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Abstract

One of the challenges in analyzing the strategies in contract
bridge stems from the fact that it is a Bayesian game with a
very large type space, and that players’ action sets depend on
their type. This results in a the strategy space being of a size
where brute force methods of analysis are not practical.

We present a general approach to simplifying this strategy
space through the use of equivalence clases over types. The
equivalence classes are chosen in such a way that the strategy
needs to conditions on less information, thereby reducing the
effective size and richness of the strategy.

A common subproblem in bridge, the finesse play, is used
as an example in applying this approach. Several types of
finesses are described and modelled formally, along with the
corresponding equivalence classe. The reduction in the strat-
egy space as a result of the equivalence class representation
is demonstrated on these examples. We then discuss possible
methods of improving or extending this approach to larger
subproblems in bridge.

1 Introduction

This paper deals with the problem of developing and anayls-
ing the strategies required in the game of contract bridge. In
a similar fashion to games such as chess, go, shogi, or poker,
the outcome and strategy spaces for bridge are extremely
large, making a brute force analysis of the game unreason-
able. Bridge and poker also have the additional problem that
they are Bayesian games, and as such the full details of the
game are unknown, which must be reflected in the richness
of the strategy space.

We begin by describing the game of bridge, both in a nat-
ural and game theoretic setting, followed by a brief discuss-
sion of a number of previously used approaches to analyzing
bridge play. We then discuss an idea borrowed from recent
developments in poker playing agents, relating to the use of
equivalnce classes over opponent types, and apply it in the
context of bridge.

A specific subproblem of bridge is then selected, and a
model for it is formally defined. Using this model we apply
the equivalence class approach and show that this can lead
to a significant reduction in the effective strategy space for a
player.

2 Contract Bridge

2.1 Natural Language Description

Contract bridge is a game played with 52 standard playing
cards, each with a rank and a suit. The suits are clubs, dia-
monds, hearts, and spades (♣, ♦, ♥, ♠). The ranks are 2,
3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, Ace, in order from
lowest to highest (the last five abbreviated T,J,Q,K,A).

There are four players: north, south, east, and west
(N,S,E,W), seperated into two teams: N-S and E-W. Each
player is dealt a 13 card hand at random. The game is com-
prised of a series of tricks, defined as each player playing
one card from their hand. The order in which these cards are
played is clockwise, with player names interpreted as cardi-
nal directions, starting with the lead player. For example, if
E is the lead player, the player order is E, S, W, N.

The lead player may play any card they wish. The other
players must play cards of the same suit as the lead player’s
card, if possible. Otherwise, they may play any card from
their hand. The winner of a trick is the player who played
the highest ranked card in the suit of the lead player’s card,
unless there is a trump suit. However, for simplicity it is
assumed that there is no trump suit. The winner of a trick
then becomes the lead player for the following trick, and this
is repeated until all the cards have been played, resulting in
a total of 13 tricks.

Through a process known as bidding, one player is desig-
nated as the declarer, and is assigned a contract. The bidding
process is not explained as it is not necessary for the analysis
in this paper. A contract consists of a suit and a level. The
suit dictates whether there is a trump suit, and what it is. As
mentioned above, it is assumed that there is no trump suit.
The level of contract indicates the number of tricks that the
declarer’s team must take in order for the team to achieve
a positive score. The team opposing the declarer is known
as the defenders. The defending team’s score is always the
negative of the declarer’s team’s score.

A team’s score is strictly increasing in the number of tricks
taken, though not linear. How this score translates into a
player’s utility depends on the variant being played, though
it is also guaratneed to be strict increasing, and both play-
ers on a team will always recieve the same utility. For the
analysis done in this paper we only need to consider that a
player’s utility is strictly increasing in the number of tricks
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that player’s team takes.
The player to the left of the declarer is the lead player for

the first trick. After this player has played a card (called the
opening lead), the declarer’s partner reveals his hand to all
of the players, and no longer interacts with the game. The
declarer dictates what card is played from the revealed hand,
which is referred to as the dummy or the table. In this way
(apart from the bidding process), bridge is a three player
game, in that only three players are making any decisions.
However, it is still conceptually useful to remember that the
declarer’s team is two distinct hands being controlled by one
player.

