Synthesis of Hybrid Constraint-Based Controllers

Ying Zhang* and Alan K. Mackworth™

Department of Computer Science
University of British Columbia
Vancouver, B.C.
Canada, V6T 174

E-mail: zhang,mack@cs.ubc.ca

Abstract. A robot is an integrated system, with a controller embedded in
its plant. We take a robotic system to be the coupling of a robot to its envi-
ronment. Robotic systems are, in general, hybrid dynamic systems, consisting
of continuous, discrete and event-driven components. We call the dynamic re-
lationship of a robot and its environment the behavior of the robotic system.
The problem of control synthesis is: given a requirements specification for
the behavior, and given dynamic models of the plant and the environment,
generate a controller so that the behavior of the robotic system satisfies the
specification. We have developed a formal language, Timed Linear Temporal
Logic (TLTL) [17], for requirements specification. We have also developed a
semantic model, Constraint Nets [19], for modeling hybrid dynamic systems.
In this paper, we study the problem of control synthesis using these represen-
tations. Control synthesis in general is difficult. We first focus on a special
class of requirements specification, called constraint-based specification, in
which constraints are associated with properties such as safety, reachabil-
ity and persistence. Then we develop a systematic approach to synthesizing
controllers using constraint methods, in which controllers are embedded con-
straint solvers that solve constraints in real-time. Finally, we consider hierar-
chical control structures, in which the higher levels embody digital/symbolic
event-driven control derived from discrete constraint methods and the lower
levels incorporate analog control based on continuous constraint methods. We
illustrate these techniques using a robot soccer player as a running example.

1 Control Synthesis
Where does the problem fit in?

Robots are generally composed of electromechanical parts with multiple sensors and
actuators. Robots should be reactive as well as purposive systems, closely coupled
with their environments; they must deal with inconsistent, incomplete, unreliable and
delayed information from various sources. Robots are usually complex, hierarchically
organized and physically distributed; each component functions according to its own

* Current address: The Wilson Center for Technology, Xerox Corporation, 800-Phillips
Road, M/S 128-51E, Webster, N.Y., U.S.A., 14580. E-mail: zhang@wrc.xerox.com
** Fellow, Canadian Institute for Advanced Research.

dynamics. The overall behavior of a robot emerges from coordination among its
various parts and interaction with its environment. We call the coupling of a robot
and its environment a robotic system, and the dynamic relationship of a robot and
its environment the behavior of the robotic system.

A robot controller (or control system) is a subsystem of a robot, designed to
regulate its behavior to meet certain requirements. In general, a robot controller is an
integrated software/hardware system implemented on various digital/analog devices.
Thus, from the systemic point of view, a robotic system consists of a controller, a
plant and an environment as shown in Fig. 1, where X is a set of plant variables, U
is the set of control variables, and Y is a set of environment variables. Some of the
plant and environment variables may not be observable by the controller.

CONTROLLER

ENVIRONMENT

Fig. 1. A robotic system

Robotic systems are typical hybrid systems, consisting of continuous, discrete and
event-driven components. In order to develop a robotic system, analyze its behavior
and understand its underlying physics, we have developed a semantic model for
hybrid dynamic systems, that we call Constraint Nets (CN). Using this model, we
can characterize the components of a system and derive the behavior of the overall
system.

Control systems are designed to meet certain requirements. Typical requirements
include safety, reachability and persistence. Safety declares that a system should
never be in a certain situation. Reachability declares that a system should reach a
certain goal eventually. Persistence declares that a system should achieve a certain
goal infinitely often. In order to specify requirements formally, we have developed
two languages, Timed Linear Temporal Logic (TLTL) and timed V-automata. In this
paper, we will introduce only TLTL.

The problem of control synthesis is stated as follows: given a requirements spec-
ification, and the dynamic models of the plant and the environment, produce (a
dynamic model of) a controller such that the behavior of the robotic system meets
the given requirements. Control synthesis in general is difficult. As a first step, we
focus on a special class of requirements specification — constraint-based specifica-
tion, in which constraints are associated with properties such as safety, reachability
and persistence. We then develop a systematic approach to control synthesis from

constraint-based specifications, in which controllers are constraint solvers that solve
constraints in real-time.

