Dimensions of Experientialism for
Software Engineering Education

Reid Holmes
University of British Columbia
Vancouver, BC, Canada
rtholmes@cs.ubc.ca

ABSTRACT

There is a gap between the abstract concepts taught in the classroom
and the skills needed for students to succeed once they join the
workplace. The Undergraduate Capstone Open Source Projects
(UCOSP) program was developed to narrow this gap by enabling
undergraduate computer science students to have an experiential
software engineering learning opportunity. Over the past 8 years,
737 students from 30 universities have taken part in this program.

In this paper, we sought to understand student perceptions of
how UCOSP complements traditional classwork by providing real-
world software engineering exposure. We report on a qualitative
analysis of 2,203 quotes collected from 167 students from 18 uni-
versities over six academic terms. We analyzed these data using a
grounded theory approach based on open coding to gain insight
into the key benefits of the program from the students’ perspec-
tive. We found that students highly value being able to apply their
classroom knowledge to real, novel tasks, for real projects with a
community of users, while receiving real mentorship from a mem-
ber of the development team. Further, we found that contributing
to real software systems provides greater understanding of soft-
ware engineering than might otherwise be obtained through more
traditional means.

Our goal is that our analysis can help fellow educators add addi-
tional experimentalism into their existing programs.

CCS CONCEPTS

« Social and professional topics — Software engineering ed-
ucation; » Software and its engineering — Open source model;

KEYWORDS
experiential learning, software engineering education, capstone

ACM Reference Format:

Reid Holmes, Meghan Allen, and Michelle Craig. 2018. Dimensions of Ex-
perientialism for Software Engineering Education. In Proceedings of 40th
International Conference on Software Engineering: Software Engineering Edu-
cation and Training Track (ICSE-SEET’18). ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3183377.3183380

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5660-2/18/05....$15.00
https://doi.org/10.1145/3183377.3183380

Meghan Allen
University of British Columbia
Vancouver, BC, Canada
meghana@cs.ubc.ca

Michelle Craig
University of Toronto
Toronto, ON, Canada

mcraig@cs.toronto.edu

1 INTRODUCTION

Experiential education has been proposed as a way for learning in
situ enabling students to have non-traditional educational experi-
ences that link work, education, and personal development [14].

The Undergraduate Capstone Open Source Projects (UCOSP)
program was created to provide students with a course-based ed-
ucational experience that, as much as possible, parallels software
engineering in the real world [24]. Students are matched with open
source projects, work on distributed teams, and are mentored by
professional members of the development team. This program has
been running for 8.5 years with 30 post-secondary institutions and
a total of 737 students.

For the past five years we have instrumented UCOSP to collect
data about its efficacy. We deployed three surveys each term to
investigate students’ activities in the program and their perceptions
of the program. One hundred and sixty-seven students who partici-
pated in the program, from 18 different Canadian universities, con-
sented to participate in at least one of the surveys. We performed a
high-level qualitative analysis of this survey data using a grounded
theory approach based on open coding and found that students’ ex-
periences in UCOSP are overwhelmingly positive. From these data,
three high-level aspects of experientialism emerged. First, students
appreciated working on real projects. Second, they found value
in performing real tasks they viewed as having practical impact.
Finally, they valued receiving real industrial mentorship.

These three dimensions of reality provide a lens to examine the
experientialism of an intervention as it applies to software engi-
neering education. First, students can be exposed to real projects.
These projects expose students to software systems that are used
in practice and have actual users who can be impacted by their
contributions. Second, students can be given real tasks. That is,
the tasks they perform for the projects provide novel, valuable
functionality. Finally, students can be guided through the software
engineering process by real mentors. That is, the mentors originate
in the projects themselves. These mentors are able to provide effec-
tive guidance to the students in how software is built in practice,
and are able to shepherd contributions so they can be deployed.

The main contribution of this paper is a qualitative analysis of
student perceptions of a experiential software engineering educa-
tion program collected via a longitudinal study. From this analysis
we demonstrate that:

e Working on real projects helps students understand the com-
plexity, tools, and processes used to build production sys-
tems.

e Students value working on real tasks that they perceive as
having impact on real end users.

https://doi.org/10.1145/3183377.3183380
https://doi.org/10.1145/3183377.3183380

ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

o Industrial mentorship provides a wealth of tangential bene-
fits to software engineering capstone courses.

We hope our analysis can help curriculum-design committees con-
sider these aspects of experientialism when augmenting their pro-
grams with more experiential-oriented courses and activities.

2 BACKGROUND AND RELATED WORK

Employers, educators, and researchers have long recognized a con-
ceptual gap between what computer science students learn in a
typical undergraduate education, and the skills they need as they
begin careers as software developers [4, 9, 20]. One recurring theme
is a push for educators to provide students with the opportunity to
work with current industry tools and processes on legacy codebases
with long histories and communities of users and already-existing
technical debt [1, 8, 16]. In other words, for students to work on
real projects.

2.1 Real Projects

Some software engineering educators have addressed the real projects
dimension of experientialism by using existing open-source (OSS)
projects [1, 8, 10, 11, 15, 16] with large existing codebases. Often this
codebase is only used as a starting point for the student projects and
while students make improvements to the code - either fixing bugs
or adding new features — the changes don’t ever become part of the
official release of the project [5, 16]. Allen et al., require students
to make improvements to a project (Dr. Java) owned by their de-
partment [1]. Billingsley and Steel try to mimic a real development
community by having groups of 3-4 students each add different
features to the same OSS project [5]. Students are gaining useful
experience with existing projects in these courses, but in UCOSP
each student also makes a contribution that will be deployed.

Other instructors mimic real projects with course-specific, non
open-source projects. Szabo had students work on existing code-
bases from student projects from a previous offering of the course [25],
while Murphy et al. had students work on codebases from a dif-
ferent course at the same institution [17]. Nurkkala and Brandle
developed a software studio model where student teams work on
one project over multiple years [19].

