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Abstract

We propose a general framework for the simulation of sounds produced by colliding
physical objects in a virtual reality environment. The framework is based on the vibra-
tion dynamics of bodies. The computed sounds depend on the material of the body,
its shape, and the location of the contact.

This simulation of sounds allows the user to obtain important auditory clues about
the objects in the simulation, as well as about the locations on the objects of the colli-
sions.

Specifically, we show how to compute (1) the spectral signature of each body (its
natural frequencies), which depends on the material and the shape, (2) the ‘‘timbre’’ of
the vibration (the relative amplitudes of the spectral components) generated by an
impulsive force applied to the object at a grid of locations, (3) the decay rates of the
various frequency components that correlate with the type of material, based on its
internal friction parameter, and finally (4) the mapping of sounds onto the object’s
geometry for real-time rendering of the resulting sound.

The framework has been implemented in a Sonic Explorer program which simu-
lates a room with several objects such as a chair, tables, and rods. After a preprocess-
ing stage, the user can hit the objects at different points to interactively produce realis-
tic sounds.

1 Introduction

What information is conveyed by the sound of a struck object? Before
reading further, you may want to try the following informal experiment. Tap
on the physical objects around you like tables and file cabinets and listen to the
sounds produced. First tap an object lightly and then try hitting it harder. Tap
on wooden objects and metal objects. Tap on small objects like cups and tele-
phones and large objects like tables and doors. Finally, for each object, try tap-
ping it near the center, around the edges, from the side, and at other locations
on the object. Most people can hear clear differences among the sounds in each
of these cases.

When an object is struck, the energy of impact causes deformations to propa-
gate through the body, causing its outer surfaces to vibrate and emit sound
waves. The resulting sound field propagates through and also interacts with the
environment before reaching the inner ear where it is sensed. Real sounds
therefore provide an important ‘‘image’’ of various physical attributes of the
object, its environment, and the impact event, including the force (or energy)
of the impact, the material composition of the object, its shape and size, the
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place of impact on the object, and finally the location
and environment of the object.

In this paper we show how to synthesize realistic
sounds from physical models of the geometry and mate-
rial properties of objects.

The cognitive importance of realistic sounds is well
known in the entertainment industry where sampled
sound effects are added to enhance realism. As simula-
tions become more interactive—for instance, in large
architectural walkthroughs (Airey, Rohlf, and F. P.
Brooks, 1990) and virtual reality—synthesizing realistic
object sounds directly from physical models and render-
ing them in real time will be increasingly important.

The generation of sounds can be characterized as
shown in Figure 1, which depicts the process as a pipe-
line similar to the sound-rendering pipeline of Takala
and Hahn (1992). While this is a simplification, it indi-
cates the major computational tasks in going from a col-
lision event to the sound heard by a human ear. The fo-
cus of this paper is the initial stage of this pipeline: the
computation of the sounds produced by vibrations of
the object, which depend on the geometry of the object,
its material properties, and the characteristics of the im-
pact. For completeness we also briefly describe other
parts of the pipeline such as impact dynamics and envi-
ronment modeling.

1.1 Related Work

A review of the scientific and technological issues
of auditory displays can be found in Durlach and Mavor
(1995). An overview of the physical factors involved in
producing natural sounds was presented in Gaver
(1993b). Several synthesis methods for impact, scraping,
and composite sounds were described in Gaver (1993a).
However, no method was given to compute the free pa-
rameters of the synthesis methods, such as the set of
eigenfrequencies, the relative amplitudes of the partials,

and the bandwidths of the frequencies. With the meth-
ods described in this paper, the parameters of these syn-
thesis methods can be computed.

Takala and Hahn introduced the concept of sound
rendering for computer animation (Takala & Hahn,
1992). They associated a characteristic sound with each
object that could then be rendered after filtering the
sound to model the environmental effects. Recently they
proposed ‘‘timbre trees,’’ which, like shade trees, pro-
vide a scene description language for sounds (Hahn et
al., 1992). While Takala and Hahn (1992) indicated that
the collision sounds could, in principle, be generated
from vibration analysis, they were concerned mainly with
the modulation of sound due to material properties.
They did not synthesize sounds that account for the
shapes of the colliding objects or the location of the col-
lision on the objects.