Fig. 2 presents an overall framework of our approach to the design and analysis
of robotic systems, indicating where the problem of control synthesis fits in. In
this framework, control synthesis and behavior verification are coupled together to
generate a “correct” system. In this paper, we will focus only on control synthesis.

Will the robot
do the right thing?

Behavior Verification

The Verification Rules

Requirements Specification

Robotic Systems

The Constraint Net Model TLTL & Timed \V Automata

What is the right thing
for the robot to do?

What is the possible realization Control Synthesis

of the robot?

Constraint Methods ‘

How to make the robot
do the right thing?

Fig.2. Where does control synthesis fit in?

Let us introduce an example that will be used throughout this paper. In our
Laboratory for Computational Intelligence, a testbed has been developed for radio-
controlled cars playing soccer using visual feedback [15]. Each “soccer player” has a
car-like mobile base. It can move forward and backward with a throttle setting, and
can make turns by steering its two front wheels. However, it cannot move sideways
and its turns are limited by mechanical stops in the steering gear.

Fig. 3 illustrates the configuration of a car. Let v be the velocity of the car and
« be the current steering angle of the front wheels; v and « can be considered as the
control inputs to the car. The dynamics of the car can be simply modeled by the
following differential equations [7]:

& =wvcos(f), y=wvsin(f), ézv/R (1)

where (&, y) is the position of the tail of the car, 6 is the heading and R = L/ tan(«)
is the turning radius given the length of the car L. The environment of this system
is a moving ball, a target (the goal) and a field with boundaries. A requirements
specification for the robot is to kick or dribble the ball to the target repeatedly. The

Fig. 3. The configuration of a car

controller of the car is equipped with both digital and analog devices [15]. How can
we synthesize such a controller?

The rest of this paper is organized as follows. Section 2 briefly introduces the
Constraint Net model. Section 3 presents TLTL. Section 4 focuses on constraint-
based specification. Section 5 develops constraint-based control. Section 6 discusses
general control structures. Finally, Section 7 concludes the paper and proposes fur-
ther research on control synthesis.

2 Constraint Nets
What is synthesized?

Constraint Nets (CN) is a semantic model for hybrid dynamic systems. CN is an
abstraction and generalization of dataflow networks [8, 2, 4, 3]. Any (causal) sys-
tem with discrete/continuous time, discrete/continuous (state) variables, and asyn-
chronous/synchronous event structures can be modeled. Furthermore, a system can
be modeled hierarchically using aggregation operators; the dynamics of the envi-
ronment as well as the dynamics of the plant and the controller can be modeled
individually and then integrated.

Our approach to developing this model for hybrid systems is motivated by the
following arguments. First, hybrid systems consist of interacting discrete and con-
tinuous components. Instead of fixing a model with particular time and domain
structures, a model for hybrid systems should be developed on both abstract time
structures and abstract data types. Second, hybrid systems are complex systems
with multiple components. A model for hybrid systems should support hierarchy and
modularity. Third, hybrid systems are generalizations of basic discrete or continu-
ous systems. A model for hybrid systems should be at least as powerful as existing
models of computation and control. In short, a model for hybrid systems should be
unitary, modular, and powerful.

In the rest of this section, we briefly introduce some concepts of dynamic systems,
and the syntax and semantics of CN. For a comprehensive introduction to CN, the
reader is referred to [19] or [17].

2.1 Basic concepts

Let R be the set of real numbers and Rt be the set of nonnegative real numbers. A
metric on a set X is a function d : X x X — R¥ satisfying the following axioms for
all z,y,z € X:

1. d(z,y) = d(y,).

2.d(z,y)+ d(y,z) > d(x, z).

3.d(z,y)=0iff x = y.

A metric space is a pair (X,d) where X is a set and d is a metric on X. In a
metric space (X, d), d(z,y) is called “the distance between z and y.” We will use X
to denote the metric space (X, d) if no ambiguity arises.

Following are some basic concepts of dynamic systems developed in [17].

— Time can be abstracted as a linearly ordered set (7, <) with a least element 0
as the start time point, and a metric d on set 7. Using this abstract notion, time
can be either discrete, continuous or event-based.