2.2 Game Theoretic Representation

We model bridge as being similar to a Bayesian game ex-
cept that a player’s action set depends directly on the player’s
type. The game is described with four players, one for each
hand, because it is simplest to do so when consider the ac-
tual mechanics of the game. The fact that a single agent is
in control of two hands does not need to be considered until
speaking about strategies.

The four players in the game are N = {N, S, E, W}.
The set of cards is C = {♣,♦,♥,♠} ×
{2, 3, 4, 5, 6, 7, 8, 9, T, J,Q, K,A}, with the subset of
cards of suit x denoted Cx. An agent’s type (or hand) is
θi ⊂ C such that |θi| = 13. The distribution over types is
uniform in the sense that, given no additional information,
P (C1 ∈ θi) = P (C2 ∈ θi)∀C1, C2 ∈ C. However, the
samples for each player are very much not independant,
as each card must be a member of exactly one player’s
type. Mathematically, we could write this as ∩iθi = ∅ and
∪iθi = C.

Because the only action players can take is to play cards,
the set of all possible actions available to players is the set of
cards. Determining a specific player i’s action set at node j,
Ai(j), is done in a number of refinement steps. First, player
i must have had the card to begin with: Ai(j) ⊂ θi. Second,
a card cannot be played twice: Ai(j) ⊂ θi\Hi(j), where
Hi(j) denotes player i’s history of actions up until node j.

If player i is the lead player at node j, then no further
restrictions are necessary and Ai(j) = θi\Hi(j). If player i
is not the lead player at node j, then assuming the lead card
is of suit x, player i must play a card of suit x: Ai(j) =
(θi\Hi(j)) ∩ Cx. If this set is empty, meaning player i no
longer holds any cards of suit x, or player i is the lead player,
then we remove this restriction: Ai(j) = θi\Hi(j).

There are a few interesting consequences of this formula-
tion. While in general player i does not know the action set
of player j, he does know a subset of actions that player j
cannot make. This is also directly tied to player i’s beliefs
about player j’s type. In addition, as the game progresses
player’s make partial observervations on each other’s types,
refining their beliefs. By the end of the game, every player
knows every other player’s type.

As mentioned above, we do not require an explicit utility
function for the analysis that is done in this paper. Even if
we assume that utility is equal to team score, explaining the
scoring system would unnecessarily complicate the problem.
In particular, we would like to be able to speak in the con-
text of a single trick, and the effect that it has on the score
is dependant on everything else that happens in the game.
Therefore we restrict our information about the utility func-
tion to be the fact that it is strictly increasing in the number
of tricks taken by the team.

This representation does not encapsulate the fact that the
declarer has control of two hands. Once we have the game
as defined above, we can simply label all of the action nodes
of the dummy as those of the declarer instead, while keeping
note of which hand the node corresponds to. While this game
is just as well defined, describing it in this way to begin with
would have been notationally tedious.

3 Past Work

3.1 Sampling Methods

In the past, a number of bridge playing agents were devel-
oped based on a sampling approach [Ginsberg 1999]. The
basis for this method is to first develop a method to find
an optimal strategy in the case where every player’s type is
known. This is often referred to as “double dummy” bridge,
as it is equivalent to both teams having a dummy, and can
be solved reasonable quickly. Then, at each trick, oppo-
nent types are sampled from the type distribution, with bi-
ases based on information gained so far. The optimal play is
determined for each of the samples, and the action chosen is
the one which maximizes the expected utility based on these
samples.

One of the drawbacks of this method is that the quality of
the approximation depends on the number of samples taken,
and the amount of computation required is directly propro-
tional to the number of samples. Another drawback is that
Monte Carlo methods such as this tend to avoid information
gathering actions, causing difficult or risky decisions to be
deffered as much as possible. This has lead to some notica-
ble mistakes in the play.

