN%log N).

The only difference between Dijkstra’s method and an FMM lies in the
update equation for a node z,, [2]. Instead of considering each neighbor of
T, separately, we form a first order upwind finite difference approximation of
VV(zy) using various combinations of the neighbors x, whose values V()
are less than the current approximation of V(x,). Plugging these finite
difference approximations into (2) yields an implicit quadratic equation for
the new approximation of V' (x,). Detailed update formulas are given in the
appendix.

To solve (4), we use an approximation scheme outlined in [3]. The “extension
velocity” Fexi(x) described in that paper is computed by solving

VEui(z) - VV(z) =0,

which is just (4) with a zero right hand side. In practice, we integrate
the computation of P;(x) into the FMM computation of V' (z). When each
node x,, is removed from ¢, we compute P;(x,,) for each i. The first order
upwind finite difference approximation of VV(x,,) is already known from
the last update of V' (x,,), while ¢;(z,,) and ¢(x,,) can be directly evaluated.
Forming a first order upwind finite difference approximation of VP;(z,,)
using the same neighbor nodes that were used to build the approximation
of VV(z,) yields an implicit linear equation for P;(z,,). Note that the
neighbors x, of x,, involved with the approximation of VV(z,,) will all
have V(zp) < V(2), so they will all have been removed from ¢ before x,,
and hence will have known values P;(z,). Again, detailed update formulas
are given in the appendix.

10



3 Examples

For our example we consider planning a path for an aircraft flying across
the idealized unit square country from lower left to upper right. The first
cost function will be fuel, which we assume is a constant cge1(2) = Cyel = 1.
Because these are toy examples, we provide no specific units for our cost
functions.

The second cost function will represent the threat of weather related prob-
lems Cyeather(z). Note that the intuitive quantification of weather threat
would be the probability of encountering a storm along the flight path. This
quantification cannot be used as a cost because probabilities are not additive;
however, under an independence assumption they can be transformed into
an additive cost by a logarithmic transformation. The figures and tables
below assume that this transformation has been performed in generating
Cweather () from meteorologically determined storm probabilities.

Ideally, this weather forecast would be an accurate short term estimate of
weather threat. When we examine a three cost example in section 3.2, we
will assume that part of our fictional country is well monitored and can thus
generate accurate short term weather threat estimates, while another part
of the country is poorly monitored and in this region we are forced to resort
to long term climatological estimates. Because these long term estimates
are less accurate, we introduce a third cost function cypcertain(z) which will
penalize paths through the poorly instrumented region of the country.

We focus on two dimensional examples primarily because three dimensional
paths are very challenging to visualize on paper. While three dimensions is
noticeably more expensive, we demonstrate in section 3.4 that it can still be
done at interactive rates on the desktop.

The gradient descent procedure that generates the paths (explained in sec-
tion 3.4) produces a series of waypoints leading from the source to the des-
tination. In the plots that follow there is a small gap between the source
location and the start of the paths. This gap appears because the source
location is not explicitly added to the waypoint list; the gap is choosen small
enough that the aircraft can fly a direct line between the source and the first
waypoint (the beginning of the plotted path).

11
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Figure 2: Weather threat cost function cyeather()

line minimize fuel | fuel | weather

type what cost? | constraint | cost cost A
dotted fuel none | 1.14 8.81 | 0.00
solid weather 1.3 | 1.27 4.55 | 0.13
dashed weather 1.6 | 1.58 3.03 | 0.62
dash dot | weather none | 2.69 2.71 | 1.00

Table 1: Properties of paths in figure 3.

3.1 Two Costs in Two Dimensions

Figure 2 shows a simple weather threat cost map cyeather(). Notice that
the lower high threat bar extending from the left is slightly thinner than the
upper high threat bar extending from the right.

Figure 3 shows four example paths plotted for various combinations of
Cweather () and cgye from the source x; = [0.1 0.1]T (marked by a star

symbol) to the destination x4 = [0.9 O.Q]T (marked by a plus symbol).
The combinations are described in table 1. In searching for paths that
satisfy the fuel constraints, the range of A was sampled uniformly. The A
values shown for the two constrained paths are the largest sampled A for
which the fuel constraint was satisfied. Notice in particular that the path
under tight fuel constraints (the solid line) prefers to cross the thinner lower

12



Figure 3: Some fuel and weather constrained paths. The properties of each
path are explained in table 1.

bar of the weather cost function rather than the fuel symmetric path that
exists crossing the thicker upper bar.