All of these courses meet our first dimension of experientialism,
real projects, as they had existing codebases, but only Fagerholm et
al. integrated real mentors and real tasks [10, 11]. In other words,
some aspects of the learning experience in most of these courses
were simulated rather than real.

2.2 Real Users and Clients

Some courses focus on the real tasks dimension of experiential
learning by designing courses where the projects (often not existing
before the onset of the course) are developed to meet a genuine
need of actual users [1-3, 6, 7, 17, 18, 21]. In these courses, students
are motivated to produce a usable final product, but they do not
experience the challenge of working with legacy code and are not
forced to work with existing processes and tools. Students are also
are not a part of a large development community with real mentors.

Of the courses that work with real clients, some require all stu-
dents to complete novel functionality [3, 6, 7, 19, 21], thus meeting
our definition of real tasks. Others require students to complete

Reid Holmes, Meghan Allen, and Michelle Craig

real tasks proposed by students rather than a client [5] or from
an open source project owned by the department [1]. Ellis et al.
describe multiple ways in which students can make novel contribu-
tions to HFOSS projects ranging from updating documentation to
contributing code [8]. These course projects provide more experi-
ential software engineering exposure than traditional courses in
which every student works on the same project, but in some cases
the students are writing greenfield code or are unmentored, and
therefore not following industrial process or tools.

2.3 Real Mentors

In comparison to a typical software engineering course, where the
entire class solves the same assignments, a real-world course where
each group is writing code for a different feature or a different
project is much more work to manage [22]. Many courses hire
project managers, coaches, or mentors to alleviate the mentorship
burden from the instructor [3, 7, 17, 18]. Very few courses provide
real mentorship via existing developers from the project team. Allen
et al. provide mentorship to the students by hiring the existing
project developers as teaching assistants to each manage a group
of 2-6 students working on a different new feature [1]. Bloomfield
et al. recruit local software developers to mentor their students as
they create software for a non-profit, but these developers are not
from the non-profit [6].

To our knowledge, the only other software engineering educa-
tional program that provided real projects, real mentors, and real
tasks was the Facebook Open Academy, a collaboration between
Stanford and Facebook from 2012-2014 in which students from
25 international universities worked on 22 open source projects
and were mentored by members of the open source team [10].!
Fagerholm et al. argue that the mentoring process used by Face-
book Open Academy and UCOSP is not only an effective method
of experiential learning for students but also a useful technique
on-boarding new open source developers in general [10].

2.4 Undergraduate Capstone Open Source
Projects

Like other programs, the Undergraduate Capstone Open Source
Projects (UCOSP) capitalizes on the availability of open source
projects with established developer communities and existing users.
But rather than simply using these projects as a source of legacy
code and simulating the rest of the experience, as was done by
McCartney et al. [16] and Billingsley and Steel [5], UCOSP provides
all three aspects of experientialism.

Each semester, UCOSP recruits open source projects to partici-
pate in the program. Some projects have participated consistently
for many terms. Our expectations are that the projects are pre-
existing, have a developer community, and have a user base. As
one example, ReviewBoard has consistently been one of the project
participants. ReviewBoard is an open source code review tool that
is used by thousands of open source and industrial teams [13]. The
ReviewBoard codebase has approximately 600,000 lines of code and
8,574 commits from 181 contributors.

!In 2013 the UCOSP code sprint was co-located with the Open Academy Hackathon
and in one semester of 2014, UCOSP fully participated in the Open Academy.

Dimensions of Experientialism for Software Engineering Education

ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

ID #Cards Question Text

01 348 What do you feel you gained from your UCOSP experience?

Q2 345 Was UCOSP any different than your prior courses? If so, how?

Q3 282 Did UCOSP motivate you differently compared to in-class courses?

04 279 What specific skills from previous CS courses prepared you for UCOSP?

Q5 243 How do you keep up with the current project status?

Q6 242 What aspects of the course were most useful?

Q7 237 What aspects of the course were a waste of time?

Q8 327 If you have had a co-op term or paid internship, did you learn anything different from your UCOSP experience?

Table 1: Post-program survey questions. The answers to these questions were split into 2,203 cards.

Students apply to UCOSP and receive course credit — typically
an upper-year project or directed-studies credit — via their own
institutions.

A faculty member at each institution commits to selecting and
supervising their students who participate in the project. These
home faculty members meet with the students biweekly to ensure
that they are making acceptable progress. Due to financial and
logistical constraints, each institution may only select between two
to six students. Demand for UCOSP is often high and therefore only
the strongest students are selected. The supervision required by
the home institution faculty member is light in comparison to the
supervision that would be required in a typical upper-year project
or directed-studies course.

The UCOSP program matches students with the open source
projects based on the students’ preferences and team sizes that are
set by the project mentors. Team sizes typically range from three
to 10 and include students from multiple institutions.

The course kicks off with a three day, face-to-face sprint which
is mandatory for all students and project mentors. Once the sprint
is over, students continue to work on their tasks and typically com-
municate with their project mentors and teammates via the usual
channel for their project. They often have online video meetings
weekly in addition to using chat tools and issue tracking systems.

A steering committee, currently comprised of four computer
science faculty members from Canadian institutions, oversees the
project selection, student/project matching, sprint organization,
and grades. The steering committee requires project mentors and
home institution faculty supervisors to agree to meet the program’s
expectations for meeting with students, submitting feedback, and
assigning grades. Project mentors are required to give mid-term and
end-of-term feedback that is relayed to the students. The steering
committee collects suggested final grades from the mentors, vets
them for consistency, and shares them with the home institution
faculty supervisors who assign course grades.

For further information on UCOSP, Stroulia et al. [24] provide
a thorough description of the program and Holmes et al. [12] dis-
cuss the logistics of the program and the lessons that the steering
committee learned over the years.

