
CPSC 542D: Level Set Methods
Dynamic Implicit Surfaces and
the Hamilton-Jacobi Equation

or
What Water Simulation, Robot Path Planning

and Aircraft Collision Avoidance
Have in Common

Ian Mitchell
Department of Computer Science
The University of British Columbia

research supported by
National Science and Engineering Research Council of Canada

ONR Computational Methods for Collaborative Control MURI (N00014-02-1-0729)

January 2007 Ian Mitchell (UBC Computer Science) 2

Outline
• Part 1: Dynamic implicit surfaces

– Application: Free surface fluid simulation
– Challenge: Volume conservation

• Part 1-2: Optimal control
– Application: Reach sets for control verification

– Application: Filtering pilot commands for safety

• Part 2: The Stationary HJ PDE
– Application: Robotic path planning

January 2007 Ian Mitchell (UBC Computer Science) 3

Dynamic Interfaces
• How do you represent an evolving interface?

January 2007 Ian Mitchell (UBC Computer Science) 4

Implicit Surface Functions
• Surface SSSS(tttt) and/or set GGGG(tttt) are defined implicitly by an

isosurface of a scalar function φφφφ(xxxx,tttt), with several benefits
– State space dimension does not matter conceptually

– Surfaces automatically merge and/or separate
– Geometric quantities are easy to calculate

January 2007 Ian Mitchell (UBC Computer Science) 5

Implicit Surface Benefits
• What about three dimensions?

• What about changing topology?

shrinking dumbbell contour slice through midplane

January 2007 Ian Mitchell (UBC Computer Science) 6

Level Set Methods and Boundaries

• Level sets are just one
method of tracking interfaces
– Underlying theory: Hamilton-

Jacobi equations

• Advantages
– Geometric information easy

to extract
– Handles merging and

breaking interfaces
– Easy to implement in 3D

• Disadvantages
– Volume loss

January 2007 Ian Mitchell (UBC Computer Science) 7

Application: Animating Fluids
• State of the art evolving interface

– Merging and separating surfaces

– Smooth simulation and rendering of fluid and container
– Plausible water motion

January 2007 Ian Mitchell (UBC Computer Science) 8

Notched Sphere
• 3D version of Zalesak’s disk

• 1003 grid, notch width 5, roughly 64 particles per cell

Level Set Only Particle Level Set

Rendering by Sou Cheng Choi

January 2007 Ian Mitchell (UBC Computer Science) 9

Pushing the Limits
• Fully 3D vortex stretch of sphere (vortex in x-y and x-z planes)

– 1003 grid, error is evaluated by time reversing the flow

– [LeVeque, 1996]

Level Set Only Particle Level Set

Rendering by Sou Cheng Choi

January 2007 Ian Mitchell (UBC Computer Science) 10

Not Finished Yet
• Reports of dubious repeatability.

• What about shocks? Particle methods fail.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

y

January 2007 Ian Mitchell (UBC Computer Science) 11

Outline
• Part 1: Dynamic implicit surfaces

– Application: Free surface fluid simulation
– Challenge: Volume conservation

• Part 1-2: Optimal control
– Application: Reach sets for control verification

– Application: Filtering pilot commands for safety

• Part 2: The Stationary HJ PDE
– Application: Robotic path planning

January 2007 Ian Mitchell (UBC Computer Science) 12

Game of Two Identical Vehicles
• Classical collision avoidance example

– Collision occurs if vehicles get within five units of one another
– Evader chooses turn rate |aaaa| ≤ 1 to avoid collision
– Pursuer chooses turn rate |bbbb| ≤ 1 to cause collision
– Fixed equal velocity vvvveeee = vvvvp = 5

evader aircraft (control) pursuer aircraft (disturbance)

yyyy

5

xxxx

aaaa

vvvveeee

θθθθ

bbbb

vvvvpppp

dynamics (pursuer)

January 2007 Ian Mitchell (UBC Computer Science) 13

Reachable Sets: What and Why?
• One application: safety analysis

– What states are doomed to become unsafe?