Figure 4 shows the points on the Pareto optimal curve of the destination
location x4 generated by a uniform sampling of the space A € [0, 1]. Two ex-
planations exist for those regions where the sample points are well spaced—
either the uniform sampling was too coarse, or the Pareto curve is noncon-
vex. In the former case, a more intelligent sampling strategy could fill in the
gaps inexpensively. Furthermore, even if the curve is nonconvex the existing
samples provide fairly tight bounds on the degree of possible nonconvexity.

3.2 Three Costs in Two Dimensions

The first two cost functions are the same as in section 3.1: constant fuel
Cruel = 1 and cyeather() from figure 2. For the third cost function, we

13
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Figure 4: Sampling the Pareto optimal curve for a particular destination
point.
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Figure 5: Uncertainty cost function cypcertain ()
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L T

Figure 6: Some fuel, weather and uncertainty constrained paths. The prop-
erties of each path are explained in table 2.

assume that the upper left corner of our mythical country has few weather
stations and therefore we create the uncertainty cost function cypcertain()
shown in figure 5.

The resulting paths from z; to z4 are shown in figure 6 and described in
table 2. Because they optimize the same costs in the same manner, the
dotted and dash dotted paths are basically the same as those shown in
figure 3.8 The most interesting path is that denoted by the solid line. Notice
that the constraints on this path were satisfied by the tight fuel constrained
path (also a solid line) in figure 3. In this case, however, we are penalizing
paths that travel in the upper left portion of the map with the uncertainty
oSt Cuncertain (7). Therefore, a path that crosses the thick high cost portion of
the upper bar of the weather cost map is chosen; even though the weather

§The slight differences between their tabulated costs in tables 1 and 2 is due to the
coarser state space grid used in this three constraint example.
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line minimize fuel weather | fuel | weather | uncertainty
type what cost? | constraint | constraint | cost cost cost
dotted fuel none none | 1.14 8.83 1.52
dash dot | weather none none | 2.74 2.75 5.96
dashed uncertainty none none | 1.18 8.42 1.19
solid uncertainty 1.3 6.0 | 1.25 5.85 1.25

Table 2: Properties of paths in figure 6.

cost is higher, it is still within the specified constraint and the resulting
path’s uncertainty cost is nearly as good as the minimum uncertainty cost
path (given by the dashed line).

3.3 Two Costs in Three Dimensions
For a three dimensional problem, we plot a path from x; = [0.1 0.1 O.I}T
to zg = [0.9 0.9 ().9]T. The fuel cost function cgy,e remains a constant,
while the weather cost Cyeather(z) has five stormy regions centered at the
points:

0.1 0.5 0.9 0.9 0.1

0.9 0.5 0.1 0.5 0.5

0.9 0.5 0.1 0.5 0.5

Each stormy region adds a scaled and shifted gaussian to ¢yeather (). In order
to represent the general low level threat of unforeseen weather disturbances,
we Set Cyeather () = 1 anywhere that the sum of the storm costs drops below
unity. In order to break the symmetry of the problem, the first stormy
region is 50% larger than the remaining four. A visualization of the weather
cost function is shown in figure 7 along with three paths from x; to x4. The
three volumetric shells in the figure represent (from faintest to darkest) the
1.1, 2.0 and 3.0 isosurfaces of cyeather(); its peak value is 5.5. The three
demonstration paths are described in table 3.

3.4 The Implementation and Execution Times

To compute approximations of V(x) and P;(z), we have implemented a
version of the FMM described in section 2.4 in C++ for Cartesian grids.

16




Figure 7: Some fuel and weather constrained paths in three dimensions.
The properties of each path are explained in table 3.

line minimize fuel | fuel | weather
type what cost? | constraint | cost cost
dotted | fuel none | 1.41 3.54
dashed | weather none | 1.64 1.64
solid weather 1.55 | 1.55 2.00

Table 3: Properties of paths in figure 7.
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section | d | k| N | AX | time (min)
3.1 221201 0.005 0.5
3.2 213|101 | 0.020 1.0
3.3 31211011 0.010 22.3

Table 4: Run parameters for the examples (d = dimension, & = number
of constraints, N = grid size, A\ = sample interval of convex combination
cost). Time includes generation of the cost functions, PDE and ODE solves,
and plotting all the figures.

While the code itself can handle any dimension, in practice the physical
memory limits of desktop machines restrict the dimension to at most five
even with very coarse grids. Using a MEX interface, these PDE solving
routines can be called directly from Matlab.

To handle cost constrained paths, the sampling over A is performed in Mat-
lab. The speed of Matlab’s interpreted language is not an issue in this
case, because the inner loop of the A sampling process is the compiled C++
but still relatively time consuming FMM algorithm. In all of the examples
shown, the range of X is sampled uniformly. If a particular destination point
were known in advance, a directed sampling of A could quickly yield more
accurate results; for example, bisection in the two cost case. In fact, if a
particular destination point is specified, the FMM can be run faster in some
cases by applying a version of A* search on the list £, rather than just se-
lecting the node with minimum value ([10] discusses this technique in the
discrete graph setting).