3 METHOD

The objective of this research project was to understand the bene-
fits students felt they received from UCOSP, specifically in terms

of how these benefits differed from their traditional coursework.
Specifically, we wanted to answer the following research question:

RQ How do experiential software development projects augment
traditional computer science curricula?

To answer our research question, we performed a longitudinal
qualitative evaluation that surveyed students who participated in
UCOSP to gain an understanding of their perception of the program
and how it related to their normal coursework.

3.1 Participants

For our evaluation we surveyed 167 students. To gain admission
into the UCOSP program these students had to be in third or fourth
year and be selected by faculty at their home universities. In general,
faculty were advised to select their strongest students who they
believed would benefit from the UCOSP program. Universities that
had strong co-op programs often tried to select participants who did
not have co-op experience. The 167 survey respondents came from
18 different universities across Canada. These schools ranged from
small local universities with < 3,000 students, to large research-
intensive universities with > 60,000 students. Our participants were
surveyed over six different academic terms between September 2013
and April 2016.

3.2 Data
We collected feedback from students at three specific points:

Pre-program: After students were selected by their home univer-
sity faculty, but before they had been assigned to
projects, we asked them several questions about
their project preferences and past experiences.

Post-sprint: All students in the program met together for a
co-located sprint over a single weekend. After
this was complete we solicited feedback on their
sprint experience.

Post-program: Once the program was complete, but before they
had been given their feedback and assessment,
we conducted a final survey to gather feedback
on the program.

Throughout the informed consent process students were clearly
told that the UCOSP steering member conducting the surveys would
have no access to the grades, and those involved in assessment
would only see anonymized survey data (and even then only after
the term was over and grades were submitted).

ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

Reid Holmes, Meghan Allen, and Michelle Craig

2 coders
independently coding

High inter-

10% of cards /~ >| rater reliability
Remove 6 course- ()
|_—specific codes ()

Collect data
for 6 terms Q1 |[Q2 || Q3 || Q4
=T Remove all codes =,
Q5[Q8 || Q6 || Q7 (all about program
167 Student administration)
responses Merge remaining codes

Split responses

[Q1, Q2, Q3, Q4, Q5, Q8]

Group codes

into cards
thematically
Perform open L\
coded card sorts 30
2,203 Cards | 4, each question Codes 5 Themes _>©

Figure 1: Qualitative analysis process.

Students were required to complete the surveys at the conclusion
of the course. Approximately 95% of students consented to have
their responses included in this study.?

After a cursory examination of the data, we concluded that the
pre-program and post-sprint surveys were mainly of interest for
the administration of the program. We also realized that the post-
program surveys best reflected the students’ experiences and pro-
vided the most insight into the value of the program. The remainder
of this paper only focuses on these post-program questionnaires;
the questions asked of the students are given in Table 1.

3.3 Analysis

We analyzed these data using an grounded theory approach based
on open coding [23]; an overview of our coding process is given in
Figure 1. We ran an automated program to transform each student
response into a series of cards. Each card consisted of a single
sentence; sentences that only consisted of a single word (usually
“Yes” or “No.” were joined to the sentence that followed it). After
this process, we had 2,203 total cards.

All three authors worked to sort the cards for each question
independently to derive question-specific codes. Each card was
assigned a single code, but if tricky cards were encountered we
would discuss the best code to assign them to. After coding each
question we examined all the codes for cohesiveness and merged
smaller codes and refined larger codes as needed.

To ensure we were able to consistently code our cards, we per-
formed an inter-rater reliability analysis. Two coders independently
coded the same 40 of the 348 cards from Q1. We used Krippendorf’s
alpha to capture our agreement for this coding exercise; the result-
ing score of 0.87 indicated a high level of agreement between the
two coders.

Once each question had been processed independently, we next
analyzed the codes between questions to see how they could be
merged into a comprehensive overview of the students’ feedback.

2The exact figure is not available; the responses from non-consenting students were
deleted as a part of the anonymization process and their original records destroyed.

While doing this we realized that six codes from Q4 were related
to previous courses that the students had taken and so we subse-
quently removed them from the rest of the analysis. We also found
that Q6 and Q7 were mostly about program administration; these
codes were not merged with the other categories, although the
cards themselves were not removed. The remaining codes from
Q1, Q2, Q3, Q4 (less the six removed codes), Q5, and Q8 were then
merged and given consistent names. During this process, five high-
level themes were also identified to provide further hierarchical
context to the individual codes.

4 RESULTS

In this section we present the results of the qualitative study. The
full list of codes from the study can be seen in Table 2. The ‘general’
code within each theme corresponds to quotes which fall within
the theme but not one of the more specific codes. To summarize
each code, we created a ‘synthetic quote’ to capture the kind of
sentiment reflected by the cards sorted into that code.

We will first discuss the first three of the five high-level themes
(Real Projects, Real Tasks, and Real Mentorship) as these provide
the most interesting insight into the program from the students’
perspective. We then discuss the final two themes (Soft Skills and
Technical Skills) as they are somewhat less surprising given the
project-based nature of UCOSP.

Students were almost universally positive about their UCOSP
experience, “the whole UCOSP journey was very rewarding and a
great learning experience” (Q7. 2014.04_P05) and that the time was
well spent, “There was no wasted time and every hour I spent on the
project felt useful” (Q7. 2014.04_P24).

4.1 Real Projects

By its nature, UCOSP forces students to work on legacy codebases
that are deployed to real users. Students appreciated the chal-
lenge these large projects provided:

“I learned how to deep-dive into a large codebase, trace how things

Dimensions of Experientialism for Software Engineering Education

ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

Theme

Topic

Synthetic Quote

Real Projects

General

Large systems & codebases
Communication processes

Communication tools

I worked with a large real system.
I'learned how to communicate in a distributed setting.
T used tools to communicate in a distributed setting.