— A domain can be either simple or composite. A simple domain denotes a simple
data type, such as reals, integers, Booleans and characters; a composite domain
denotes a structured data type, such as arrays, vectors, strings, objects, struc-
tures and records. Formally, a simple domain is a pair (AU {L 4}, da) where A
is a set, 1 4¢ A means undefined in A, and d4 is a metric on A. A composite
domain is a product of simple domains. Using this abstract notion, a domain
can be numerical or symbolic, discrete or continuous.

— A trace characterizes the change of values of a variable over time. Formally, a
trace is a mapping v : 7 — A from time 7 to domain A. An event race is
a special type of trace whose domain is Boolean. An event in an event trace
is a transition from 0 to 1 or from 1 to 0. An event trace characterizes some
event-based time where the set of events in the trace is the time set.

— A transduction is a mapping from a tuple of input traces to an output trace
that satisfies the causality constraint between the inputs and the output, i.e.,
the output value at any time depends only on its inputs up to that time. For in-
stance, a state automaton with an initial state defines a transduction on discrete
time; a temporal integration with a given initial value is a typical transduc-
tion on continuous time. Just as nullary functions represent constants, nullary
transductions represent traces.

We characterize two classes of atomic transductions: simple transductions and
simple event-driven transductions.

— A simple transduction is a transliteration or a delay.

— A transliteration is a pointwise extension of a function. Intuitively, a transliter-
ation is a transformational process without memory (internal state), such as a
combinational circuit.

— A delay transduction is a sequential process where the output value at any
time is the input value at a previous time. Discrete-time state transitions and
continuous-time integrations can be modeled using delays.

— A simple event-driven transduction is a simple transduction augmented with an
extra input which is an event trace; the transduction operates at every event
and its output value holds between two events.

2.2 The Constraint Net model

A constraint net consists of a finite set of locations, a finite set of transductions and
a finite set of connections. Formally, a constraint net is a triple CN = (Le, T'd, Cn),
where Lec is a finite set of locations, T'd is a finite set of labels of transductions, each
with an output port and a set of input ports, Cn is a set of connections between
locations and ports, with the following restrictions: (1) there is at most one output
port connected to each location, (2) each port of a transduction connects to a unique
location and (3) no location is isolated. A location can be regarded as a wire, a chan-
nel, a variable, or a memory cell. Each transduction is a causal mapping from inputs
to outputs over time, operating according to a certain reference time or activated
by external events.

A location is an output of the constraint net if it is connected to the output of
some transduction; it is otherwise an input. A constraint net is open if there is an
input location; it is otherwise closed.

Semantically, a constraint net represents a set of equations, with locations as
variables and transductions as functions. The semantics of the constraint net, with
each location denoting a trace, is the least solution of the set of equations [19, 17].

A complex system is generally composed of multiple components. We define a
module as a constraint net with a set of locations as its interface. A constraint net can
be composed hierarchically using modular and aggregation operators on modules.
The semantics of a system can be obtained hierarchically from the semantics of its
subsystems and their connections.

Given C'N, a constraint net model of a dynamic system, the abstract behavior
of the system is the semantics of CN, denoted [CN], i.e., the set of input/output
traces satisfying the model.

A constraint net is depicted by a bipartite graph where locations are depicted by
circles, transductions by boxes and connections by arcs. A module is depicted by a
box with rounded corners. For example, the dynamics of the car, characterized by
Eq. (1), is denoted by an open constraint net, as shown in Fig. 4 where sin, cos, tan
and # are transliterations, and [is a temporal integrator. The car module is defined
by choosing locations v, a, z,y, 8 as the interface.

We can model a control system as a module that may be further decomposed into
a hierarchy of interactive modules. The higher levels are composed of event-driven
transductions and the lower levels are analog control components. Furthermore, the
environment of the robot can be modeled as a module as well. A robotic system can
be modeled as an integration of a plant, a controller and an environment (Fig. 1).
The semantics (or behavior) of the system is the solution of the following equations:

X = PLANT(U,Y), (2)
U = CONTROLLER(X,Y), (3)
Y = ENVIRONMENT(X). (4)

Note that PLANT, CONTROLLER and ENVIRONMENT are transductions
(not simple functions), and the solution gives X, Y and U as tuples of traces (not
values).