Much progress has been made recently with the simu-
lation of the filtering of sound by the human ear and
head, giving the illusion of sound coming from various
directions. Off-the-shelf audio hardware and software is
already available to ‘‘place’’ a sound in space, using the
‘‘head-related transfer function.’’ For a review of this
topic we refer to Begault (1994).

Offline computation of acoustical properties of perfor-
mance halls, in the context of graphical visualization
techniques, was investigated in Stettner and Greenberg
(1989).

Wildes and Richards (1988) and Krotkov and Klatzky
(1995) investigated the problem of recovering the mate-
rial type from impact sounds, and it was proposed to use
the internal friction parameter, which is an approximate
material property, as a characteristic signature of the ma-
terial. In this paper we invert this approach by relating
the material properties of the synthesized sounds to the
decay rates of the partials with the internal friction pa-
rameter.

For a more mathematically oriented example of the
relation between shape and sound for membranes, we
refer to the long-standing open problem ‘‘Can one hear
the shape of a drum?’’, which was posed in 1966 (Kac,
1966). Recently counterexamples have been found
(Gordon, Webb, & Wolpert, 1992).

A standard work on acoustics is Morse (1976). For a

Figure 1. Sound Pipeline.
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book on vibration analysis we refer to Fahy (1985). For
an application of vibration analysis to animation, see
Pentland and Williams (1992). A survey of the use of the
auditory channel in virtual reality is given in Durlach and
Mavor (1995, Chapter 3). More general treatises on
sound and hearing are Moore (1986) and Bregman
(1990).

1.2 Overview

In this article we investigate the computation and
rendering of sounds emitted by colliding bodies. When
we strike an object such as a metal bar, we hear a brief
transient or click, with a complex frequency spectrum,
followed by a more-or-less sustained sound, which de-
cays. In Figure 2 we show the waveform of a sound of a
daf, which is a large drum. It shows the noisy onset of
the sound, followed by a smoother part. The click or
onset has some role in identifying the sound. For ex-
ample, try listening to a recording of a flute played back-
wards. The sound is no longer as clearly recognizable as
a flute, even though the sustained part of the sound is
unchanged. See also Bregman (1990) and Moore
(1986).

Nevertheless, most information about the nature of
the object is present in the sustained part. To obtain this,
we need to compute the vibrations of an object when it
is struck, and compute the resulting sound emitted.

The sound made by a struck object depends on many
factors, of which we consider the following:

1. The shape of the object. The propagation of vibra-
tions in the object depends on its geometry. This is
why a struck gong sounds very different from a
struck piano string, for example. Shape and mate-
rial together determine a characteristic frequency
spectrum.

2. The location of the impact. The timbre of the
sound—i.e., the amplitudes of the frequency com-
ponents—depends on where the object is struck.
For example, a table struck at the edges makes a
different sound than when struck at the center.

3. The material of the struck object. The harder the
material, the brighter the sound. We also relate the
material to the decay rate of the frequency compo-
nents of the sound through the internal friction
parameter. (See below.)

4. The force of the impact. Typically, the amplitude of

Figure 2. Waveform of a daf.
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the emitted sound is proportional to the square
root of the energy of the impact.

All these factors give important cues about the nature of
an object and about what is happening to an object in
the simulation.

Based on material and shape properties, we do a pre-
computation of the relevant characteristic frequencies of
each object in Section 2. In Section 3 we then divide the
boundary of the object into small regions and determine
the amplitudes of the excitation modes if an impulsive
force is applied to a point in this region.

This is similar to the tesselation of a surface for graph-
ics rendering. The whole procedure is analogous to as-
signing a color to a surface and rendering it with some
shading model. Although the role of sound synthesis
differs in many aspects from the role of graphics, there
are some useful analogies that can be drawn between the
two. We show one possible correspondence in Table 1.
Shape, impact location, and material are the focus of this
paper.

In Section 4, we normalize the energies of the vibra-
tions associated with the different impact points to some
constant value, and scale them proportional to the im-
pact energy when rendered.

The decay rate of each mode is assumed to be deter-
mined by the internal friction parameter, which is an
approximate material property (Wildes & Richards,
1988; Krotkov & Klatzky, 1995). In effect, the decay
rate of a component is assumed to be proportional to
the frequency, with the constant determined by the in-
ternal friction parameter.

Besides the natural frequencies there is a brief tran-

sient, a ‘‘click,’’ mentioned before, which we model by a
short burst of white noise.