OSS process Ilearned how to get started with and contribute to an OSS project.
OSS projects I worked on an OSS project.
Real Tasks General
Impact on real users My work had meaningful impact on real users.
Real requirements The project was not a throwaway toy and had novel requirements.
Code quality I experienced the importance of quality & testing in real systems.
Code review I experienced code review.
Applied learning My work was applied and was not just ’in theory’ like regular coursework.
Real Mentorship General
Mentorship My mentor provided meaningful feedback, tasks, and contacts.
Professional developers I worked with professional / seasoned developers.
Professionalism UCOSP feels more like work/co-op than a course.
Networking UCOSP will help me build my professional network.
Independent learning I developed techniques for learning how to make progress independently.
Distributed teamwork I'learned how to work with a remote/distributed team.
Soft Skills General
Resume building UCOSP will help me fill a gap in my resume.
Career planning UCOSP will help me think about my future carrer direction.
Communication I improved my communication skills as a software developer.
Teamwork & collaboration Ilearned how to work in a team.
Time management I learned how to manage my time, meet deadlines, and motivate myself.
Technical Skills ~ General
Languages & frameworks I was exposed to new/relevant languages and frameworks.
Tools I was able to use new/relevant development tools.

Program understanding
Programming experience

I'learned to read and work with other people’s code.
UCOSP provided me with practical development experience.

Table 2: Overview of high-level themes and subtopics within those themes from the open coded card sort. Each theme had a
general topic to capture quotes from within that theme that did not otherwise fit in a more specific topic.

worked, and figure out how to accomplish what needed to be done.”
(Q1. 2015.12_P17)

The idea that these projects also originated in industry provided
additional motivation, “complex code base with a major company.”
(Q1. 2014.04_P25) One major challenge in this environment was
complexity of the systems students were forced to learn:

“At first it was very intimidating to jump into such a massive project
but I eventually learned how to effectively navigate through a project
of this scale, to take the extra 5 or 10 mins to ensure a method you’re
thinking about writing hasn’t already been implemented somewhere,
and how to manage and switch between different branches associated
with separate tasks.” (Q1. 2015.12_P25)

Several students referenced the differences between the green-
field development that they would typically experience in their
course work and working on an established project:

“The fact that some of the existing code wasn’t that great was actually

a plus as it gave me more practice identifying problems and making
sense out of other people’s decisions.” (Q1. 2015.12_P12)

These projects really forced students to work independently
to effectively contribute, especially since they were making novel
contributions to the projects (in contrast to writing the same code
as their classmates), “Also UCOSP promotes self-learning and trying
to figure out answers to your questions yourself before asking the
mentors.” (Q6. 2014.12_P35) These sentiments also appeared within
the Technical Skills theme as students had to think about different
ways to understand their systems.

By contributing to active development communities, stu-
dents were forced to adopt their tools, processes, and cultural
norms:

“The most important thing I have learned is how to get started on

contributing to an open source project, including (but not limited to)
how to start working on an existing codebase, how to communicate

ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

with the community to get help (and later on how to help others).”
(Q1. 2014.12_P29)

In particular, the community aspect of the project worked to
encourage students to behave appropriately, “It was an amazing
experience to see to see the dynamics of an open-source project and
get to participate in it.” (Q1. 2014.04_P17)

Working with these systems also emphasized the importance
of real development processes on overall success:

“This gave me an idea of what real software development progress can
be like and I learned about different techniques for documentation,
continuous integration, and automated testing.” ((Q1. 2015.12_P02))

These processes were also different than in the classroom due to
the different processes used by each project “Learning new processes
and systems that are not taught in school.” (Q6. 2014.12_P02)

Many students also expressed positive feelings about contribut-
ing to OSS systems:

“UCOSP was a great introduction to being an open source contributor
for me, so much so that in addition to contributing I will be a mentor
for new batches of students starting this summer.” (Q1. 2014.04_P09)

By working on real projects students were subjected to many of
the difficulties facing professional developers. This was meaningful
in terms of the scale of the code they were working with and the
complexity of the interactions within the codebases. This forced
students to reason differently about the code they were working
with since all of it was new to them and written by other developers.

4.2 Real Tasks

The tasks that students work on are expected to be novel contribu-
tions to their projects. This means the work must be of value, must
end up being deployed as part of the project, and must not be trivial.
Interestingly, one aspect of these tasks students most appreciated
was their impact on real users:

“In some other courses it can sometimes feel like you’re creating an
application just for the sake of doing it, where as almost everything
we wrote for UCOSP is be used by thousands of people every day.” (Q2.
2015.12_P25)

These sentiments were echoed by many students: “make a contri-
bution to a great product with thousands of real users” (Q1. 2014.12_P21),
“actual software used by thousands of users” (Q1. 2015.12_P15), “real
world project that solves real world problems.” (Q2. 2014.12_P29), and

“We have had a few non-UCOSP people comment on our projects —
confirming that other people are indeed using our project. This mo-
tivates me to make sure that I produce code that is maintainable —
bug-free — and easy to understand.” (Q3. 2016.04_P18)

Since student contributions are intended to be deployed in prac-

tice, students needed to be tasked with real, novel requirements:

“There’s a focus on solving problems that may not have been solved be-
fore, there’s no deadlines so self-motivation is a must, and the primary
goal isn’t some grade - it’s producing working code and benefiting
your team.” (Q2. 2014.04_P15)

These requirements contributed to developing students’ practical
problem solving skills:

“Further, it was one of my first experiences working with a large,

Reid Holmes, Meghan Allen, and Michelle Craig

existing code base, where my assignments were not spoon fed to me. I
had to figure a lot of things out on my own.” (Q1. 2015.12_P13)

Students also perceived UCOSP as different from the tradi-
tional classroom in their comments:

“Another difference I realized was that the notion of not being able to
find a correct solution given the current stage of various other projects
which my project depended on, was in fact ok. This is rarely the case
in my other courses as the instructors plan for us to be able to find a
correct solution in all of the assignments we have been given.” (Q2.
2014.04_P34)

The applied nature of UCOSP was appreciated by students “Prac-
tical experience— which I never got out of any other course.” (Q1.
2016.04_P06)

4.3 Real Mentors

Students participating in UCOSP are primarily supervised by men-
tors from their projects while they participate in the program. These
mentors meet the students during the in-person sprint, hold weekly
team meetings online (usually with some form of video chat), and
have regular out-of-band contact with the students through the
normal communication mechanisms used by the project develop-
ment community including its issue tracker, version control system,
and code review system.

