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Abstract. Hamilton-Jacobi partial differential equations have many ap-
plications in the analysis of nondeterministic continuous and hybrid sys-
tems. Unfortunately, analytic solutions are seldom available and numer-
ical approximation requires a great deal of programming infrastructure.
In this paper we describe the first publicly available toolbox for approxi-
mating the solution of such equations, and discuss three examples of how
these equations can be used in systems analysis: cost to go, stochastic
differential games, and stochastic hybrid systems. For each example we
briefly summarize the relevant theory, describe the toolbox implementa-
tion, and provide results.

1 Introduction

Hamilton-Jacobi (HJ) partial differential equations (PDEs) have a long history
in optimal control and zero sum differential games; for example, see [1–3]. Un-
fortunately, analytic solutions of these equations can rarely be found for systems
with nonlinear dynamics, and numerical approximation of such solutions re-
quires development of a significant code base to support tasks such as gridding,
initial conditions, approximation of spatial and temporal derivatives, temporal
integration and visualization.

Until now, no such collection of code was publicly available. In the next
section, we briefly describe the Toolbox of Level Set Methods, which the first
author has released [4] and which contains the algorithms necessary to approxi-
mate solutions of a broad class of time dependent HJ PDEs. We have previously
described methods whereby these PDEs can be used to find reach sets for hy-
brid and continuous systems [5, 6], and the toolbox documentation [7] examines
several of these computations in detail.



The remainder of this paper discusses three different examples of how the HJ
PDE can be used to analyze nondeterministic continuous and hybrid systems:
cost to go, stochastic differential games for continuous systems, and hybrid sys-
tems with stochastic switching between discrete modes. The underlying system
dynamics may be nonlinear in all cases. By nondeterminism, we mean more
than just stochastic perturbations to the system dynamics. While the latter
two examples do include stochastic continuous evolution governed by Brownian
motion and stochastic discrete evolution governed by Poisson point processes re-
spectively, the first two examples also include bounded input parameters whose
probabilistic distribution is unspecified. Such nondeterministic input parameters
are typically used to model best-case control and/or worst-case disturbance in
a robust fashion.

Approximations are computed by the toolbox on a Cartesian grid of the state
space, and hence these algorithms are subject to the curse of dimensionality:
costs rise exponentially with the dimension of the system. In practice, systems
of dimensions 1–3 can be examined interactively, while dimensions 4–5 are slow
but feasible.

Despite this limitation on dimension, we feel that the toolbox and the tech-
niques described below may prove useful in at least three ways. First, as a ped-
agogical tool for exploring optimal control and differential games in nonlinear
settings—until now examples of such methods have been extremely simplistic
because of the difficulty in finding analytic solutions. Second, as a method for
checking the results of faster but more specialized algorithms and solutions; for
example, the reduced order solution of a TCP transmission rate model proposed
in [8] and validated in section 5. Finally, there are some systems of interest which
are of sufficiently low dimension to be directly analyzed, such as the aforemen-
tioned TCP transmission rate model, or simple mobile robots.

2 The Toolbox of Level Set Methods

Level set methods are a collection of numerical algorithms for approximating
the solution of time dependent HJ PDEs. The Toolbox of Level Set Methods
implements many of the basic level set algorithms in Matlab3 for any num-
ber of dimensions. Visualization, scripting and debugging tools are provided by
Matlab, and no additional toolboxes are required. Source code (in the form
of m-files) and documentation are provided [4, 7]. The algorithms on which the
toolbox is based are taken primarily from [9].

3 Matlab is a product and trademark of The Mathworks Incorporated of Natick, Mas-
sachusetts. For more details see http://www.mathworks.com/products/matlab/.
The level set toolbox described in this document was developed by the first author,
and is neither endorsed by nor a product of The Mathworks.



2.1 The Equations

The toolbox is designed to compute approximations of certain types of time
dependent HJ PDEs, a class of equations whose most general form is

Dtϕ(x, t) +G(x, t, ϕ,Dxϕ,D
2
xϕ) = 0, (1)

subject to bounded and continuous initial conditions ϕ(x, 0) = g(x) and the
monotonicity requirement [10]

G(x, t, r, p,X) ≤ G(x, t, s, p,Y), whenever r ≤ s and Y ≤ X,

where X and Y are symmetric matrices of appropriate dimension. Since the
initial conditions may not satisfy (1), they are the limit as t→ 0 of the solution
ϕ(x, t). This PDE is also sometimes called first order hyperbolic (if there is no
D2

xϕ term) or degenerate parabolic (if the term involving D2
xϕ is not of full

rank). Unless G is linear and of full rank in the highest order derivative which
is present, even with smooth initial conditions ϕ may not remain differentiable
and hence (1) will have no classical solution. The appropriate weak solution for
the problems studied below is the viscosity solution [11], and the algorithms of
the toolbox are designed to approximate this solution.