We have so far been generating a relatively small number of paths, so this
process is handled with Matlab’s extensive ODE integration facilities. Once
a A has been chosen such that any path constraints are satisfied, V()
is used in (3) to determine the path. Because VV* may change direction
significantly from one integration step to the next, (3) is a moderately stiff
ODE. Consequently, we have found a variable stepsize, implicit trapezoidal
integrator to be effective (Matlab’s ode23t); however, other variable stepsize
integrators—such as the high order explicit 4-5 Runge-Kutta—could also be
used.

We summarize the parameters for the examples of the previous sections in
table 4. The grid sizes and number of A samples were chosen large enough
to give decent results and not so large as to overburden the authors’ desktop

18



time (s)
N per A | ratio
51 0.01
101 0.04 | 3.24
201 0.13 | 3.76
401 0.55 | 4.20
801 2.44 | 4.41

Table 5: Costs of refining the grid in two dimensions. Time per A is the time
to solve a single instance of the PDEs for V' (z) and two path integral costs
Py(x) and Py(x). The ratio column shows the roughly quadratic growth in
execution time as N is increased.

time (s)
N per A | ratio
o1 1.27

101 12.66 | 9.99
201 125.46 | 9.91

Table 6: Costs of refining the grid in three dimensions. Time per A is the
time to solve a single instance of the PDEs for V(z) and two path integral
costs Pj(x) and Pa(z). The ratio column shows the slightly greater than
cubic growth in execution time as IV is increased.

computer. These timings and those below are for a 2 GHz, 1 GB Pentium
4 Dell Inspiron 8200 running Windows XP Professional, Matlab version 6.5
(release 13) and Matlab’s lcc compiler.

Tables 5 and 6 demonstrate the costs of refining the PDE grid. Both tables
assume only two path integral cost PDEs are solved; however, most of the
time in the FMM algorithm is spent solving for V(x), so the increase in time
per A sample of an additional path integral PDE is only 10%-20%. As men-
tioned previously, the asymptotic cost of the algorithm is O(dN%log N) per
A sample. The ratio columns of the two tables show the expected growth in
execution time—slightly above quadratic with NV for two dimension, slightly
above cubic with IV for three—in all but the coarsest two dimensional grids
(where the roughly constant overhead of initialization will be relatively sig-
nificant).
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Figure 8: Comparing the path approximations generated by various grid
resolutions. As the grid resolution improves, for almost every destination
point the approximation converges to the analytically optimal path.

The time to solve (3) to generate a particular path is largely independent
of the dimension or grid size, and is completely independent of the number
of constraints or A sampling interval. It will depend on the destination
location (the closer to the source, the shorter the path). In our experience,
most paths can be generated in less than a second, and few take more than
three seconds. Using a compiled integrator (rather than Matlab’s interpreted
routines) would speed this process up even further.

To demonstrate the effects of refining or coarsening the grid on the quality of
the resulting paths, figure 8 shows the paths from the example in section 3.1
generated for three different grid resolutions. The paths shown in figure 3
correspond to the N = 201 case. While grid refinement does yield visibly
better paths, even the coarsest grid gets a qualitatively correct answer on
even the most convoluted path.
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4 Discussion

We have demonstrated an algorithm for constrained path planning in contin-
uous state spaces for additive cost metrics and isotropic but inhomogenous
and nonconvex cost functions. In those cases with multiple cost functions,
a convex approximation of the Pareto optimal surface is explored; conse-
quently, the algorithm may not find all feasible paths although in practice
this has rarely been a problem. While the asymptotic cost of the algorithm
is exponential in the dimension and in the number of cost functions (as-
suming uniform sampling of the Pareto optimal surface), it can be run at
interactive rates on the desktop if their sum is five or less, and overnight if
their sum is six.

There are several straightforward extensions of this work to more general
path planning problems. We can immediately incorporate multiple source
locations, by making each source a boundary condition with value zero of the
PDEs (2) and (4). The resulting value function will generate paths from the
nearest source to each destination state. Hard obstacles in the state space
can be treated by either making the cost function very large in their interior
or by making the obstacle’s boundary a part of the PDEs’ boundaries with
very large value. Creating boundary nodes with intermediate values (neither
zero nor very large) can be interpreted as penalizing those nodes as possible
source locations. We can also swap the meaning of source and destination,
in which case the value function can be used to generate a feedback control.