Mentors played a key role in helping guide students as they
tackled their development tasks, “Having a dedicated mentor also
helped me feel supported and gave guidance on how to approach
some more difficult problems.” (Q2. 2015.12_P05) The roles these
mentors played varied from helping students learn new devel-
opment skills “The mentorship from our mentors was extremely
helpful in helping me solve problems I was stuck on, as well as de-
veloping my skills for debugging.” (Q6. 2015.12_P11), to assisting
the students with general program understanding tasks, “Being
guided by mentors as well as reading and understanding lots of dif-
ferent code structures.”

All mentors had the expectation that each student would con-
tribute code to their project that would improve their projects. As
such, there was a strong emphasis on the quality of the students’
solutions:

“Having good mentors that did code reviews and gave meaningful
advice on changes that could be made to improve the code.” (Q6.
2014.12_P22)

Mentorship through code reviews played a prominent role in
maintaining quality and providing meaningful feedback:

“I'received plenty of feedback (via code reviews from my mentors) that
were tremendously helpful for my projects and overall understanding
of the codebase.” (Q2. 2015.12_P17)

This also helped students reason about non-functional as-
pects of their code, for example: “Well written code was more
important than just functional code.” (Q2. 2014.12_P12) Students also
realized that they were not just churning out code to satisfy a sim-
ple assignment, but that code needed to be able to live long term:

“I found that a common theme was making sure that solutions were

Dimensions of Experientialism for Software Engineering Education

as succinct/reusable/readable as possible and it was great to be able
to merge code with confidence.” (Q1. 2015.12_P26)

Students believed that their mentors and the rest of the open
source development team could facilitate valuable knowledge
transfer they could use in the future:

“Working with industry developers Being able to talk with those devel-
opers and other student devs Not being told the entire problem or the
solution to a problem Self-motivation and self-research Receiving and
performing code reviews Weekly Reports (reminds you to get things
done!).” (Q6. 2015.12_P15)

Students appreciated the chance to work as members of dis-
tributed teams: “... see first-hand both the benefits and hardships
of distributed-development > (Q6. 2015.12_P22) In some cases, men-
torship was guided by the mentors but was received from other
students and the community at large:

“I don’t think this opportunity is available with anything else; co-op
Jjobs would be the closest, but I've never heard of a remote-work co-op
job.” (Q6. 2014.04_P15).

This also helped students hone their communication skills
that they viewed as transferable to the kinds of situations they
expected to experience in the future:

“It’s useful because a lot of development happens remotely (see the
gazillions of open-source projects out there) and some companies now
exist as remote-only organizations. Learning to function remotely is
part of the more distributed culture we’re now seeing with the Internet.”
(06. 2014.04_P15))

Finally, tangential benefits of mentorship such as resume
building (“The open source software aspect of the program is very
useful since the work I do is public and is linked to my GitHub account.”
(Q6. 2015.12_P32))), networking (“Most importantly, UCOSP provided
me with connections to incredibly talented and seasoned software
developers who were willing to mentor me.” (Q6. 2015.12_P17)), and
professionalism also appealed to the students.

4.4 Other benefits

In addition to the themes listed above, students also appreciated
several other benefits that came from this intensive project course.
These fell into two main themes which we term Soft Skills and
Technical Skills.

4.4.1 Soft Skills. Working on real tasks for real projects forced
the students to collaborate with their mentors, fellow students, and
the community increasing their practical communication skills:

“My collaboration skills greatly increased and confidence when work-
ing on team projects has improved.” (Q1. 2014.12_P38)

Because they could see their concrete value, these communi-
cation skills were valued by the students and gave them specific
applied settings in which to use them:

“I also improved my communication skills as a software developer, as
it’s necessary to clearly explain what you’re trying to do, the road-
blocks you’re facing, and the strategy you intend to use to overcome
these obstacles.” (Q1. 2015.12_P17)

The communications skills that were required in UCOSP were
also viewed positively in comparison to students’ other courses,

ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

“UCOSP was one of the few courses I have ever taken that promotes
teamwork and collaboration— important skills in the real world.” (Q2.
2015.12_P02).

For students who had not had prior co-op experience, being
forced to collaborate with others using community-enforced
mechanisms was viewed as an important skill:

“It was a great opportunity to meet students from across Canada and to
work in a geographically distributed group I gained much experience
in working with version control systems, collaborating with others, and
found it particularly rewarding to work on an open source project that
benefits the community.” (Q1. 2014.04_P39) They learned the value

of the tools through their experience “Since we used pull requests
for everything— keeping up with what was going into Waterbear was
quite easy.” (Q5. 2014.04_P12). Students also appreciated learning
the collaborative processes that they used “namely branching,
merging, and issuing pull requests” (Q1. 2016.04_P18) and learned
how to use them effectively “keeping your working copy up to date
is crucial. Resolving a conflict of 10 lines of code is about 10000 times
easier than resolving one with 100” (Q8. 2014.12_P36)

By engaging with real users, their motivations for engaging
heavily in the program were also enhanced because they could
clearly see the novelty of their work:

“It’s nothing like a traditional sit down class where problems are
contrived, requirements are well defined, and the problem is easily
malleable to your use case.” (Q2. 2015.12_P28)

Working in a professional team motivated students to produce
quality contributions: “it motivated me to give better documentation
and communicate more clearly and efficiently” (Q3. 014.0_P01)