After the preprocessing, a sound map is attached to an
object, allowing us to render sounds resulting from im-
pacts on the body. We discuss the structure of this map
and a possible approach to reduce its storage require-
ments in Section 5.

We have constructed a testbed application, called the
‘‘Sonic Explorer,’’ which demonstrates the level of real-
ity that can be achieved within this model. The Sonic
Explorer is currently set up to precompute the impact
sounds of several types of objects, incorporate them in a
real-time interactive simulation, and render them in real
time, using the audio hardware. This is described in Sec-
tion 6. A picture of a virtual room environment is given
in Figure 3.

2 Vibrating Shapes from Impact

We now introduce the framework for modeling
vibrating objects. We will illustrate it with a rectangular
membrane, but the framework is quite general; we have
used it to generate sounds of strings, bars, plates, and
other objects. The framework is based on the well-devel-
oped models in the literature on vibration or acoustics
(e.g., Morse (1976)). For the calculus involved we refer
to Strang (1986).

2.1 Vibration Modes from Shape

The vibration of the object is described by a func-
tion m(x, t), which represents the deviation from equilib-
rium of the surface, defined on some region S, which
defines the shape of the object. We assume that m obeys
a wave equation of the form

1A 2
1

c2

­2

­t22m(x, t) 5 F (x, t) (1)

with c being a constant (related to the speed of sound in
the material), and A a self-adjoint differential operator
(Rudin, 1973), under the boundary conditions on ­S. In
the following we shall assume that the external force,

Table 1. Graphics-Audio Analogies

Sound Graphics

Material Color
Spatialization Perspective projection
Shape Shape
Impact Light Ray
Reverberation Raytracing and radiosity
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F (x, t), is zero. This type of equation is well known for
various objects, and can be solved by analytic methods
for simple geometries with homogeneous materials, as
we will do below. See for example Morse (1976) and
Lamb (1910).

Example: For the rectangular membrane we consider a
rectangle [0 2 Lx, 0 2 Ly] spanned by a membrane
under uniform tension. For this case the operator A is
given by

A 5
­2

­x2
1

­2

­y 2
.

The boundary conditions are that m(x, y, t) is fixed on
the boundary of the membrane, i.e., the membrane is
attached to the rectangular frame.

We will take the following initial value conditions:

m(x, 0) 5 y0(x),

i.e., the surface is initially in configuration y0(x), and

­m(x, 0)

­t
5 v0(x),

where v0(x) is the initial velocity of the surface.
The solution to equation (1) is written as

m(x, t) 5 o
n51

`

(ansin(wnct) 1 bncos(wnct))Cn(x), (2)

where an and bn are arbitrary real numbers to be deter-
mined by the initial value conditions. The values of wn

are related to the eigenvalues of the operator A under

Figure 3. A room modeled with the Sonic Explorer.
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the appropriate boundary conditions (which we specify
below), and the functions Cn(x) are the corresponding
eigenfunctions. Thus we have

(A 1 wn
2)Cn(x) 5 0. (3)

The spectrum of a self-adjoint operator A is discrete, and
the eigenfunctions are orthogonal. Their norm is written
as

an 5 eS
Cn

2(x)dV.

Example: For the rectangular membrane of dimension
Lx 3 Ly, the eigenfunctions and eigenvalues are most
naturally labeled by two positive integers, nx and ny,
and are given by

Cnxny
(x, y) 5 sin(pnxx/Lx)sin(pnyy/Ly),

and

wnxny
5 p Î1nx

Lx
2
2

1 1ny

Ly
2
2

In Figure 4, we show the first nine eigenfunctions on a
square membrane.

As equation (3) is linear, we can normalize the eigen-
functions Cn(x) such that an is independent of n, which
often simplifies some of the algebra. Using the orthogo-
nality of the eigenfunctions we can find the coefficients
in the expansion given in equation (2) as

an 5 eS

v0(x)Cn(x)

canwn
dkx, (4)

and

bn 5 eS

y0(x)Cn(x)

an
dkx. (5)

The time-averaged energy of the vibration is given by

E 5 constant 3 ,eS 1
­m(x, t)

­t 2
2

r(x)dkx., (6)

where r(x) is the mass density of the vibrating object.
The ,. indicates an average over time. If the mass is

Figure 4. First nine eigenfunctions of a square membrane.
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distributed uniformly, we have

E 5 constant 3o
n51

`

anwn
2(an

2 1 bn
2). (7)

2.2 Mode Amplitudes from Impact
Location

Next we compute the vibrations resulting from an
impact at some point p, when the body is initially at rest.