A key feature of the viscosity solution of (1) is that under suitable conditions
ϕ remains bounded and continuous for all time. This property may not hold for
other types of HJ PDE, such as some instances of the minimum time to reach
function examined in section 3. The algorithms in the toolbox make use of the
continuity assumption to achieve improved accuracy. The terms presently imple-
mented in the toolbox, and the constraints placed on the dynamics—essentially
boundedness and continuity—are designed to maintain this assumption.

Although we focus below on methods of analysing continuous and hybrid
systems with HJ PDEs, these equations have many other applications including
dynamic implicit surfaces, fluid simulation, image processing, financial mathe-
matics, and resource management [9, 12, 13].

2.2 Using the Toolbox

The specific forms of (1) currently implemented by the toolbox and discussed
further below are

0 =Dtϕ(x, t) (2)
+ v(x, t) · ∇ϕ(x, t) (3)
+H(x, t,∇ϕ) (4)

− trace[L(x, t)D2
xϕ(x, t)R(x, t)] (5)

+ λ(x, t)ϕ(x, t) (6)
+ F (x, t), (7)



potentially subject to constraints

Dtϕ(x, t) ≥ 0, Dtϕ(x, t) ≤ 0, (8)
ϕ(x, t) ≤ ψ(x, t), ϕ(x, t) ≥ ψ(x, t), (9)

where x ∈ Rd is the d dimensional state, ϕ : Rd × R → R is the level set
function and ∇ϕ(x, t) = Dxϕ(x, t) is the gradient of ϕ. Note that the time
derivative (2) and at least one term involving a spatial derivative (3)–(5) must
appear, otherwise the equation is not a time dependent HJ PDE. While the
toolbox includes other types of terms, these are the ones most relevant to analysis
of nondeterministic continuous and hybrid systems, so we restrict our exposition
to them. Other types of terms are described in the toolbox documentation [7].
We now discuss the application(s) of each of these terms in system analysis.

Motion by a constant velocity field (3) is used for solving Hamilton-
Jacobi equations for systems without input parameters. The velocity field v :
Rd × R → Rd must be continuous, and describes the deterministic trajectories
ẋ = v(x, t) of the system to be analyzed. This term is essentially a special case
of the next one. Although not discussed in detail, the example in section 5 uses
this term for its continuous evolution.

General Hamilton-Jacobi terms (4) can be used for any first order spa-
tially dependent term that is homogenous of degree one in ∇ϕ(x, t) and contin-
uous in x and t. Such terms arise in optimal control and zero sum differential
games [14]. The examples in sections 3 and 4 make use of this term.

The trace of the Hessian (5), which arises in Kolmogorov or Fokker-Plank
equations when working with stochastic differential equations [12]. The matrices
L and R must be continuous. This term appears in the PDEs in section 4.

Discounting terms (6), which arise in some types of optimal control prob-
lems [2] and in hybrid systems with nondeterminism arising from continuous
Markov chain-like switching between discrete modes [8]. The discount factor
λ : Rd × R → [0,+∞) must be continuous in x and t. Section 5 examines the
communication network model from [8], where λ can be thought of as the rate
of switching between modes.

Forcing terms (7), a catch-all for any part of the PDE that is independent
of ϕ or its derivatives. The forcing function F : Rd×R→ R must be continuous
in x and t. In a hybrid system analysis—such as the communication model in
section 5—we solve a collection of HJ PDEs, one PDE for each mode of the
hybrid system. In this case, (7) can be used for components of one mode’s PDE
that depend on the value of another mode’s solution. However, its use must
be carefully considered. Although it may look like the correct way to handle a
running cost in a cost to go type example, section 3 demonstrates an alternative
formulation that does not require a forcing term and maintains continuity of ϕ,
even if the resulting cost to go is not continuous.