Fig.4. The constraint net for the dynamics of the car, Eq. (1)

As we can see here, a robot, composed of a plant and a controller, is an open
system, and a robotic system, composed of a robot and its environment, is a closed
system.

3 Timed Linear Temporal Logic Specification
What is required?

A model of a dynamic system represents the whole system as a set of components and
their connections. However, the behavior of the system is not explicitly represented,
since most dynamic systems have no closed form solutions.

Most design requirements can be expressed by qualitative properties and can be
satisfied by many models (implementations). A requirements specification R for a
system C'N is a set of allowable input/output traces of the system: the behavior of
CN satisfies its requirements specification R, written [CN] E R, iff [CN] C R.
For example, CN : & = [(x)(—2) is a model of dynamic system whose behavior,
z(t) = zoe™ ", satisfies the requirements specification R : lim;_ z(¢) = 0.

The problem of control synthesis can be formalized as follows: given a require-
ments specification R, the model of the plant PLANT and the model of the environ-
ment ENVIRONMENT, synthesize a model of the controller CONTROLLER,
such that [CN] | R where CN is modeled by Eqgs. (2), (3) and (4).

We have developed Timed Linear Temporal Logic (TLTL) and timed V-automata,
generalized from Linear Temporal Logics [11] and V-automata [10], for specifying
requirements. In this paper, we introduce only TLTL.

The basic form of the propositional linear temporal logic (PLTL) is the classical
propositional logic extended with temporal operators. Formally, the syntax of the
logic is defined as follows. Let @ be a set of propositions. The basic syntax is defined
in BNF:

F :::false |p | F1 —>F2 | Flqu | F18F2

where p € @ is a proposition, — is a logical connective denoting “implication,” U is
a temporal operator denoting “until” and § is a temporal operator denoting “since.”

Formally, the semantics of the logic is defined as follows. Let 7 and A be time
and domain, respectively, and v : 7 — A be a trace. Note that 7 and A can be
either discrete or continuous. Let V : @ — 24 be an interpretation that assigns to
each proposition p € ¢ a subset V(p) of A. We will use a = p to denote a € V(p).
Then v |=; F denotes that trace v satisfies formula F' at time ¢:

— v [y false.

—vErpforpediff u(t) =p.

— v Py — Fy iff v |y Py implies v = Fo.

— v FTUFy iff 3 >t vEp Foand V7t <t <t v = I
—vE 1 SFy, it 3 <tvly Fyand V7t <t <t,v Fy.

We will use v |= F to denote that v satisfies F' initially,i.e., v =g F.

More logical connectives and temporal operators can be defined using the basic
logic connective — and the basic temporal operators & and §.

Some commonly used logical connectives are defined as follows:

— Negation: = F = F — false.

— True: true = —false.

— Disjunction: 1V Fy = —F) — Fs.

— Conjunction: Fy A Fo = =(F) — —Fy).

Some commonly used temporal operators are defined as follows:

— Fventually: OF = F Vitrueld F.
— Always: OF = =O=F.

Nezt: QF = FUF.

— Previous: F = FSF.

Various stronger and weaker variations of these temporal operators [5] can also be
defined.

We define some more abbreviations that are convenient to use in many situations.

— final = -~ O true.

initial = —~ & true.

— rise(p) = (=p A Op) V (5-p A p).
— change(p) = rise(p) V rise(—p).

— event(p) = (&-pAp)V (EpA-p).

Some important properties of behaviors can be specified using PLTL.

— Safety: If B is a proposition denoting a bad situation, O-B.
— Reachability: If G is a proposition denoting a final goal, COG.
— Persistence: If P is a proposition denoting a persistent condition, OO P.

In order to specify the metric properties of time, we develop Timed Linear Tem-
poral Logic (TLTL). The basic syntax and semantics of TLTL are the same as those
of PLTL. In addition, we augment the basic form of PLTL with two real-time op-
erators. Let 7 > 0 be a positive real number, To1, = {t'|t < ¢/,d(t,t') < 7} and
T ={t'|t' <t,d(t',t) < t}. Two real-time operators are defined as follows:

— v FIUTF it 3 € Thyr, v e Foand V7t <t <t v =0 FY.
— vt S TR it €Ty, vy Foand Vi ' <t <t vl Fy.