The initial value conditions are taken to be

y0(x) 5 0, (8)

and

v0(x) 5 d(x 2 p), (9)

with d(x) the k-dimensional Dirac delta function.
We note that equation (9) is not strictly correct as an

initial value condition. The reason is that the expression
for the energy given in equation (6) involves the square
of the time derivative of m(x, t). But the integral of the
square of the Dirac delta function is infinite. One symp-
tom of this is that the infinite sum appearing in equation
(2) does not converge. A mathematically more correct
method would replace the delta function in the initial
value conditions by some strongly peaking external force
function, representing the impact on a small region of
the object over a finite region and over a small but finite
extension in time. However, this would complicate
things quite a bit, and we would gain little in terms of
more-realistic sounds. Therefore, we shall just assume an
appropriate frequency cutoff in the infinite sum appear-
ing in equations (7) and (2). Typically, we will use only
the frequencies in the audible range. For more details
and a more rigorous treatment of this problem for the
special cases of the ideal string and the circular mem-
brane, see Morse (1976).

Using equations (8) and (9), and substituting them in
equations (4) and (5), we obtain the amplitudes of the
vibration modes as a function of the impact location as

an 5
Cn(p)

can wn

, (10)

and

bn 5 0.

The energy of the vibration is determined by the impact
strength. It will be used to scale the amplitudes of equa-
tion (10). The energy is given by

E 5 constant 3o
n51

nf Cn
2(p)

an

,

where nf is determined by the frequency cutoff men-
tioned above.

Example: In Figures 5 to 7 we show the amplitudes an,
graphed against the frequency of the modes (i.e., wn)
for a square membrane struck at the points (0.1, 0.1),
(0.1, 0.4), and (0.5, 0.4). We use a coordinate system
in which (0, 0) corresponds to the lower-left corner
and (1, 1) corresponds to the upper-right corner of
the membrane. We have taken the lowest frequency to
be 500 Hz and taken the first 400 modes into ac-
count. We can see clearly that the higher frequencies
become relatively more excited for strike points near
the boundary of the membrane. In other words, the
membrane sounds dull when struck near the center,
and bright (or sharp) when struck near the rim.

The method outlined above is very general, and allows
the computation of the vibrations under impact of any
object governed by a differential equation of the form
given in equation (1). This covers all vibrating struc-
tures, at least for small vibrations. For large external
forces, non-linear effects will come into play, and the
linear approximation will break down. For example, cer-
tain types of cymbals and Chinese gongs are designed
explicitly to exhibit nonlinear behaviour as discussed by
Fletcher and Rossing (1991).

The frequency spectrum wn and the eigenfunctions
Cn(x) can be computed analytically in a number of cases.
In general, one has to resort to numerical methods. For
membranes, the problem reduces to the solution of the
Laplace equation on a given domain, which is a well-
studied problem. We mention the method of particular
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solutions (Fox, Henrici, & Moler, 1967), which we have
adapted for the example of the L-shaped membrane,
described below in Section 6. For plates, the operator A
is fourth order, and a more general finite element
method can be used. See for example Johnson (1987).

3 Sound Sources from Vibrating Shapes

Suppose one has obtained the frequency spectrum
and the eigenfunctions, as shown in Section 2.

What is the relation between the vibration of the ob-
ject and the sound emitted? In general, the sound field

around a vibrating body is very complicated and non-
uniform. However, it is clear that the sound emitted can
be described as a sum of monochromatic components
with frequencies wnc, and amplitudes an

S, which will de-
pend on the location of the observer with respect to the
object, as well as on the environment. Note that these
are not identical to the amplitudes an of the vibration
modes, which is why we distinguish them with the su-
perscript ‘‘S.’’

As a first approximation, we will identify the coeffi-
cients an

S with the vibration amplitudes an, scaled with
the inverse of the distance to the observer, as the ampli-
tude decays inversely proportional to the distance.

