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Recap Subgame Perfection Backward Induction

Nash Equilibria

Given our new definition of pure strategy, we are able to reuse our
old definitions of:

I mixed strategies

I best response

I Nash equilibrium

Theorem
Every perfect information game in extensive form has a PSNE

This is easy to see, since the players move sequentially.
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Recap Subgame Perfection Backward Induction

Induced Normal Form

I In fact, the connection to the normal form is even tighter
I we can “convert” an extensive-form game into normal form

5.1 Perfect-information extensive-form games 109
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2–01–10–2

yesnoyesnoyesno

(0,2)(0,0)(1,1)(0,0)(2,0)(0,0)

Figure 5.1 The Sharing game.

Notice that the definition contains a subtlety. An agent’s strategy requires a decision
at each choice node, regardless of whether or not it is possible to reach that node given
the other choice nodes. In the Sharing game above the situation is straightforward—
player 1 has three pure strategies, and player 2 has eight (why?). But now consider the
game shown in Figure 5.2.
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Figure 5.2 A perfect-information game in extensive form.

In order to define a complete strategy for this game, each of the players must choose
an action at each of his two choice nodes. Thus we can enumerate the pure strategies
of the players as follows.

S1 = {(A,G), (A,H), (B,G), (B,H)}
S2 = {(C,E), (C,F ), (D,E), (D,F )}

It is important to note that we have to include the strategies(A,G) and(A,H), even
though onceA is chosen theG-versus-H choice is moot.

The definition of best response and Nash equilibria in this game are exactly as they
are in for normal form games. Indeed, this example illustrates how every perfect-
information game can be converted to an equivalent normal form game. For example,
the perfect-information game of Figure 5.2 can be convertedinto the normal form im-
age of the game, shown in Figure 5.3. Clearly, the strategy spaces of the two games are

Multi Agent Systems, draft of September 19, 2006

CE CF DE DF
AG 3, 8 3, 8 8, 3 8, 3
AH 3, 8 3, 8 8, 3 8, 3
BG 5, 5 2, 10 5, 5 2, 10
BH 5, 5 1, 0 5, 5 1, 0
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CE CF DE DF
AG 3, 8 3, 8 8, 3 8, 3
AH 3, 8 3, 8 8, 3 8, 3
BG 5, 5 2, 10 5, 5 2, 10
BH 5, 5 1, 0 5, 5 1, 0

I this illustrates the lack of compactness of the normal form
I games aren’t always this small
I even here we write down 16 payoff pairs instead of 5
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CE CF DE DF
AG 3, 8 3, 8 8, 3 8, 3
AH 3, 8 3, 8 8, 3 8, 3
BG 5, 5 2, 10 5, 5 2, 10
BH 5, 5 1, 0 5, 5 1, 0

I while we can write any extensive-form game as a NF, we can’t
do the reverse.

I e.g., matching pennies cannot be written as a
perfect-information extensive form game
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CE CF DE DF
AG 3, 8 3, 8 8, 3 8, 3
AH 3, 8 3, 8 8, 3 8, 3
BG 5, 5 2, 10 5, 5 2, 10
BH 5, 5 1, 0 5, 5 1, 0

I What are the (three) pure-strategy equilibria?

I (A,G), (C,F )
I (A,H), (C,F )
I (B,H), (C,E)
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I There’s something intuitively wrong with the equilibrium
(B,H), (C,E)

I Why would player 1 ever choose to play H if he got to the
second choice node?

I After all, G dominates H for him

I He does it to threaten player 2, to prevent him from choosing
F , and so gets 5

I However, this seems like a non-credible threat
I If player 1 reached his second decision node, would he really

follow through and play H?
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I There’s something intuitively wrong with the equilibrium
(B,H), (C,E)

I Why would player 1 ever choose to play H if he got to the
second choice node?

I After all, G dominates H for him
I He does it to threaten player 2, to prevent him from choosing

F , and so gets 5
I However, this seems like a non-credible threat
I If player 1 reached his second decision node, would he really

follow through and play H?
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Formal Definition

I Define subgame of G rooted at h:
I the restriction of G to the descendents of H.

I Define set of subgames of G:
I subgames of G rooted at nodes in G

I s is a subgame perfect equilibrium of G iff for any subgame
G′ of G, the restriction of s to G′ is a Nash equilibrium of G′

I Notes:
I since G is its own subgame, every SPE is a NE.
I this definition rules out “non-credible threats”
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I Which equilibria from the example are subgame perfect?

I (A,G), (C,F ) is subgame perfect
I (B,H) is an non-credible threat, so (B,H), (C,E) is not

subgame perfect
I (A,H) is also non-credible, even though H is “off-path”
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It is important to note that we have to include the strategies(A,G) and(A,H), even
though onceA is chosen theG-versus-H choice is moot.

The definition of best response and Nash equilibria in this game are exactly as they
are in for normal form games. Indeed, this example illustrates how every perfect-
information game can be converted to an equivalent normal form game. For example,
the perfect-information game of Figure 5.2 can be convertedinto the normal form im-
age of the game, shown in Figure 5.3. Clearly, the strategy spaces of the two games are
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I Which equilibria from the example are subgame perfect?
I (A,G), (C,F ) is subgame perfect
I (B,H) is an non-credible threat, so (B,H), (C,E) is not

subgame perfect
I (A,H) is also non-credible, even though H is “off-path”
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Centipede Game

118 5 Reasoning and Computing with the Extensive Form

1q A
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(1,0)

2q A

D

(0,2)

1q A

D

(3,1)

2q A

D

(2,4)

1q A

D

(4,3)

(3,5)

Figure 5.9 The centipede game

place. In other words, you have reached a state to which your analysis has given a
probability of zero. How should you amend your beliefs and course of action based
on this measure-zero event? It turns out this seemingly small inconvenience actually
raises a fundamental problem in game theory. We will not develop the subject further
here, but let us only mention that there exist different accounts of this situation, and
they depend on the probabilistic assumptions made, on what is common knowledge (in
particular, whether there is common knowledge of rationality), and on exactly how one
revises one’s beliefs in the face of measure zero events. Thelast question is intimately
related to the subject of belief revision discussed in Chapter 2.

5.2 Imperfect-information extensive-form games

Up to this point, in our discussion of extensive-form games we have allowed players to
specify the action that they would take at every choice node of the game. This implies
that players know the node they are in, and—recalling that in such games we equate
nodes with the histories that led to them—all the prior choices, including those of other
agents. For this reason we have called theseperfect-information games.

We might not always want to make such a strong assumption about our players and
our environment. In many situations we may want to model agents needing to act with
partial or no knowledge of the actions taken by others, or even agents with limited
memory of their own past actions. The sequencing of choices allows us to represent
such ignorance to a limited degree; an “earlier” choice might be interpreted as a choice
made without knowing the “later” choices. However, we cannot represent two choices
made in the same play of the game in mutual ignorance of each other. The normal
form, of course, is optimized for such modelling.

5.2.1 Definition

Imperfect-informationgames in extensive form address this limitation. An imperfect-
information game is an extensive-form game in which each player’s choice nodes are
partitioned intoinformation sets; intuitively, if two choice nodes are in the same in-information sets
formation set then the agent cannot distinguish between them. From the technical
point of view, imperfect-information games are obtained byoverlaying a partition
structure, as defined in Chapter 1 in connection with models of knowledge, over a
perfect-information game.

Definition 5.2.1 An imperfect-information game(in extensive form) is a tupleimperfect-
information
game

(N,A,H,Z, χ, ρ, σ, u, I), where

c©Shoham and Leyton-Brown, 2006

I Play this as a fun game...
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