Other real-time and temporal operators can be defined using the two basic real-
time operators.

— OTF =trueld"F.
— O°F ==(07=F).
— O, F =trueS8™F.
— O, F = =(OC,—F).

With real-time operators, real-time properties can be specified, for example, real-
time response can be specified as O(E — 7 R).

In our framework the control synthesis problem is stated as follows: given a set of
TLTL formulas, and given constraint net models of the plant and the environment,
produce a constraint net model of the controller so that the behavior of the overall
system satisfies the given requirements. In its full generality this problem is too
difficult. As a first step, we focus on a special class of requirements and develop a
systematic, but not automatic, approach to control synthesis.

4 Constraint-Based Specification

What should be satisfied?

We consider constraints as relations on a set of state variables; the solution set of
the constraints consists of the state variable tuples that satisfy all the constraints.
We call the behavior of a dynamic system constraint-based if the system is asymp-
totically stable at the solution set of the given constraints, i.e., whenever the system
diverges because of some disturbance, it will eventually return to the set satisfying
the constraints.

Most robotic systems are constraint-based, where the constraints may include
physical limitations, environmental restrictions, and safety and goal requirements.
Most learning and adaptive dynamic systems exhibit some forms of constraint-based
behaviors as well.

A constraint-based specification characterizes a desired constraint-based behav-
ior. Formally, let C' be a set of constraints and sol(C') be the solution set of C', and
let C¢ be a neighborhood of sol(C); C¢ and sol(C') can be taken as propositions
whose interpretations are themselves. TLTL formulas OC*, ¢OC* and OOC* are
the specifications for safety, reachability and persistence, respectively, with respect
to constraints C' and error €. Note that it is important to specify a desired property
with some error, since many constraint methods cannot “solve” the constraint satis-
faction problem in finite time (or with finite resource). A more formal notion of this
kind of open specification is introduced in [12] and discussed in [17].

The strongest constraint-based requirement is the safety property which requires
that the system never move away from the solution set of the constraints. The weak-
est constraint-based requirement is the persistence property which allows the system
to be only asymptotically stable at the solution set of the constraints. Between these
two extremes, there is the reachability property which ensures that the system ap-
proaches the solution set of the constraints eventually.

For example, the state variables of the robot soccer player (Fig. 3) are (z,y,0).
Let the desired goal be (24, ya,04). The set of constraints will be # = 24,y = yq4,0 =
4. Let G denote an e-neighborhood of (24, y4,04). A constraint-based specification
for the soccer player is the persistence property OCG.

As another example, if the boundary of the soccer field is described by a manifold
in the configuration space [9] of the car f(z,y,0) = 0, a safety property for the
soccer player could be Of(z,y,) > 0, that is, the car is always on the field. The
corresponding constraint for this specification is the inequality f(z,y,0) > € for
some € > 0.

5 Constraint-Based Control
How does the controller satisfy the constraints?

Given a constraint-based requirements specification, the design of the controller
becomes the synthesis of an embedded constraint solver which, together with the
dynamics of the plant and the environment, solves the given constraints on-line.

5.1 Constraint methods

We have viewed constraint satisfaction as a dynamic process that approaches the
solution set of the constraints [20]. We have also specified this constraint-based
behavior using TLTL and timed V-automata [18]. Let C' be a set of constraints,
sol(C') be the solution set of C' and C*¢ be the e-neighborhood of sol(C'); a constraint
net C'N is a constraint solver for C, iff Ve > 0, [CN] | <¢OC*. For example, a
constraint net corresponding to £ = —z is a constraint solver for z = 0.

There are typically two kinds of constraint satisfaction problems, namely, global
consistency and optimization [20]. The problem of global consistency is to find a
solution tuple that satisfies all the given constraints. The problem of unconstrained
optimization is to minimize a function £ : R” — R. Global consistency is for solving
hard constraints and unconstrained optimization is for solving soft constraints. A
problem of the first kind can be translated into one of the second by introducing an
energy function representing the degree of global consistency. For example, given a
set of equations g(z) = 0, let &,(x) =|| g(x) ||2 where || - ||2 is a quadratic norm. If
a constraint solver C'N solves min&,(z), CN solves g(x) = 0 if a solution exists.