Figure 5. Square membrane struck at (0.1, 0.1).
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This is not strictly correct, but we argue that it is rea-
sonable as follows. Consider a vibrating plate. At some
point above the plate, waves emerging from all locations
on the plate arrive at this point. Some will be in phase,
and some will be out of phase. This interference will de-
pend very sensitively on the location of the observation
point. However, in most real situations, the sound will
not only arrive directly from the source, but also from
reflections from the walls and other objects in the room.
The total effect of this is to average out the phase differ-
ences, making the sound field less sensitive to the loca-
tions of the listener.

As a heuristic, we assume that the intensity (i.e., the
energy) of the sound emitted in frequency wn, In, is
given by

In 5 EneS
Cn

2(x) 5 constant 3Cn
2(p).

This seems reasonable, as it integrates the intensity of
the vibration, but not the phase. This means we can
identify an

S, the amplitudes of the heard sound, with the
an given in equation (10), omitting the factor an. Note that
since we assumed that the eigenfunctions are normalized so
that the an are independent of n, this does not matter.

Figure 6. Square membrane struck at (0.1, 0.4).
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Finally, we obtain the amplitudes an
S as

an
S 5

EimpactCn(p)

wnQ(p)d
, (11)

with d the distance from the sound source, Eimpact the
energy of the impact, and

Q(p) 5Îo
i51

nf

Cn
2(p),

with nf a suitable frequency cutoff. Of course, the an
S values

are only defined up to a multiplicative constant (correspond-
ing to the volume setting of the audio hardware).

For a more detailed treatment of the radiation of vi-
brating plates, we refer to books on vibration analysis
(Shabana, 1991a, 1991b; Fahy, 1985).

4 Sounds and Material Properties

When the object is struck, each frequency mode is
excited with an initial amplitude ai, which depends on
where the object is struck. The relative magnitudes of
the amplitudes ai determines the ‘‘timbre’’ of the sound.
Each mode is assumed to decay exponentially, with de-

Figure 7. Square membrane struck at (0.5, 0.4).
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cay time

ti 5
1

p fi tanf
, (12)

where f is the internal friction parameter. The internal
friction parameter is roughly invariant over object shape,
and depends on the material only. Wildes and Richards
(1988) proposed a method to identify an object’s mate-
rial type from the sound it emitted when struck, by ex-
tracting the internal friction parameter of the material via
equation (12). Such a model is also used by Takala and
Hahn (1992) to simulate object sounds. Krotkov and
Klatzky (1995) reported some experiments where it was
concluded that a rough characterization of material was
indeed possible. However, the internal friction param-
eter is only approximately invariant over object shape.
See also Wert (1986).

To emulate external damping of the object, we add an
overall decay factor of e2t/t0. This also allows us to adjust
the length of the emitted sound, while maintaining its
‘‘material character,’’ which is determined by f.

So we assume the sound wave pS(t) to be given for t $

0 (for t , 0 it is zero) by

pS(t) 5 e2t/t0o
i51

nf

ai
Se2t fiptanfsin(2p fit), (13)

with the amplitudes ai
S given in equation (11), and

fn 5
wnc

2p
,

with wn determined by equation (1).

5 The Sound Map

In the preprocessing stage we first compute the
frequency spectrum fi, and then the excitation spectrum
ai, under a suitably normalized impact (i.e., with fixed
energy) for a number of locations on the surface. We can
then compute digital samples of the sound wave pS(t) 1

pC(t) for these locations and store them for playback
during the real-time simulation. This is somewhat analo-

gous to texture mapping in computer graphics. Alterna-
tively, if appropriate real-time, sound-synthesis hardware
is available, only the model parameters need to be
stored, as the sound can be computed on the fly. An in-
terpolation of the timbre spectrum ai

S between precom-
puted locations is also obvious to implement.

As digital sound samples take a lot of space, we do not
want to store any more than we need. So one may ask
how many points on the surface need to be computed.
In general, the timbre of the sound changes non-uni-
formly over the surface. For example, a string sounds
‘‘dull’’ when plucked near the center, and becomes dra-
matically brighter when excited near the endpoints. In
this case, one would need a denser set of points near the
ends.

Given two sounds S1 and S2, a measure d(S1, S2) is
needed, that tells us how different sound S1 ‘‘sounds’’
from sound S2, such that if d(S1, S2) , d0, with d0 a
threshold (depending on the individual), S1 and S2 can-
not be distinguished. Perception of timbre is a complex
subject—see for example Bregman (1990) and Moore
(1986) for a discussion—so we cannot expect to be able
to formulate such a sound-distance measure easily and
accurately.