Constraints on the sign of the temporal derivative of ϕ (8). Such
constraints impose the condition that the implicit surface represented by the
level sets of ϕ should not grow or should not shrink. These constraints are used
in continuous reach set computations [5, 6].



Constraints on the value of ϕ (9), via the externally supplied continuous
function ψ : Rd × R → R. In hybrid system analysis, such constraints arise in
finding reach-avoid sets [5].

The toolbox is written as a collection of components, so the process of com-
puting an approximate solution to an HJ PDE consists of choosing the appro-
priate components, providing appropriate parameters, calling a single function,
and visualizing the results. Part of the goal of the toolbox design is to em-
ulate the experience of using Matlab’s ordinary differential equation (ODE)
solvers as closely as possible, although the complexity of PDEs means that more
parameters must be provided and few defaults are available. Consequently, we
recommend that modification of and/or cutting and pasting from one or more
of the many documented examples is the best way to proceed when analyzing a
new system.

Among the parameters that the user must provide are a grid for the compu-
tational domain, initial conditions for ϕ, order of accuracy of derivative approx-
imations, types of terms (3)–(9), and any parameters needed by those terms.
The toolbox download includes the source m-files for each of the components
and the examples4. Users are encouraged to modify or add components if the
available ones do not cover the case of interest; for example, the input dependent
stochastic term mentioned at the end of section 4.

Hybrid systems are not directly supported by the toolbox, because there is no
consistent modeling language or notation for general nondeterministic, nonlinear
hybrid systems. Until such time as one is available, we hope that the example
in section 5 and those in [7] make clear that analysis of such systems using the
toolbox is still quite feasible even if the discrete dynamics must coded by hand.

3 Cost To Go

For our first example, we look at a time-independent HJ PDE, also called a
static [6] or degenerate ellipic [10] equation. Consider a closed target set T for a
system evolving according to dynamics ẋ = f(x, b). The single input parameter
b ∈ B, where B ⊂ Rdb is compact and b(·) : [0, T ] → B is measurable, is
attempting to minimize the cost to go to arrive at the target

ϑ(x) = min
b(·)

∫ T

0

`(x(t), b(t))dt, (10)

where the running cost `(x, b) > 0 is continuous and T = min{t ≥ 0 | x(t) ∈ T }
is the time of arrival at the target set. If ` ≡ 1, then ϑ(x) is the minimum time
to reach function.
4 The current release version 1.0 of the toolbox includes code for the terms (2)–(4),

the constraints (8) and (9), and examples of both continuous and hybrid system
reach set computations. This release also includes the components necessary for the
example from section 3, although the code for the example itself is not included.
Code for the terms (5)–(7) and all of the examples from this paper will be included
in the version 1.1 release, scheduled for December 2004.



Following standard procedures [2] it can be shown that the cost to go function
is the viscosity solution of the HJ PDE

Ĥ(x,Dxϑ(x)) = `(x, b) in Rd \ T ,
ϑ(x) = 0 on ∂T ,

Ĥ(x, p) = min
b∈B

p · f(x, b).
(11)

Clearly this PDE is not of a form directly supported by the toolbox—it does not
even contain a temporal derivative. However, following [15] we can solve an aux-
iliary time-dependent HJ PDE using the toolbox and extract an approximation
of the solution to (11). To summarize those results, let

G(x, ϑ(x),∇ϑ(x)) = 0 in Rd \ T ,
ϑ(x) = 0 on ∂T ,

(12)

be a general first order static HJ PDE, and assume that the boundary conditions
are noncharacteristic

d∑
i=1

pi
∂G(x, ϑ, p)

∂pi
6= 0 on ∂T . (13)

A time-dependent HJ PDE is found by making the changes of variables

ϑ(x)← t and ∇ϑ(x)← ∇ϕ(x, t)
Dtϕ(x, t)

in (12) and algebraic manipulation of the resulting equation into the form

Dtϕ(x, t) +H(x, t,∇ϕ(x, t)) = 0, (14)

where (13) ensures that this manipulation is locally feasible. The corresponding
initial conditions are ϕ(x, 0) = 0 on ∂T , ϕ(x, 0) < 0 inside T and ϕ(x, 0) > 0
on Rd \ T , with ϕ(x, 0) a continuous and strictly monotone function of distance
to T near its boundary. Typically ϕ(x, 0) is chosen as a signed distance function
for T .