Students noted that UCOSP provides an experience that mimics
a job and they recognize the value of this experience:

“UCOSP motivation is more closely related to the kind of motivation
we use at our jobs: peer approval — excitement for new ways of solving
the problem — working for the good of entire project \ team.” (Q3.
2014.04_P08)

Finally, given the novel nature of the tasks, their complexity and
time requirements were often unclear at the outset of the tasks
forcing the students to carefully manage their time:

“It is different in that it can’t be put off to the last minute in the same
way other courses can: even if you don’t run into any problems, you
need to work steadily and be in communication with your supervisors
and team members, especially if they are relying on you to finish
something so they can move forward.” (Q2. 2014.12_P21)

Students also noted that time estimation ended up being harder
when performing novel tasks:

“I tend to underestimate the time that tasks take because I view them in
the best light with all uncertainty easily avoidable by either Googling
or asking questions, and full days to work on them.” (Q1. 2014.04_P33)

By integrating with teams, students seemed to gain greater ap-
preciation of the need for following established communication
and development processes. The benefits of practicing these skills
in a way they would be able to describe in a job-interview setting
(or on a resume) provided a wealth of motivation to the students to
fully engage in their work and try to develop future professional
contacts.

ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

4.4.2 Technical Skills. As one would expect, students learned
a range of technical skills from working on their projects. These
included languages “a new language (Go)!” (Q1. 2014.04_P11), test
frameworks “Python based unit test frameworks” (Q1. 2014.12_P14),
design patterns “MVC pattern” (Q1. 2014.04_P27), system admin-
istration skills “Working in and configuring virtual machine de-
velopment environments” ((Q1. 2014.12_P27)), and development
frameworks “a variety of different web technologies such as Ruby
on Rails” (Q1. 2014.12_P38),

Students also discovered which languages, tools, and frameworks
were being used in practice, and could see the impact that these
tools and processes had on the quality of their work.

5 DISCUSSION

In this section we will discuss curriculum implications of our results
and threats to validity.

5.1 Curriculum Implications

The most interesting codes in our analysis fall under the Real
Projects, Real Tasks, and Real Mentors themes. Crucially, these three
themes have several crosscutting concerns that bind them together.
The value that the students get from an experiential software en-
gineering learning opportunity that includes all three aspects of
experientialism is much greater than the value they get from an
experience that includes only one or two aspects.

Real processes and tools. One crosscutting concern is the benefits
students accrue through using real development processes and tools.
While they are naturally excited about the technical skills they have
gained, they are also keenly aware of the skills they have gained in
terms of process (e.g., version control strategies, issue management
skills) code quality (e.g., code review, guided design discussions),
and the importance of communication (e.g., with mentors, other
students, users, and other members of the community). While these
could be taught in the classroom, experiencing them as a part of a
real project reinforces their practical utility for the students. Simply
working on real projects does not in itself provide these benefits. By
interacting with their mentors and the community the importance
of these standards and practices are significantly enhanced for the
students.

Providing real value. Another crosscutting concern is the inde-
pendent nature of the work performed by students in UCOSP. Since
the work is intended to be novel, and should be pushed into the
projects the students are working on, mentors are incentivized to
engage the students to ensure the tasks are real, and the quality of
the work is high. This also encourages the mentors to ensure the
students make a large contribution in order to maximize their pro-
ductivity. Without students performing these real tasks for them,
mentors have significantly less motivation for participating in the
program. We also see mentors pre-planning for UCOSP and think-
ing carefully about the work that UCOSP students can accomplish;
several projects have UCOSP tags that they place on new features in
their issue tracker that they think would be of appropriate size for
UCOSP students.

Impact of mentorship. The importance of mentorship emerges
as central to both of these crosscutting concerns as it binds our
three key themes together. Our mentors are embedded in the open

Reid Holmes, Meghan Allen, and Michelle Craig

source teams that the students join and provide a natural conduit
between student members and the rest of the development team.
The mentors welcome the students to their communities of practice
and, in turn, expect the students to participate using the team’s
standard processes and tools. At the same time, mentors have a
finite amount of time with which to mentor students. This acts as
a form of rate limit that bounds the number of students they can
welcome onto their projects.

We are not claiming that a subset of these high-level themes
cannot be employed independently, although this would entail
its own challenges. For instance, students can be exposed to real
projects while giving all students the same tasks and traditional
instructor- or TA-led mentorship. Engaging real mentors for these
synthetic tasks is not likely to be possible without some other type
of external motivation to encourage them to participate. It may also
be possible to use real projects with students performing real novel
tasks, but without explicit project-based mentorship, it is not clear
how easily students would actually find joining the community and
having their contributions be accepted.

Creating new experiential capstone courses. The geographically-
distributed nature of the UCOSP teams could not be replicated with
only a single institution. However, the three aspects of experiential-
ism could be built into a single-institution course. The contributions
of real tasks on real projects could remain the same. While the dis-
tributed UCOSP teams created extra communication challenges and
motivated the use of distributed tools, this working environment
could be achieved if the real mentors and the project’s developer
community were geographically distanced from the students them-
selves. We were able to select strong students from each university
to participate in UCOSP. At a single institution, the challenge might
be having students rise to the required level of independence and
then finding mentors willing to repeatedly invest their time into
students when some let them down. To mitigate this challenge, an
experiential software engineering course could be offered as an elec-
tive that requires students to commit to make regular contributions
in order to pass the course.

5.2 Threats to Validity

Our work relies heavily on codes that we generated ourselves to
study a program in which we are invested. This leaves us suscepti-
ble to unconscious bias. Another threat to internal validity is the
possibility that students did not answer survey questions honestly.
In order to guard against this, the survey answers were anonymous
to those responsible for student grades and we did not examine the
anonymous data until after the relevant semester was over. Even
though students were informed of this, some may still have given
answers that they felt we wanted to hear. Because we did not mea-
sure any direct outcomes (i.e. all our data is student perceptions
of their experience or their improving skills), we are particularly
susceptible to student bias.