As an initial proposal we take the sonic distance d(S1,
S2) between two sounds to be

d2(S1, S2) 5 o
i51

nf

S( fi)(H(log(Ei
1/E0)) 2H(log(Ei

2/E0)))2 ,

where Ei
r denotes the energy contribution of the ith

mode of sound r (51, 2), i.e., Ei
r 5 (ai

Sr)2f i
2. We take the

logarithm of the energy, as the human ear is sensitive to
the logarithm of intensity (measured in decibels). The
function H(x) is zero for x , 0, and x otherwise. The
constant E0 represents the lowest sound level that can be
heard, so the term H(log(Ei

r/E0) vanishes if Ei
r , E0.

The function S(f) models the sensitivity of the ear to
frequency. Without loss of generality we take 0 # S(f) #

1. The function S(f) has to be determined through psy-
choacoustic experiments.

We have ignored the ‘‘masking’’ effect, which changes
the sensitivity curve of the ear in the presence of other
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stimuli. One could also argue that the threshold energy
E0 depends on frequency.

We leave a refinement of the measure d as a topic for
future research.

6 Results

For a number of cases, the vibration equations can
be solved exactly, and the sound-model parameters can
be found in analytic form. Some of these models are al-
ready very useful in giving a realistic ‘‘feel’’ of the colli-
sion sounds.

We have solved a number of configurations (using
well-known solutions to the corresponding wave equa-
tion), and have computed the sounds for some instances
of these problems. They are:

1. The taut string. This is the simplest example of a
vibrating system. The eigenfunctions are simple
sine functions. The sound becomes brighter for
impacts near the ends of the string. The frequency
spectrum is harmonic, i.e., all frequencies are inte-
ger multiples of the lowest (fundamental) fre-
quency. The amplitudes an are inversely propor-
tional to n, for large n, in contrast to a plucked
string, considered in Takala and Hahn (1992),
where they decay as 1/n2. This is one factor ac-
counting for the difference between a piano and a
guitar sound, for example.

2. The rigid bar. For the rigid bar, the operator A
appearing in equation (1) is given by

A 5 2
­4

­x4
.

As A is a fourth-order operator, we need to specify
four boundary conditions. We have computed a
clamped-clamped bar, i.e., the bar is rigidly at-
tached at both ends. The boundary conditions are

Cn(0) 5 Cn(1) 5 1dCn

dx 2
x50

5 1dCn

dx 2
x51

5 0. (14)

The frequency spectrum is less dense than for the

string, and it is not harmonic. This is due to the
different nature of the restoring forces on a bar.

3. The rectangular membrane. This geometry gives
the simplest solution to the wave equation for a
two-dimensional geometry. The sound spectrum is
extremely dense, giving a rich complex sound.

4. The circular membrane. This corresponds to the
vibrations of a drum, ignoring the effects of the
surrounding air on the drum membrane. The
eigenfunctions are Bessel functions, and the eigen-
frequencies can be computed as the zeros of Bessel
functions.

5. The circular plate. This is one of the few cases
where the two-dimensional plate equations can be
separated, which allows an analytic solution. The
eigenfunctions are a combination of Bessel func-
tions and modified Bessel functions. We have con-
sidered a plate clamped rigidly at the boundary.
The spectrum is much less dense than for the circu-
lar membrane. As with the bar, this is due to the
larger restoring forces in a plate as compared to a
membrane.

6. The L-shaped membrane. A membrane supported
by a domain consisting of three unit squares in the
shape of an L does not allow an analytic solution of
the wave equation. This problem has received
some attention in the literature, as the resulting
boundary value problem requires some refined
numerical methods. We have computed the eigen-
functions and the spectrum with an adaptation of
the method of partial solutions (Fox et al., 1967).
As an aside, we note that the first eigenfunction
features prominently on the cover of the MATLAB
reference guide (Matlab-reference, 1992).

We have implemented a Sonic Explorer, which allows
us to create a graphical scene with objects of the above
types. The sounds associated with a grid of points on
each object are precomputed and stored as digital
samples. For this we have created a synthesis tool that
implements various vibrational objects with relatively
simple geometry. More-complicated geometries would
demand a finite element method, for which an interface
to some existing finite element modeling could be cre-
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ated. A problem with this approach is that for compli-
cated materials and geometries there may not be enough
information available about the elastic properties of the
material and the geometry to allow a precomputation of
the vibration modes from a model.