Returning to the cost to go example, we find that the transformation process
described above leads to the time-dependent HJ PDE (14) with Hamiltonian

H(x, t, p) = min
b∈B

p · f(x, t)
`(x, b)

, (15)

which is solved using a combination of terms (2) and (4) from the toolbox. The
condition (13) in this case requires that ∇ϕ(x, 0) · f(x, b) 6= 0 on ∂T , which is
equivalent to requiring that the vector field f not be tangent to the target set.

As a concrete example, we consider the minimum time to reach the origin
for a double integrator [16]. The two dimensions are position x1 and velocity x2.



(a) (b)

Fig. 1. Contour plots of the minimum time to reach a target at the origin for a double
integrator with unit magnitude input. The largest contour represents a time to reach
of 2.4. In figure 1(a), the target is the origin. In figure 1(b), the target is the circle of
radius 0.2 centered at the origin.

The system parameters are

f(x, b) =
[
x2

b

]
, T =

{[
0
0

]}
,

`(x, b) = 1, B = [−1,+1],
ϕ(x, 0) = ‖x‖2.

After solving (14), we set

ϑ(x) = {t | ϕ(x, t) = 0}. (16)

In practice, ϑ(x) is constructed during the integration of (14) so that the entire
time history of ϕ need not be stored at once. Figure 1(a) shows a contour plot
of ϑ(x).

Interestingly, in this particular case (cost to go with no discount), it is possible
to derive the same HJ PDE (14) with Hamiltonian (15) starting from the reach
set theory [6], but without the noncharacteristic assumption (13). The resulting ϕ
function is still continuous in time and space, but it may be constant with respect
to t at fixed x; consequently, we cannot uniquely define ϑ using (16). Choosing
ϑ(x) = min{t | ϕ(x, t) = 0} is a reasonable alternative, although this ϑ will no
longer be continuous (and hence the standard viscosity solution theory does not
apply). Figure 1(b) shows a contour plot of such a ϑ for T = {x | ‖x‖2 ≤ 0.2}.
The contour lines of the approximation become very tightly packed along the
curves where the analytic ϑ is discontinuous.



A variety of different algorithms have been more recently proposed for ap-
proximating minimum time to reach, cost to go or general static HJ PDE so-
lutions for systems with inputs and nonlinear dynamics [17–20]. Because the
explicit time-dependent solvers of the toolbox are timestep restricted by a CFL
condition, it is likely that the method described above is the slowest of the algo-
rithms. However, it is quite general—although not derived above, this method
works for zero sum differential games, where (10) and (15) are modified to include
a maximization over an input a ∈ A which may appear in both the dynamics
f and the running cost `. The resulting Hamiltonian is nonconvex in ∇ϕ. Fur-
thermore, because the function ϕ on which derivative approximations are taken
is continuous, this algorithm has the potential for better accuracy than those
methods which depend on differentiating the sometimes discontinuous ϑ func-
tion directly. Quantitative comparisons are challenging, because implementations
of the other algorithms are not publicly available at the present time.

4 Stochastic Continuous Systems

The nondeterminism in the previous example was entirely due to input param-
eter b (and possibly a) whose value is bounded (and measurable with respect
to time), but otherwise unconstrained. Another class of nondeterminism which
appears often in models involves parameters whose values are drawn probabilis-
tically from some distribution. A popular model of system evolution in such cases
is the stochastic differential equation (SDE)

dx(t) = f(x(t), t, a, b)dt+ σ(x(t), t)dB(t), x(t0) = x0, (17)

where B(t) is a Brownian motion process of appropriate dimension, the drift
term f represents the deterministic component of the system evolution, and
the diffusion term σdB(t) represents the probabilistic component of the system
evolution. The functions f and σ must be continuous in x and t. If present, the
input parameters a and/or b are treated the same manner as in the previous
section. We interpret (17) in the Itô sense [12].