– What states are safe given an appropriate control strategy?

target
(unsafe)

backward reach set
(uncontrollably unsafe)

safe (under appropriate control)

January 2007 Ian Mitchell (UBC Computer Science) 14

Calculating Reach Sets
• Two primary challenges

– How to represent set of reachable states

– How to evolve set according to dynamics

• Discrete systems xxxxkkkk+1 = δδδδ(xxxxkkkk)
– Enumerate trajectories and states
– Efficient representations: Binary Decision Diagrams

• Continuous systems dxdxdxdx/dtdtdtdt = ffff(xxxx)?

January 2007 Ian Mitchell (UBC Computer Science) 15

Implicit Surface Functions
• Set GGGG(tttt) is defined implicitly by an isosurface of a scalar function

φφφφ(xxxx,tttt), with several benefits
– State space dimension does not matter conceptually

– Surfaces automatically merge and/or separate
– Geometric quantities are easy to calculate

January 2007 Ian Mitchell (UBC Computer Science) 16

Collision Avoidance Computation
• Work in relative coordinates with evader fixed at origin

– State variables are now relative planar location (xxxx,yyyy) and relative
heading ψψψψ

evader aircraft (control) pursuer aircraft (disturbance)

xxxx

yyyy

aaaa

vvvveeee

ψψψψ

bbbb

vvvvpppp

target set description

January 2007 Ian Mitchell (UBC Computer Science) 17

Evolving Reachable Sets
• Modified Hamilton-Jacobi partial differential equation

final reachable setgrowth of reachable set

January 2007 Ian Mitchell (UBC Computer Science) 18

Application: Softwalls for Aircraft Safety
• Use reachable sets to guarantee safety

• Basic Rules
– Pursuer: turn to head toward evader
– Evader: turn to head east

• Evader’s input is filtered to guarantee that pursuer does not enter the
reachable set

joint work with Edward Lee & Adam Cataldo

pursuer

safety filter’s
input modification

pursuer’s input

evader’s desired input

evader

evader’s actual input

reachable set
(unsafe set)

collision set

January 2007 Ian Mitchell (UBC Computer Science) 19

Application: Collision Alert for ATC
• Use reachable set to detect potential collisions and warn Air Traffic

Control (ATC)
– Find aircraft pairs in ETMS database whose flight plans intersect

– Check whether either aircraft is in the other’s collision region
– If so, examine ETMS data to see if aircraft path is deviated
– One hour sample in Oakland center’s airspace—

• 1590 pairs, 1555 no conflict, 25 detected conflicts, 2 false alerts

January 2007 Ian Mitchell (UBC Computer Science) 20

Application: Cockpit Display Analysis
• Controllable flight envelopes for landing and Take Off / Go

Around (TOGA) maneuvers may not be the same

• Pilot’s cockpit display may not contain sufficient information to
distinguish whether TOGA can be initiated

flare
flaps extended
minimum thrust

rollout
flaps extended
reverse thrust

slow TOGA
flaps extended

maximum thrust

TOGA
flaps retracted

maximum thrust

flare
flaps extended
minimum thrust

rollout
flaps extended
reverse thrust

TOGA
flaps retracted

maximum thrust

revised interface

existing interface

controllable flare envelope

controllable TOGA envelope
intersection

January 2007 Ian Mitchell (UBC Computer Science) 21

Outline
• Part 1: Dynamic implicit surfaces

– Application: Free surface fluid simulation
– Challenge: Volume conservation

• Part 1-2: Optimal control
– Application: Reach sets for control verification

– Application: Filtering pilot commands for safety

• Part 2: The Stationary HJ PDE
– Application: Robotic path planning

January 2007 Ian Mitchell (UBC Computer Science) 22

Basic Path Planning
• Find the optimal path pppp(ssss) to a target (or from a source)

• Inputs
– Cost to pass through each state in the state space

– Set of targets or sources (provides boundary conditions)

January 2007 Ian Mitchell (UBC Computer Science) 23

Dynamic Programming Principle

• Value function VVVV(xxxx) is “cost to go” from xxxx to the nearest target

• VVVV(xxxx) at a point xxxx is the minimum over all points yyyy in the
neighborhood NNNN(xxxx) of the sum of
– the cost VVVV(yyyy) at point yyyy
– the cost cccc(yyyy→→→→ xxxx) to travel from yyyy to xxxx

• Dynamic programming applies if
– Costs are additive
– Subsets of feasible paths are themselves feasible
– Concatenations of feasible paths are feasible