One threat to the external validity of our study is its generaliz-
ability to a broad student population. Study participants came from
many different sized universities (small regional schools to large
research-intensive institutions), however, the UCOSP program only
accepts very strong students from each of these schools as iden-
tified by their home faculty liaisons. These strong, self-motivated

Dimensions of Experientialism for Software Engineering Education

students can handle real tasks and usually manage to make an ac-
tual contribution to the OS project within the span of the course.
Some UCOSP alumni continue to contribute to the OS community
for their project even after the program is finished. This motivates
and excites the mentors and keeps them engaged and willing to
donate their time. It is not at all clear that this model would work
with a general student population.

This paper is entirely based on students’ perceptions of their
UCOSP experience. However, students may not have enough infor-
mation to understand the many trade-offs involved in curricular
decisions. The UCOSP program is expensive and it reaches a limited
number of students. The top students who are selected to partici-
pate and consequently receive a disproportionate share of resources
are not in a good position to evaluate whether these resources could
be better deployed in another way. Although UCOSP has benefited
over 700 students, this is over multiple years. The program does
not scale to the current demand for undergraduate CS education.

6 CONCLUSIONS

Capstone projects are often proposed to help bridge the gap be-
tween traditional classroom experiences and the skills students
need to succeed in the workplace. We designed the Undergraduate
Capstone Open Source Projects (UCOSP) program to help students
from over 30 Universities across Canada gain real-world develop-
ment experience. UCOSP has been running for 8.5 years and more
than 700 students have participated. By surveying 167 students
from 18 universities over 6 terms, we tried to discover what stu-
dents felt they learned from UCOSP. Ultimately, students valued
performing real tasks on real projects under the guidance of real
mentors. These three dimensions provided students a wealth of ex-
perience they had not received from traditional classroom settings.
Our goal is for the specific feedback identified in this paper to be
useful for future curriculum designers as they create new experi-
ential capstone projects. UCOSP demonstrates that a program that
provides all three of experiential dimensions is possible and student
feedback shows that such programs are also a valuable compliment
to traditional classroom instruction.

ACKNOWLEDGMENTS

We are grateful for the financial support that UCOSP has received
from Google, the Canadian Association for Computer Science, CIPS
(Canada’s Association of Information Technology Professionals),
and the Jonah Group and for the in-kind contributions from Shopify,
Mozilla, Facebook and O’Reilly. We thank the students and mentors
for their contributions to the program.

REFERENCES

[1] Eric Allen, Robert Cartwright, and Charles Reis. 2003. Production Programming
in the Classroom. SIGCSE Bull. 35, 1 (Jan. 2003), 89-93. DOI: http://dx.doi.org/10.
1145/792548.611940

[2] Craig Anslow and Frank Maurer. 2015. An Experience Report at Teaching a
Group Based Agile Software Development Project Course. In Proceedings of
the ACM Technical Symposium on Computer Science Education. 500-505. DOI:
http://dx.doi.org/10.1145/2676723.2677284

[3] Maria Cecilia Bastarrica, Daniel Perovich, and Maira Marques Samary. 2017. What

Can Students Get from a Software Engineering Capstone Course?. In Proceedings

of the International Conference on Software Engineering: Software Engineering and

Education Track. 137-145. DOI :http://dx.doi.org/10.1109/ICSE-SEET.2017.15

Andrew Begel and Beth Simon. 2008. Struggles of New College Graduates in Their

First Software Development Job. In Proceedings of the ACM Technical Symposium

[4

flaa

—
&

[

[10

[11

[12

[13

[14

[15

=
&

(17

(18

[19

[20

[21

[22

(23]

[24

[25

ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

on Computer Science Education. 226-230. DOI : http://dx.doi.org/10.1145/1352135.
1352218

William Billingsley and Jim Steel. 2013. A Comparison of Two Iterations of a
Software Studio Course Based on Continuous Integration. In Proceedings of the
ACM Conference on Innovation and Technology in Computer Science Education.
213-218. DOI: http://dx.doi.org/10.1145/2462476.2465592

Aaron Bloomfield, Mark Sherriff, and Kara Williams. 2014. A Service Learning
Practicum Capstone. In Proceedings of the ACM Technical Symposium on Computer
Science Education. 265-270. DOI : http://dx.doi.org/10.1145/2538862.2538974
Bernd Bruegge, Stephan Krusche, and Lukas Alperowitz. 2015. Software En-
gineering Project Courses with Industrial Clients. Trans. Comput. Educ. 15, 4,
Article 17 (Dec. 2015), 31 pages. DOI :http://dx.doi.org/10.1145/2732155

Heidi J. C. Ellis, Gregory W. Hislop, Stoney Jackson, and Lori Postner. 2015.
Team Project Experiences in Humanitarian Free and Open Source Software
(HFOSS). Trans. Comput. Educ. 15, 4, Article 18 (Dec. 2015), 23 pages. DOI:
http://dx.doi.org/10.1145/2684812

Marisa Exter. 2014. Comparing Educational Experiences and On-the-job Needs of
Educational Software Designers. In Proceedings of the ACM Technical Symposium
on Computer Science Education. 355-360. DOI : http://dx.doi.org/10.1145/2538862.
2538970

Fabian Fagerholm, Alejandro Sanchez Guinea, Jay Borenstein, and Jirgen Minch.
2014. Onboarding in open source projects. IEEE Software 31, 6 (2014), 54-61.
Fabian Fagerholm, Alejandro S. Guinea, Jiirgen Miinch, and Jay Borenstein. 2014.
The Role of Mentoring and Project Characteristics for Onboarding in Open Source
Software Projects. In Proceedings of the International Symposium on Empirical
Software Engineering and Measurement. Article 55, 10 pages. DOI : http://dx.doi.
org/10.1145/2652524.2652540

Reid Holmes, Michelle Craig, Karen Reid, and Eleni Stroulia. 2014. Lessons
Learned Managing Distributed Software Engineering Courses. In Companion
Proceedings of the International Conference on Software Engineering. 321-324. DOI :
http://dx.doi.org/10.1145/2591062.2591160

Beanbag Inc. 2018. Review Board. (2018). Retrieved February 9, 2018 from
https://www.reviewboard.org/.