The mechanism by which we analyze the behavior of the system is the
stochastic differential game (SDG), whose expected cost is defined as

ϕ(x0, t0) = E

[
inf
b(·)

sup
a(·)

(∫ T

t0

`(x(s), s, a(s), b(s))ds+ g(x(T ))

)]
, (18)

where the finite horizon T is a constant. The order of the optimization can be
swapped, and if the optimal choice of the outer input (b in this case) depends
on the choice of the inner input (a in this case), then a suitable definition of
nonanticipative strategies must be introduced [14]. The running cost ` and ter-
minal cost g should be continuous in their parameters. The theory of first order
viscosity solutions was extended [21, 22] to determine that this expected cost is
the viscosity solution of the second order PDE

Dtϕ(x, t) +H(x, t,∇ϕ(x, t)) + 1
2 trace

[
σ(x, t)σT (x, t)D2

xϕ(x, t)
]

= 0. (19)



Fig. 2. Expected cost contours for the double integrator with stochastic viscosity. Dot-
ted lines show the 0.1 (inner circle) and 0.9 (outer circle) terminal cost contours. Dashed
lines show the same contours of the expected cost at T − t = 0.5 for the system without
stochastic viscosity. Solid lines show the expected cost at the same time for the system
with stochastic viscosity.

with Hamiltonian

H(x, t, p) = max
a∈A

min
b∈B

[p · f(x, t, a, b) + `(x, t, a, b)] , (20)

and terminal conditions ϕ(x, T ) = g(x). If the order of the optimization in (18)
was swapped, so is the order of the optimization in (20). Transformation of (19)
into an initial value problem is accomplished by the change of variables t← T−t.
Provided that the user can perform the static optimization in (20) for fixed x, t
and p, the initial value version of (19) can be solved in the toolbox by combining
terms (2), (4) and (5).

As a quantitative example we return to the double integrator, but this time
impose a stochastically varying force whose standard deviation is proportional
to the velocity (akin to a stochastically varying viscosity)

dx(t) =
[

x2

b− k1x2

]
dt−

[
0

k2x2

]
dB(t).

The goal of the input will be to drive the system to the origin. To reward terminal
states close to the origin and penalize those further away, we use a terminal cost
criterion that is near zero close to the origin, and grows quickly and smoothly



towards one as distance increases. Mathematically,

ϕ(x, T ) = g(x) = 1−
[
1 + exp

(
‖x‖2−ρ

ερ

)]−1

,

where smaller ρ encourages the system closer to the origin, and smaller ε narrows
the region where the cost changes from zero to one. The parameters chosen for
simulation are

`(x, t, b) = 0, B = [−1,+1],
k1 = 0.5, k2 = 1.0,
ρ = 0.2, ε = 0.2.

Results shown in figure 2 compare the expected cost at T − t = 0.5 with (k2 as
above) and without (k2 = 0) stochastic viscosity. Note that the region expected
to achieve very low cost (ϕ(x, t) ≤ 0.1) shrinks when k2 > 0, but the region able
to achieve at least some cost reduction (ϕ(x, t) ≤ 0.9) grows.

The theory [21, 22] is more general than (17) would imply—it allows σ to
depend on differential game inputs a and b as well; for example, perhaps the
noise is multiplicative in the inputs. The resulting HJ PDE includes optimization
over a and b on a single term containing both ∇ϕ and D2

xϕ. The toolbox does
not presently support such a term, but one could be added.

5 Stochastic Hybrid Systems

For our final application of the toolbox, we choose an example from the growing
theory of stochastic hybrid systems. In particular, we take a model of the trans-
mission window size for the Transmission Control Protocol (TCP) that handles
reliable end-to-end delivery of packets between computers on the Internet [8].
In this model a continuous approximation of the window size evolves determin-
istically in one of several modes of the hybrid system, but jumps stochastically
between the modes at a state-dependent rate.

Following [23] a stochastic hybrid system (SHS) for a set of discrete modes q ∈
Q and continuous states x ∈ Rd is defined by a continuous differential equation
ẋ = f(q, x, t), a collection of m discrete transition maps (q, x) = φj(q−, x−, t)
for j = 1, . . . ,m, and for each transition map a continuous λj(q, x, t) ≥ 0 that
can be thought of as a transition rate for that map.

If the resets φj are identity maps with respect to the continuous state (q, x) =
φj(q−, x, t), it is relatively straightforward to derive a Kolmogorov or Fokker-
Planck like PDE for this system

Dtϕ(q, x, t) +∇ϕ(q, x, t) · f(q, x, t)

+
m∑

j=1

λj(q, x, t) (ϕ(φj(q, x, t), t)− ϕ(q, x, t)) = 0
(21)

This PDE can be solved with the toolbox using terms (2), (3), (6) and (7) on
a vector of level set functions, with one function and PDE for each mode q.