3.2 Planning Methods

Both of these papers speak only about how to play bridge
from the point of the view of the declarer. The planning ap-
proach lends itself well to playing as declarer, as both of the
team’s hands are visible. As a defender, not knowing what
cards your partner has can make it very difficult to predict
what might happen later on, making a planning approach less
effective.

In 1992, Frank et al. wrote a paper that presented a new
approach to solving the problem of declarer play in bridge
[Frank et al. 1992]. They hypothesized that the main reason
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that human players can perform so well at declarer play in
bridge despite its complexity is that each hand can be bro-
ken into subproblems, which, when solved individually, can
be linked together in an attempt to find an optimal strategy.
Then the main difficulty lies within identifying which sub-
problems to solve, and how they are related. Their method
uses ideas from the area of automated proof generation for
mathematical theorems, which characterizes a similar form
of problem.

A few years later, Smith et al. published a paper on an-
other planning-based technique [Smith et al. 1996]. The ap-
proach is task oriented, using hand crafted tasks with specific
pre- and post-conditions to represent the choices that the de-
clarer can make, rather than specific actions. The method
then uses decision theory and planning techniques from the
literature to find an optimal path through the game. The tech-
niques had to be modified to accomodate for uncertainty in
the system based on card distributions and opponent strate-
gies.

3.3 Approximate Optimality

In 2003, the University of Alberta Poker Research Group
published a paper about approximating optimal behaviour in
poker playing agents [Billings et al. 2003]. While this is not a
paper on bridge, some of the ideas presented are nevertheless
relevant. In particular, the authors discuss the idea of parti-
tioning the set of possible hands into equivalence classes,
based on a sense of strategic similarity. Hands are said to
be strategically similar if they can be played with the same
strategy and yield a similar outcome or utility.

Using this, approximately optimal strategies can be found
more easily, because the strategy space is reduced drastically.
This direction of thinking is particularly important in card-
based games, where considering all possible combinations
of cards is generally computationally infeasible.

The planning papers take on a similar approach, as they
avoid having to explicity consider strategically equivalent ac-
tions by encapsulating strategies into tasks and only consid-
ering the relationships between these tasks.

4 Problem Description

In this paper we only consider the problem of playing as the
declarer. As stated above, playing from the point of view
of the declarer makes predicting possible partial outcomes
much simpler, as the trick taking capabilities of the team are
entirely known. However, the other reason this restriction is
made is that defender strategies have an additional compli-
cation: communication.

It is allowed within the rules of bridge that actions relay
information to one’s partner, as long as: 1. The action is
legal within the game, 2. The meaning of an action is agreed
upon beforehand, and 3. the opponents are fully aware of this
agreement (all easily enforcable from a game theoretic point

Figure 1: An example of when a finesse play can be used.

of view). Since there is no partner for the declarer to relay
information to, this is only really a concern for defenders.

While declarer can still consider what information is being
relayed by defenders’ actions, this is only a reactionary con-
sideration, used to refine the type distributions. On the other
hand, this can have a large strategic impact for a defender.
An action must be considered not just for its impact on the
game itself, but also for what information it may relay to his
partner. While building this into the strategic model for de-
fender is not an insurmountable task, it does outline another
fundamental difference between playing as the declarer or a
defender.

4.1 Subproblems and Equivalence

The approach described later uses ideas borrowed heavily
from the ideas presented in [Billings et al. 2003], but rather
than partitioning entire hands into classes, we group indi-
vidual cards. Generally, cards exhibit strategic equivalence
when the cards are either of a low enough rank to be unlikely
to win a trick, or a single player holds cards of consecutive
rank.

Determining how cards should be grouped into equiva-
lence classes in a general situation is a daunting task, espe-
cially because the strategic equivalence of cards can change
drastically over the course of the game. Instead, we turn to
the idea presented in the planning methods of focusing on the
analysis of a single subproblem in bridge: the finesse play.
Even modelling this single subproblem is difficult to do in
complete generality. We further narrow down the problem
by presenting models for a few specific forms, and later dis-
cussing some steps that could be taken towards generaliza-
tion.