Although designed for precomputation, the precom-
putation of the sounds can be done almost in real time,
depending on how many vibration modes we wish to
incorporate. On a 200 Mhz SGI Indy, we can do
roughly 40 modes in real time. We are currently investi-
gating a real-time synthesis approach that will dispense
with the need to precompute samples.

By clicking on a point on a surface, a drumstick hits
the object at the specified point and the sound is ren-
dered. The purpose of this Explorer is to investigate the
realism of the sounds by integrating them in a graphics
environment, so the user can integrate visual and audio
cues. Our implementation allows the optional use of a
set of HRTF filters to spatialize the sounds completely in
three dimensions using the public-domain Kemar HRTF
filters (Gardner & Martin, 1994). However, as we have
no specialized hardware, this introduces unacceptable
delays. A simple left-right localization based on interau-
ral delays (Begault, 1994) does perform in real time.

7 Discussion and Conclusions

We have developed a framework to add an audi-
tory component to real-time simulation environments.
We have focused on aspects of sounds that enhance the
level of realism and on effects that provide the user with
useful auditory clues about the simulated environment.
Within our framework different materials such as wood
or metal have a recognizable signature, determined
through the internal friction parameter, which deter-
mines the decay rate of the different frequency compo-
nents.

The shape of the object and its structure (such as a
plate versus a membrane) determines a characteristic
frequency spectrum. This frequency signature facilitates
the recognition of an object by its sound. A metal bar,
for example, rings with a sparse nonharmonic spectrum,

of which the higher modes decay rapidly. This is how we
recognize its sound.

The sound of an impact also depends on where an
object is hit, and this also provides useful information
about the environment. Though the frequency signature
is the same over the object, the relative amplitudes
change. Generally, an object sounds brighter (i.e., more
upper partials are excited) when struck near an edge
than when struck near the center. Recall for example
Sherlock Holmes, who taps on the walls to find a secret
compartment. By precomputing a grid of sounds for
each object, we incorporate this location information.

We have derived some general formulas to determine
the spectrum from the shape, material, and amplitudes
as a function of the impact site. We have considered sys-
tems that can be described by a linear wave equation on
some domain, which covers all vibrating solids for suffi-
ciently small vibrations.

We have not taken the directionality of the sound
emitted into account. To do so involves radiation
theory—see for example Fahy (1985)—but this falls in
the next stage of the pipeline depicted in Figure 1.

These ideas were implemented in a Sonic Explorer,
which allows the user to explore the environment by
hitting various objects with a virtual drumstick. We find
that it is essential to listen to the synthesized sounds in a
visual and tactile context to judge their realism. So the
Sonic Explorer is intended both as a research tool for the
creation of synthesized sounds as well as a demonstra-
tion of the enhanced realism that can be achieved by
adding an auditory component to the scene that consists
of more than the playback of canned sounds.

An interesting direction for future research is to inte-
grate the Sonic Explorer with a haptic interface (Durlach
& Mavor, 1995, Chapter 4). We expect that a virtual
reality environment with three sensory feedback chan-
nels (sight, hearing, and touch) will provide a significant
enhancement.

As digital samples tend to take large amounts of stor-
age space, the question of how many sounds need to be
stored for each object comes to mind. For this we need
to have some criterion to determine if two similar
sounds can be distinguished by the user. The sounds
associated with different impact sites are very similar and
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differ only in the relative amplitudes of their frequencies,
and it is not clear how to construct such a measure. We
have made a tentative proposal which needs to be re-
fined with psychoacoustic experiments before it can be
used to optimize the sound grids associated with the
bodies. It is also possible to store just the model param-
eters (the partials, their decay rates, and the amplitudes
as a field on the object surface) and use these to synthe-
size the sounds in real time. This is currently under in-
vestigation by us.

Continuous sounds such as scraping, sliding, and roll-
ing can be obtained with a generalization of our
method, as the relevant quantities, the eigenfrequencies,
the amplitudes as a function of location, and the decay
rates of the partials determine the response to such inter-
actions in principle. Taking into account the finite dura-
tion in time, and the extension over a finite space, of
impacts is another important topic for further research.
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