The basic FMM algorithm described in section 2.4 has been extended to un-
structured meshes, and a more accurate second order approximation scheme
has been developed. For more details on FMM and its extensions, we refer
the reader to [18]. We are in the process of developing a version of FMM
that runs on an adaptively refined Cartesian grid, so as to better represent
problems with hard obstacles.

The current path planning formulation assumes that the cost of a path is
a function only of its current state; this is equivalent to claiming that the
vehicle which will execute the path can travel equally well in any direc-
tion from any location. This assumption is reasonable when the resolution
of the grid is much coarser than the dynamics of the vehicle; for exam-
ple, planning aircraft paths across a country. But on shorter time and
space scales, it is unrealistic to assume that an airplane can make a sharp
turn. Treating nontrivial vehicle dynamics requires that the cost functions
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be anisotropic. Unfortunately, such anisotropy means that the value func-
tion will no longer be the viscosity solution of the eikonal equation (2), but
rather a more general static Hamilton-Jacobi PDE. The FMM will not work
on these PDEs; however, several algorithms have been proposed to solve
them quickly [15, 19, 20, 21].

The additive path integral cost model used in this paper is very common, and
includes multiplicative costs through a logarithmic transformation. Another
common cost metric is maximum cost along the path. While maximum cost
can currently be evaluated for a single path during the integration of (3), we
are investigating methods capable of evaluating this metric over the entire
state space. We are also examining efficient methods of approximating all
of the Pareto optimal curve for each destination location, rather than just
its convex hull.
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gesting the sweeping procedure over convex combinations of the multiple
cost functions, and Professor Pravin Varaiya for the interpretation of this
procedure as a convex approximation of the Pareto optimal surface and for
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A Update Equations for the Fast Marching Method
in Any Number of Dimensions

Section 2.4 described the basic FMM algorithm used to solve (2) for V(x)
and (4) for P;(z). In this appendix we give the update equations that form
the heart of these algorithms: first for V' (z) and then for P;(z). These update
equations are independent of dimension d, but work only on Cartesian grids.
The update algorithm and equation for V(z) given below is a version of
those given in the appendix of [7], modified to treat grids with dimensionally
dependent spacing (where h; is the grid spacing in dimension j).

When a node z,, is removed from the list ¢, any neighbor z,, with V(z,,) >
V(x,) may need to be updated. Consider a specific neighbor node, which
we label 9. This node will have 27 neighbors itself: one in each direction
(we will call these directions left and right) in each dimension. Choose a
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set of neighbor indices Z by picking the neighbor (either left or right) with
lowest value from each dimension (so Z has d elements). If the grid spacing
is equal in all dimensions, the nodes x; for j € Z and the node z( are the
vertices of a d dimensional simplex; otherwise they form a distorted simplex.
The formula derived below calculates V(zg) as if the characteristic of (2)
giving V(xg) its value came from this simplex.

It is possible that the characteristic in question flows along a lower dimen-
sional face of the simplex rather than through its interior. Now we identify
the subset of indices J from which the characteristic arises. First we define
the following terms, where all of the summations are over the index set J
(excepting the indices explicitly excluded).

T1:Z Zhlz Vi(zj),

J I#j
1> = Z Z hl2 02(.1'0)7
J l#j

T3 = Z Z Z hl2 [V(le) - V(J:Jé)]27

J1 Je#i1 \l#£j1.J2

Ti=> Y hi

Jl#
To find the appropriate J, start with J = Z. While
T2 < T3> (5)

keep removing the node x; with largest value V' (z;) in J. Once T > T3, use
the remaining nodes in J to form first order upwind finite difference approx-
imations of the partial derivatives of V" at x(, and plug these approximations
into the square of (2) to get

V() — V(zo)\?
T << =W 0’) = (o).
4 j
JjeT
We can then use the quadratic equation to solve for V(zo).
T+ (S,h) VI — T

V(xo) = . . (6)
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The reader can verify that condition (5) ensures that the resulting discrim-
inant in (6) is positive. If the resulting value V'(zg) is less than the existing
value V(xg), then V(z) is taken as the new approximation of V' at x.

Now consider the update of P;(z,,). Let z9 = z,, and remember the set
J last used to update V(zp). Form first order upwind finite difference
approximations for the partial derivatives of P; and V at xg, and plug these
approximations into (4) to get

3 <Pz'(xj)h—jpz‘($o)) (V(l‘j)};v(m)) = ci(zo)c(o)-

JjeT

Rearranging the terms yields the update equation (the sums are again over

J)

(325 (S 12| Pty V(wy) = Vi@o)]) = cilwo)elo) £, b2

Py(o) = (55 [0 18] V(w5) = Vi@o)))

Because this equation is solved only once for each xy and each P; when that
node xg is removed from list ¢, computing the path integral cost functions
is much cheaper per cost function than computing the value function.
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