January 2007 Ian Mitchell (UBC Computer Science) 24

Dijkstra’s Method
• Solution of dynamic programming on a discrete graph

1. Set all interior nodes to a dummy value infinity ∞
2. For all boundary nodes x and all y ∈∈∈∈ N(x) approximate V(y) by

DPP
3. Sort all interior nodes with finite values in a list
4. Pop node x with minimum value from the list and update V(y) by

DPP for all y ∈∈∈∈ N(x)
5. Repeat from (3) until all nodes have been popped

Boundary node V(x) = 0

Constant cost map c(y x) = 1

First Neighbors V(x) = 1

Second Neighbors V(x) = 2

Distant node V(y) = 15

Optimal path?

January 2007 Ian Mitchell (UBC Computer Science) 25

Eikonal Equation

• Value function is viscosity solution of Eikonal equation

• Dynamic Programming Principle applies to Eikonal Equation
• Fast Marching Method: a continuous Dijkstra’s algorithm

– Node update equation is consistent with continuous PDE (and
numerically stable)

– Nodes are dynamically ordered so that each is visited a constant
number of times

January 2007 Ian Mitchell (UBC Computer Science) 26

Path Generation
• Optimal path pppp(ssss) is found by gradient descent

– Value function VVVV(xxxx) has no local minima, so paths will always
terminate at a target

January 2007 Ian Mitchell (UBC Computer Science) 27

Demanding Example? No!

January 2007 Ian Mitchell (UBC Computer Science) 28

Treating the Continuous State Space
• Dijkstra’s algorithm finds paths through discrete grid

– Will not find some optimal paths even as grid is refined

• Fast marching method is consistent with continuous state space
– Simple modification to node update equation

discrete Dijkstra’s algorithm
(8 neighbors)

continuous fast
marching method

January 2007 Ian Mitchell (UBC Computer Science) 29

Treating the Continuous State Space
• Even when interpolation is used to extend discrete Dijkstra

solution to the whole domain, trajectories tend to travel along
grid edges

discrete Dijkstra’s algorithm (8 neighbors) continuous fast marching method

January 2007 Ian Mitchell (UBC Computer Science) 30

Why the Euclidean Norm?

state space
xxxx ∈∈∈∈ [0, 2π)3

• We have thus far assumed ||····||2 bound, but it is not always best

• For example: robot arm with joint angle state space
– All joints may move independently at maximum speed: ||····||

∞∞∞∞

– Total power drawn by all joints is bounded: ||····||1
• If action is bounded in ||····||pppp, then value function is solution of

“Eikonal” equation ||ϑϑϑϑ(xxxx)||pppp* = cccc(xxxx) in the dual norm pppp*
– pppp = 1 and pppp = ∞∞∞∞ are duals, and pppp = 2 is its own dual

• Straightforward to derive update equations for pppp = 1, pppp = ∞∞∞∞

xxxx1

xxxx2

xxxx3

January 2007 Ian Mitchell (UBC Computer Science) 31

Infinity Norm
• Paths may be very different

when bounded in other
norms

• Right: optimal trajectory of
two joint arm under ||····||2 (red)
and ||····||

∞∞∞∞
(blue)

• Below: one joint and slider
arm under ||····||

∞∞∞∞

January 2007 Ian Mitchell (UBC Computer Science) 32

Mixtures of Norms: Multiple Vehicles
• May even be situations where action norm bounds are mixed

– Red robot starts on right, may move any direction in 2D

– Blue robot starts on left, constrained to 1D circular path
– Cost encodes black obstacles and collision states
– 2D robot action constrained in ||····||2 and combined action in ||····||

∞∞∞∞

January 2007 Ian Mitchell (UBC Computer Science) 33

Constrained Path Planning
• Input includes multiple cost functions cccciiii(xxxx)

• Possible goals:
– Find feasible paths given bounds on each cost

– Optimize one cost subject to bounds on the others
– Given a feasible/optimal path, determine marginals of the

constraining costs

Constant cost (eg fuel)Variable cost (eg threat level)

January 2007 Ian Mitchell (UBC Computer Science) 34

Constrained Example
• Plan path to selected sites

– Threat cost function is maximum of individual threats

• For each target, plan 3 paths
– minimum threat, minimum fuel, minimum threat (with fuel ≤ 300)

threat cost Paths (on value function)

