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Lecture Overview

@ Recap
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Recap

Non-Cooperative Game Theory

@ What is it?
e mathematical study of interaction between rational,
self-interested agents

@ Why is it called non-cooperative?
e while it's most interested in situations where agents’ interests
conflict, it's not restricted to these settings
o the key is that the individual is the basic modeling unit, and
that individuals pursue their own interests
@ cooperative/coalitional game theory has teams as the central
unit, rather than agents
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Recap

Defining Games

e Finite, n-person game: (N, A, u):
e N is a finite set of n players, indexed by ¢
e A=A, x...x A,, where A; is the action set for player i
@ a € A is an action profile, and so A is the space of action

profiles
o u = (uy,...,uy), a utility function for each player, where
u;: A— R

@ Writing a 2-player game as a matrix:
e row player is player 1, column player is player 2
e rows are actions a € A;, columns are a’ € A,
o cells are outcomes, written as a tuple of utility values for each
player
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Recap

Prisoner’s dilemma

Prisoner’s dilemma is any game

withe>a > d > b.

C D
a,a | b,c
c,b | d,d
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Recap

Games of Pure Competition

Players have exactly opposed interests
@ There must be precisely two players (otherwise they can't
have exactly opposed interests)

e For all action profiles a € A, uj(a) 4+ uz(a) = ¢ for some
constant ¢

e Special case: zero sum

Heads Tails

Heads 1 -1

Tails -1 1
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Recap

Games of Cooperation

Players have exactly the same interests.
@ no conflict: all players want the same things
° Va € A,Vi,j, ui(a) = uj(a)

Left Right
Left 1 0
Right 0 1
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Recap

General Games: Battle of the Sexes

The most interesting games combine elements of cooperation and
competition.
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Pareto Optimality

Lecture Overview

@ Pareto Optimality
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Pareto Optimality

Analyzing Games

@ We've defined some canonical games, and thought about how
to play them. Now let's examine the games from the outside

@ From the point of view of an outside observer, can some
outcomes of a game be said to be better than others?
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Pareto Optimality

Analyzing Games

@ We've defined some canonical games, and thought about how
to play them. Now let's examine the games from the outside

@ From the point of view of an outside observer, can some
outcomes of a game be said to be better than others?

e we have no way of saying that one agent's interests are more
important than another’s

e intuition: imagine trying to find the revenue-maximizing
outcome when you don't know what currency has been used to
express each agent's payoff

@ Are there situations where we can still prefer one outcome to
another?
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Pareto Optimality

Pareto Optimality

@ Idea: sometimes, one outcome o is at least as good for every
agent as another outcome o/, and there is some agent who
strictly prefers o to o

e in this case, it seems reasonable to say that o is better than o
e we say that o Pareto-dominates o'.
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Pareto Optimality

Pareto Optimality

@ Idea: sometimes, one outcome o is at least as good for every
agent as another outcome o/, and there is some agent who

strictly prefers o to o
e in this case, it seems reasonable to say that o is better than o
e we say that o Pareto-dominates o'.

@ An outcome o* is Pareto-optimal if there is no other outcome
that Pareto-dominates it.
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Pareto Optimality

Pareto Optimality

@ Idea: sometimes, one outcome o is at least as good for every
agent as another outcome o/, and there is some agent who

strictly prefers o to o
e in this case, it seems reasonable to say that o is better than o
e we say that o Pareto-dominates o'.

@ An outcome o* is Pareto-optimal if there is no other outcome

that Pareto-dominates it.
e can a game have more than one Pareto-optimal outcome?
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Pareto Optimality

Pareto Optimality

@ Idea: sometimes, one outcome o is at least as good for every
agent as another outcome o/, and there is some agent who

strictly prefers o to o
e in this case, it seems reasonable to say that o is better than o
e we say that o Pareto-dominates o'.

@ An outcome o* is Pareto-optimal if there is no other outcome

that Pareto-dominates it.
e can a game have more than one Pareto-optimal outcome?
e does every game have at least one Pareto-optimal outcome?
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Pareto Optimality

Pareto Optimal Outcomes in Example Games
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Pareto Optimality

Pareto Optimal Outcomes in Example Games

C D
C | -1,-1 | —4,0
D | 0-4 | —3-3

Left

Right

Left Right
1 0
0 1
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Pareto Optimality

Pareto Optimal Outcomes in Example Games

C | -1,-1 | —4,0 Left |\ 1 0
D 0’ —4 73’ -3 R|ght 0 1
B F
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Pareto Optimality

Pareto Optimal Outcomes in Example Games

c D Left Right
c | -1,-1| —4,0 Left 1 0
D 0,—4 -3,-3 Right 0 1
B F Heads Tails
B 2,1 10,0 Heads 1 -1
F 0,0 | 1,2 Tails -1 1
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Best Response and Nash Equilibrium

Lecture Overview

e Best Response and Nash Equilibrium
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Best Response and Nash Equilibrium

Best Response

o If you knew what everyone else was going to do, it would be
easy to pick your own action
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Best Response and Nash Equilibrium

Best Response

o If you knew what everyone else was going to do, it would be
easy to pick your own action
o Leta_; = <a1, SRR o 7 I ¢ VT IR ,an>.
e now a = (a_;,a;)

@ Best response: a € BR(a—;) iff
Ya; € A;, ui(a;‘,a,i) > ui(ai,a,i)
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Best Response and Nash Equilibrium

Nash Equilibrium

@ Now let’s return to the setting where no agent knows
anything about what the others will do

@ What can we say about which actions will occur?
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Best Response and Nash Equilibrium

Nash Equilibrium

@ Now let’s return to the setting where no agent knows
anything about what the others will do

@ What can we say about which actions will occur?

@ Idea: look for stable action profiles.