Various constraint methods fit into our framework for constraint satisfaction
[20]. There are two classes of constraint methods, discrete relazation which can be
implemented as state transition systems, and differential optimization which can be
implemented as state integration systems. Both can be modeled as constraint nets
[20]. We will illustrate these methods with two examples. For more comprehensive
analysis of these methods, the reader is referred to [20].

Newton’s method [16] is a typical discrete relaxation method that minimizes a
second-order approximation of the given function at each iterative step. Let 7€ = %
and J be the Jacobian of 7€. At each step with current point z(*), Newton’s method
minimizes the function:

£4(2) = £) + €T (1O (e — 20 + 5o = 2N IO - 2),

Let % =0, we have:
TE@E®) + J (28 (2 — ®)) = 0.
The solution of the above equation becomes the next point, i.e.,
D) = 20 _ j=1 0y g g2y,

Newton’s method defines a state transition system, with the next state as a function
of the current state.

The gradient method [14] is a typical differential optimization method, based on
the gradient descent algorithm, where state variables slide downhill in the direction
opposed to the gradient. Formally, if the function to be minimized is &, the vector
that points in the direction of maximum increase of £ is the gradient of £. Therefore,
let V&€ = %, the following gradient descent equation models the gradient method

i=—-kvE&), k>0 (5)

Various constraint methods [13, 20] can be applied to control synthesis under this
framework. More importantly, as we have shown in [20], most constraint methods
are associated with an energy function, which can be directly used as a Liapunov
function in behavior verification [18].

5.2 Constraint-based controllers

Constraint solvers are closed nets, with all state variables controllable (outputs).
Controllers are open systems, with both sensory inputs and controllable outputs.
We call a controller an embedded constraint solver if the controller, together with
the plant and the environment, satisfies the given constraint-based specification.

Most constraint methods can be applied to embedded constraint solvers as well.
Embedded constraint solvers can be either discrete or continuous according to the
constraint method used. Continuous solvers, based on the gradient method, general-
ize potential functions [6]. Discrete solvers, based on numerical or symbolic relaxation
methods, are more flexible in many applications.

If Newton’s method or the gradient method is used, the design of an energy
function depends on the type of constraint-based specification. For reachability or
persistence constraints, the energy function defines the degree of satisfaction of the
constraints; for safety constraints, the energy function defines the degree of satisfac-
tion of the constraints within C¢ while the energy outside of C* becomes infinity.
For example, given a persistence specification OCC with C' defined as f(z) = 0,
an energy function for this specification can be 1 f%(z). If O(f(z) > 0) is required,

an energy function can be max(—In f(f),O), ie., if f(z) > ¢ then &(z) = 0, if
0 < f(z) < ¢, then £ >0, and if f(z) — 0, then £(z) — 0.

Various existing controllers, from simple linear proportional derivative (PD) con-
trol to complex nonlinear adaptive control or potential field methods [6], can be
derived and analyzed in this framework. Various learning algorithms and neural net
computations [14] can be formalized in this framework as well.

In order to synthesize a controller for the robot soccer player, we must define a

mapping from the plant state variables (z,y,) to the control variables (v, &), so that

the system satisfies OOC® where C'is the set of constraints {z = 24,y = y4,0 = 04}.
We use the gradient method and define an energy function for the controller as

k k k
£=J(wa—x)+ Flya—) + 5 (0a—0)".
2 2 2
The controller is designed to make £ go to its minimum.
The derivation of the controller is as follows. Let p be the length of the path. We

have v = p. Using the gradient method on the energy function £, we have

0 o€
b 1 ap; 2 ag
where % and % can be computed as follows:
o€ Oz 0 oo
5 = k(ea= D)5+ k(s =950+ k(0= 0)5
where
oz =z 8y_g_ 8_0_g_tan(a)
e cos(8), 3 = b sin(f), o = v 7
and o€ 0 0
x
— 55 = kol@a— o) 55+ kolya — v) 55 + ku(0a = 0)
where 5 5
T 9 - |
50— vsin(0), 20 = v cos(0).