Although it looks like a discounting term, λj(q, x, t)ϕ(φj(q, x, t), t) is treated as
a forcing function with (7) because it depends on the value of another mode’s
ϕ. Given fixed finite horizon T > 0 and continuous terminal condition ϕT (q, x),
the solution of (21) at t0 < T is

ϕ(q0, x0, t0) = E[ϕT (q(T ), x(T ))] where q(t0) = q0 and x(t0) = x0.

Extensions of this simplistic model to nonidentity reset maps and to stochastic
continuous dynamics are explored in [8]. The PDEs thereby identified have so
far been implementable using components of the toolbox.

To demonstrate the process of implementing such PDEs in the toolbox, we
use the first TCP example from [8]. In this model, the files to be transmitted
are drawn from a mixture of M exponential distributions characterized by their
mean file sizes ki, i = 1, . . . ,M (in packets). The TCP connection has three basic
modes: no current transmission (OFF), slow-start (SS), and congestion avoidance
(CA). Because the rate at which transmissions are completed depends on the size
of the file being transmitted, however, the SHS has a copy of each of the latter
two modes for every element of the file size distribution; consequently, there are
2M + 1 modes in the SHS.

In every mode, the only continuous state variable is the transmission window
size w (in packets), whose deterministic dynamics depend on the mode. There are
three distinct types of mode switch. A transmission initiation takes the mode
from OFF to one of the SSi modes, and occurs at a w-independent rate. A
transmission completion takes the mode from either SSi or CAi to OFF, and its
rate is proportional to k−1

i and the current w. A packet drop takes the mode
from either SSi or CAi to the corresponding CAi, and occurs at a rate linear in
the current w. There are a total of m = 5M separate mode switches, and all
involve resets of the window size w. For more details on the SHS, see [8, 23].

The variable of interest in this model is the transmission rate r = w/RTT,
where RTT is the round trip time (in seconds). Because the reset maps affect the
continuous state, we must solve a modified version of (21), although the same
basic terms are involved. To determine the mean rate over a collection of modes
Q′ ⊂ Q, we use terminal conditions

ϕT (q, w) =

{
r = w

RTT , if q ∈ Q′;
0, otherwise.

(22)

We examine 3 + M different cases: Qtotal = Q \ OFF, QSS = {SSi}Mi=1, QCA =
{CAi}Mi=1, and for each i = 1, . . . ,M a Qi = {SSi,CAi}.

Because the window size is reset upon completion of the transmission of each
file, we can expect that along any trajectory of the system the effect of that
trajectory’s initial window size will eventually disappear. Therefore, to find the
mean rate we solve the appropriate HJ PDEs until they converge to a constant
value, which will be the expected long term rate over the modes in Q′. The
standard deviation of the rate σ(r) is found by substituing r2 for r in (22) and
the formula σ2(r) = E[r2] − E[r]2. Using the parameters for the M = 2 case



Fig. 3. Expected rates and standard deviations as estimated by the toolbox for the
stochastic hybrid system model of TCP flow, using the two component model of transfer
file sizes. Compare with [8, figure 4].

from [8], we calculate the rate mean and standard deviation for each of the
5 cases (total, SS, CA, small files, and medium files) over a variety of packet
drop rates. Results are shown in figure 3, and correspond well with those in [8,
figure 4].

While the procedure outlined above is much more computationally intense
than the analytic formulas deduced in [8], it is more general in several respects.
First, as the theory develops it can be extended through other terms in the tool-
box to treat stochastic continuous evolution and potentially evolution dependent
on control and/or disturbance input parameters. Second, it provides a method
of checking the analytic solution, which made assumptions regarding the third
moment of the rate distribution in order to find closed form equations.

6 Conclusions

We have demonstrated several applications of HJ PDEs to the analysis of non-
deterministic continuous and hybrid systems, and how the Toolbox of Level Set
Methods can be used to approximate the solution of these nonlinear PDEs. Fur-
thermore, we have only touched on a small fraction of the problems in which such
PDEs could prove useful. Examples of extensions include SDGs with boundary
conditions [12, 10] and SHSs where both the continuous and discrete evolution
is stochastically driven [23–26]. We encourage others to modify and contribute
to the toolbox, and we look forward to adding appropriate new features as the
theory advances and compelling examples become available.

Acknowledgements: The first author would like to thank Andrew L. Zim-
dars for collaborative work examining HJ PDEs for stochastic continuous and
hybrid systems, and Professor João P. Hespanha for providing parameter values
used in his SHS model of TCP.
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