@ a=(ay,...,ay) is a (“pure strategy”) Nash equilibrium iff
Vi, a; € BR(CL_l)
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Best Response and Nash Equilibrium

Nash Equilibria of Example Games
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Best Response and Nash Equilibrium

Nash Equilibria of Example Games

C D Left Right
C —1,-1 _4’ 0 Left 1 0
D 0, —4 -3,-3 nght 0 1
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Best Response and Nash Equilibrium

Nash Equilibria of Example Games

C D Left Right
C | -1,-1 | —4,0 Left | 1 0
D 0, —4 -3,-3 nght 0 1
B F
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Best Response and Nash Equilibrium

Nash Equilibria of Example Games

C D Left  Right
C | -1,-1 —4,0 Left 1 0
D 0,—4 -3,-3 Right 0 1
B F Heads Tails
B 2,1 10,0 Heads 1 -1
F 0,0 | 1,2 Tails -1 1
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Best Response and Nash Equilibrium

Nash Equilibria of Example Games

C D Left  Right
C | -1,-1 —4,0 Left 1 0
D 0,—4 -3,-3 Right 0 1
B F Heads Tails
B 2,1 10,0 Heads 1 -1
F 0,0 | 1,2 Tails -1 1

The paradox of Prisoner’s dilemma: the Nash equilibrium is the only
non-Pareto-optimal outcome!
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Mixed Strategies

Lecture Overview

@ Mixed Strategies
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Mixed Strategies

Mixed Strategies

@ It would be a pretty bad idea to play any deterministic
strategy in matching pennies

o Idea: confuse the opponent by playing randomly
@ Define a strategy s; for agent ¢ as any probability distribution
over the actions A;.
e pure strategy: only one action is played with positive
probability
e mixed strategy: more than one action is played with positive
probability
o these actions are called the support of the mixed strategy

@ Let the set of all strategies for i be .S;
@ Let the set of all strategy profiles be S =57 x ... x 5,.
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Mixed Strategies

Utility under Mixed Strategies

@ What is your payoff if all the players follow mixed strategy
profile s € 57

o We can't just read this number from the game matrix
anymore: we won't always end up in the same cell
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Mixed Strategies

Utility under Mixed Strategies

@ What is your payoff if all the players follow mixed strategy
profile s € 57

o We can't just read this number from the game matrix
anymore: we won't always end up in the same cell

@ Instead, use the idea of expected utility from decision theory:

ui(s) = Z u;(a)Pr(als)

a€A

Pr(als) = JT s;(ay)

JEN
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Mixed Strategies

Best Response and Nash Equilibrium

Our definitions of best response and Nash equilibrium generalize
from actions to strategies.
@ Best response:
o s7 € BR(s_;) iff Vs; € Si, wi(s],s—i) > wi(si,5-4)
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Mixed Strategies

Best Response and Nash Equilibrium

Our definitions of best response and Nash equilibrium generalize
from actions to strategies.
@ Best response:
o s7 € BR(s_;) iff Vs; € Si, wi(s],s—i) > wi(si,5-4)

@ Nash equilibrium:
o s=(81,...,8y,) is a Nash equilibrium iff Vi, s; € BR(s_;)
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Mixed Strategies

Best Response and Nash Equilibrium

Our definitions of best response and Nash equilibrium generalize
from actions to strategies.
@ Best response:
o s7 € BR(s_;) iff Vs; € Si, wi(s],s—i) > wi(si,5-4)

@ Nash equilibrium:
o s=(81,...,8y,) is a Nash equilibrium iff Vi, s; € BR(s_;)

@ Every finite game has a Nash equilibrium! [Nash, 1950]
o e.g., matching pennies: both players play heads/tails 50%/50%
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Mixed Strategies

Computing Mixed Nash Equilibria: Battle of the Sexes

@ It's hard in general to compute Nash equilibria, but it's easy
when you can guess the support

@ For BoS, let's look for an equilibrium where all actions are
part of the support
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Mixed Strategies

Computing Mixed Nash Equilibria: Battle of the Sexes

o Let player 2 play B with p, F' with 1 — p.
o If player 1 best-responds with a mixed strategy, player 2 must
make him indifferent between F' and B (why?)
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Mixed Strategies

Computing Mixed Nash Equilibria: Battle of the Sexes

o Let player 2 play B with p, F' with 1 — p.
o If player 1 best-responds with a mixed strategy, player 2 must
make him indifferent between F' and B (why?)

ul(B) = ul(F)
2p+0(1 —p) =0p+1(1—p)
1

ng
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Mixed Strategies

Computing Mixed Nash Equilibria: Battle of the Sexes

o Likewise, player 1 must randomize to make player 2
indifferent.
e Why is player 1 willing to randomize?
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Mixed Strategies

Computing Mixed Nash Equilibria: Battle of the Sexes

o Likewise, player 1 must randomize to make player 2
indifferent.
e Why is player 1 willing to randomize?
o Let player 1 play B with ¢, F with 1 —gq.
u(B) = ua(F)
q¢+0(1—¢q)=0¢+2(1-q)

: e (2 1y (1 2
@ Thus the mixed strategies (35, 5), (35, 5) are a Nash
equilibrium.
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Mixed Strategies

Interpreting Mixed Strategy Equilibria

What does it mean to play a mixed strategy? Different
interpretations:
@ Randomize to confuse your opponent
e consider the matching pennies example
@ Players randomize when they are uncertain about the other’s
action
e consider battle of the sexes

@ Mixed strategies are a concise description of what might
happen in repeated play: count of pure strategies in the limit

@ Mixed strategies describe population dynamics: 2 agents
chosen from a population, all having deterministic strategies.
MS is the probability of getting an agent who will play one PS
or another.
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