David A Kolb. 2014. Experiential learning: Experience as the source of learning and
development. FT press.

Daniel E. Krutz, Samuel A. Malachowsky, and Thomas Reichlmayr. 2014. Using
a Real World Project in a Software Testing Course. In Proceedings of the ACM
Technical Symposium on Computer Science Education. 49-54. DOI : http://dx.doi.
org/10.1145/2538862.2538955

Robert McCartney, Swapna S. Gokhale, and Thérése M. Smith. 2012. Evaluat-
ing an Early Software Engineering Course with Projects and Tools from Open
Source Software. In Proceedings of the International Computing Education Research
conference. 5-10. DOI: http://dx.doi.org/10.1145/2361276.2361279

Christian Murphy, Swapneel Sheth, and Sydney Morton. 2017. A Two-Course
Sequence of Real Projects for Real Customers. In Proceedings of the Technical
Symposium on Computer Science Education. 417-422. DOI : http://dx.doi.org/10.
1145/3017680.3017742

Andres Neyem, Jose . Benedetto, and Andres F. Chacon. 2014. Improving Soft-
ware Engineering Education Through an Empirical Approach: Lessons Learned
from Capstone Teaching Experiences. In Proceedings of the Technical Symposium
on Computer Science Education. 391-396. DOI : http://dx.doi.org/10.1145/2538862.
2538920

Tom Nurkkala and Stefan Brandle. 2011. Software Studio: Teaching Professional
Software Engineering. In Proceedings of the ACM Technical Symposium on Com-
puter Science Education. 153-158. DOI : http://dx.doi.org/10.1145/1953163.1953209
Alex Radermacher and Gursimran Walia. 2013. Gaps Between Industry Ex-
pectations and the Abilities of Graduates. In Proceeding of the ACM Technical
Symposium on Computer Science Education. 525-530. DOI:http://dx.doi.org/10.
1145/2445196.2445351

Richard A. Scorce. 2010. Perspectives Concerning the Utilization of Service
Learning Projects for a Computer Science Course. Journal of Computing Sciences
in Colleges 25, 3 (Jan. 2010), 75-81.

Therese Mary Smith, Robert McCartney, Swapna S. Gokhale, and Lisa C. Kacz-
marczyk. 2014. Selecting Open Source Software Projects to Teach Software
Engineering. In Proceedings of the ACM Technical Symposium on Computer Sci-
ence Education. 397-402. DOI : http://dx.doi.org/10.1145/2538862.2538932
Anselm Strauss and Juliet M. Corbin. 1998. Basics of Qualitative Research: Tech-
niques and Procedures for Developing Grounded Theory. SAGE Publications.
Eleni Stroulia, Ken Bauer, Michelle Craig, Karen Reid, and Greg Wilson. 2011.
Teaching Distributed Software Engineering with UCOSP: The Undergraduate
Capstone Open-source Project. In Proceedings of the Community Building Work-
shop on Collaborative Teaching of Globally Distributed Software Development.
20-25. DOI : http://dx.doi.org/10.1145/1984665.1984670

Claudia Szabo. 2014. Student Projects Are Not Throwaways: Teaching Practical
Software Maintenance in a Software Engineering Course. In Proceedings of the
ACM Technical Symposium on Computer Science Education. 55-60. DOI:http:
//dx.doi.org/10.1145/2538862.2538965

http://dx.doi.org/10.1145/792548.611940
http://dx.doi.org/10.1145/792548.611940
http://dx.doi.org/10.1145/2676723.2677284
http://dx.doi.org/10.1109/ICSE-SEET.2017.15
http://dx.doi.org/10.1145/1352135.1352218
http://dx.doi.org/10.1145/1352135.1352218
http://dx.doi.org/10.1145/2462476.2465592
http://dx.doi.org/10.1145/2538862.2538974
http://dx.doi.org/10.1145/2732155
http://dx.doi.org/10.1145/2684812
http://dx.doi.org/10.1145/2538862.2538970
http://dx.doi.org/10.1145/2538862.2538970
http://dx.doi.org/10.1145/2652524.2652540
http://dx.doi.org/10.1145/2652524.2652540
http://dx.doi.org/10.1145/2591062.2591160
http://dx.doi.org/10.1145/2538862.2538955
http://dx.doi.org/10.1145/2538862.2538955
http://dx.doi.org/10.1145/2361276.2361279
http://dx.doi.org/10.1145/3017680.3017742
http://dx.doi.org/10.1145/3017680.3017742
http://dx.doi.org/10.1145/2538862.2538920
http://dx.doi.org/10.1145/2538862.2538920
http://dx.doi.org/10.1145/1953163.1953209
http://dx.doi.org/10.1145/2445196.2445351
http://dx.doi.org/10.1145/2445196.2445351
http://dx.doi.org/10.1145/2538862.2538932
http://dx.doi.org/10.1145/1984665.1984670
http://dx.doi.org/10.1145/2538862.2538965
http://dx.doi.org/10.1145/2538862.2538965

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Real Projects
	2.2 Real Users and Clients
	2.3 Real Mentors
	2.4 Undergraduate Capstone Open Source Projects

	3 Method
	3.1 Participants
	3.2 Data
	3.3 Analysis

	4 Results
	4.1 Real Projects
	4.2 Real Tasks
	4.3 Real Mentors
	4.4 Other benefits

	5 Discussion
	5.1 Curriculum Implications
	5.2 Threats to Validity

	6 Conclusions
	Acknowledgments
	References