Let d = \/(zq — 2)>+ (ya — y)? and ¢’ = tan~'(ya — y, 24 — 2). According to the
dynamics of the plant modeled by Equation (1), we have o = tan_l(%ﬁ). Therefore,
the control law for the tracking problem is:
tan(a)]

L
L
o= tan_l(—kg(kpvdsin(ﬁl —0)+ k(04 — 0))).
v

v = kilkpdcos(¢' —0) + k(04 — 0)

Now we are able to analyze this control law using the energy function for the
controller as the Liapunov function of the system. Since

&= —[ky(xa—)i + ky(ya — v)¥ + ke(04 — 0)0]

= —[kp(zq —) cos(0) + kp(ya — y) sin(0) + k(04 — 0) tanL(a)]v
L,
TR S 0,

the Liapunov function is nonincreasing, therefore, the system is “stable.” However,
strictly speaking, the controller is not an embedded constraint solver since the system
is not asymptotically stable at the solution: if |¢ — 0| = Tk and 05 = 0 we get v =0
even when d # 0. We prove that they are the only singularities of this control law.

Proposition 5.1 This control law satisfies the condition v = 0 iff
_ y _T _
(d=0VI0 -0 = §k)/\(ed_a).
Proof: According to the control law for a, v = 0 implies 8; = 6. According to the
control law for v, v = 0 implies d cos(¢' —) = 0. O

Therefore, the car can stop at singularities without reaching the desired goal. In
order to solve this problem, we use a hierarchical control structure.

6 Robotic Architecture
How should we compose a control system?

A control system, in general, is implemented in a vertical hierarchy [1] corresponding
to a hierarchical abstraction of time and domains (Fig. 5). The bottom level sends

TIME STRUCTURES CONTROLLER

I

—zmZxzZz0xXm - < zZ2m

Fig.5. Abstraction hierarchy

control signals to various actuators, and at the same time, senses the state of actua-
tors. Control signals flow down and the sensing signals flow up. Sensing signals from
the environment are distributed over levels. Each level is a black box that represents
the causal relationship between the inputs and the outputs. The inputs consist of the
control signals from the higher level, the sensing signals from the environment and

the current states from the lower level. The outputs consist of the control signals to
the lower level and the current states to the higher level. Usually, the bottom level
is implemented by analog circuits that function with continuous dynamics and the
higher levels are realized by distributed computing networks.

In our framework of control synthesis, constraints are specified at different levels
on different domains, with the higher levels more abstract and the lower levels more
plant-dependent.

A control system can be synthesized as a hierarchy of interactive embedded con-
straint solvers. Each abstraction level solves constraints on its state space and pro-
duces the input to the lower level. The higher levels are composed of digital/symbolic
event-driven control derived from discrete constraint methods and the lower levels
embody analog control based on continuous constraint methods.

For the robot soccer player, we have designed a two level controller. The low
level tracks the given goal position (x4, y4, @4) in continuous time and the high level,
driven by events from below, sets a new goal position according to the current ball
position, the target position and the boundary of the field. Obstacle and singularity
avoidance are considered at this level too. We will not describe this level in any detail
here. There are various kinds of events to trigger the high level planner; the current
version uses a simple event: the car coming to a stop (which implies that either the
current goal is achieved or the car is stuck because of singularity or obstacles). Other
events such as the ball moving significantly or an obstacle obstructing the path can
be incorporated. Fig. 6 shows an overall CN control structure, with the models of
the car (plant) and the ball (environment).

7 Developing Hybrid Control Systems
Where are we and where are we going?

We have considered control synthesis as one of the four key problems in developing
hybrid control systems, together with modeling, specification and verification.

We have developed a unified framework for synthesizing continuous/discrete hy-
brid control systems based on a simple principle: on-line constraint satisfaction.
However, we are not aiming to replace existing control theory, rather to formalize
and generalize the underlying principles that are used in practice.

Local minima and/or singularities can be a major problem for this type of con-
troller. In general, a complex robot control system should be developed and orga-
nized hierarchically. Normally singularities can be avoided if a higher level control
strategy is used to detect singularities and to produce a sequence of intermediate
configurations between the actual and the target configurations. Such a higher level
event-triggered control strategy becomes more important when the robot is embed-
ded in a complex environment.

We have developed a modeling and simulation environment, called ALERT (A
Laboratory for Embedded Real-Time systems), in which the robot soccer player has
been modeled and simulated. We are experimenting with an implementation on the
real soccer players.

In the future, we also plan to characterize some restricted classes of hybrid control
systems and investigate semi-automatic or automatic control synthesis methods for

£€7? v a xb yb

Car_Modée Ball_Model

Fig.6. A control structure for the robot soccer player

th

ese classes. The fundamental goal is to provide foundations for the design and

analysis of robotic systems and behaviors.

References

1. J. S. Albus. Brains, Behavior, and Robotics. BYTE Publications, 1981.

2. E. A. Ashcroft. Dataflow and eduction: Data-driven and demand-driven distributed
computation. In J. W. deBakker, W.P. deRoever, and G. Rozenberg, editors, Current
Trends in Concurrency, number 224 in Lecture Notes on Computer Science, pages 1 —
50. Springer-Verlag, 1986.

3. A. Benveniste and P. LeGuernic. Hybrid dynamical systems theory and the SIGNAL
language. IEEE Transactions on Automatic Control, 35(5):535 — 546, May 1990.

4. P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A declarative language
for programming synchronous systems. In ACM Proceedings on Principles of Program-
ming Languages, pages 178 — 188, 1987.

5. E. Emerson. Temporal and modal logic. In Jan Van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B: Formal Models and Semantics. Elsevier, MIT
Press, 1990.

6. D. E. Koditschek. Robot planning and control via potential functions. In J. Craig
O. Khatib and T. Lozano-Perez, editors, The Robotic Review 1. MIT Press, 1989.

7. J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. J. Lavignon and Y. Shoham. Temporal automata. Technical Report STAN-CS-90-

1325, Robotics Laboratory, Computer Science Department, Stanford University, Stan-
ford, CA 94305, 1990.

T. Lozano-Perez. Spatial planning: A configuration space approach. IEEE Transac-
tions on Computers, C-32(2), February 1983.

7. Manna and A. Pnueli. Specification and verification of concurrent programs by V-
automata. In Proc. 14th Ann. ACM Symp. on Principles of Programming Languages,
pages 1-12, 1987.

7. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

A. Nerode and W. Kohn. Models for hybrid systems: Automata, topologies, controlla-
bility, observability. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors,
Hybrid Systems, number 736 in Lecture Notes on Computer Science, pages 317 — 356.
Springer-Verlag, 1993.

D. K. Pai. Least constraint: A framework for the control of complex mechanical sys-
tems. In Proceedings of American Control Conference, pages 426 — 432, Boston, 1991.
J. Platt. Constraint methods for neural networks and computer graphics. Technical
Report Caltech-CS-TR-89-07, Department of Computer Science, California Institute
of Technology, 1989.

M. Sahota and A. K. Mackworth. Can situated robots play soccer? In 1994 Canadian
Artificial Intelligence, Banff, Alberta, May 1994.

J. T. Sandfur. Discrete Dynamical Systems: Theory and Applications. Clarendon
Press, 1990.

Y. Zhang. A foundation for the design and analysis of robotic systems and behav-
iors. Technical Report 94-26, Department of Computer Science, University of British
Columbia, 1994. Ph.D. thesis.

Y. Zhang and A. K. Mackworth. Specification and verification of constraint-based
dynamic systems. In A. Borning, editor, Principles and Practice of Constraint Pro-
gramming, Lecture Notes in Computer Science 874, pages 229 — 242. Springer Verlag,
1994.

Y. Zhang and A. K. Mackworth. Constraint Nets: A semantic model for hybrid dy-
namic systems. Theoretical Computer Science, (138):211 — 239, 1995. Special Issue on
Hybrid Systems.

Y. Zhang and A. K. Mackworth. Constraint programming in constraint nets. In
V. Saraswat and P. Van Hentenryck, editors, Principles and Practice of Constraint
Programming, pages 49 — 68. MIT Press, 1995.