4.2 The Finesse Play

The finesse play is a technique used to win a trick using a
card that is not the top ranked card in that suit. The basic
idea of a finesse is to take advantage of the fact that players
must play cards in a certain turn order. Therefore some play-
ers will be able to condition their actions on cards that have
already been played in the current trick.

Figure 1 depicts a simple example of when a finesse play
can be used, where the cards above the line represent the
dummy’s hand, and the the cards below represent the de-
clarer’s hand. In this example, there are only two tricks left
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to be played, and it is known that the opponents hold the 4,
5, 6, and K of spades.

It is evident that the A can take a trick, but it is less obvious
how declarer can make the Q win as well. If the dummy is
on lead, declarer can lead the 2 of spades, and then see what
E plays. If E plays the K, then declarer trivially takes two
tricks by playing the A and then the Q. If E plays anything
else, then the choice may not be as clear. If declarer plays
the Q here, then he is still guaranteed two tricks as long as E
has the K.

This is called “finessing the Q,” because it attempts to use
the Q to win a trick by taking advantage of it’s position rel-
ative to the K. It is also important that the dummy was on
lead. If declarer had simply lead the Q from his hand, then
regardless of who had the K the Q would not win (overtak-
ing the Q with the K is a dominant strategy for whoever has
it). For the finesse to succeed declarer needs to lead from the
dummy and hope that E has the K. If it turns out that W had
the K, then there is no way for declarer to guarantee winning
with the Q, regardless of who is on the lead, unless the K is
the only spade W holds. In this particular example, this is
not possible.

Note that it is not necessary to model the defenders’ be-
haviour in order to speak about finesses. In this exam-
ple it was convenient that the defenders (in particular, W)
had dominant strategies that we could assume would be fol-
lowed. However, in general the defenders may not have
dominant strategies, or they may be very difficult to find.
Nonetheless the finesse is a valid technique to use, as the
true goal of the play does not rely on the defenders’ strat-
egy: if E holds the K, using the finesse guarantees that the
declarer will win with the Q.

5 The Model

In an effort to keep the model as simple as possible, we will
only be talking about finessing within the context of a single
trick. This, in addition to the fact that there is no trump suit,
implies that the only relevant suit is the one being lead. For
notational simplicity, we will assume that the suit in question
is always spades.

First we define a relation between two cards, which we
call similarity. We define the predicate similar(x, y, S) to be
true if the card X and the card Y both belong to set S, and
every card between them also belongs to set S. For example,
if declarer holds the A,K,and Q of a suit in his hand, then the
A and Q are similar. This represents the notion that as far as
that player is concerned, these cards are almost identical.

5.1 Equivalence Classes

We are now ready to define some equivalence classes over
cards in the players’ hands. The first is the class of “top

cards” which we will denote T.

if ♠A /∈ θN ∪ θS then T = ∅
otherwise T = {x|similar(x,♠A, θN ∪ θS)}

This is the set of cards that the declarer is in control of that
no card the opponents hold can overtake. If one of these is
played, then the declarer or the dummy is guaranteed to take
the trick. In the example above, T = {♠A} In addition, we
define TN = T ∩ θN and TS = T ∩ θS .

The next class we define is that of the “finesse cards”,
which we denote F. This class is defined as follows.

Fmax = ♠x where x = max {y|(♠y ∈ θN ∪ θS) ∧ (♠y /∈ T)}
F = {x|similar(x,Fmax, θN ∪ θS)}

The finesse cards are the set of higest ranked declarer con-
trolled cards that are not top cards. In the example, F =
{♠Q}. The card that the declarer is finessing will be an el-
ement of this set. As above, we define FN = F ∩ θN and
FS = F ∩ θS .

We now define an equivalence class over some of the de-
fenders’ cards. This is the class of ”critical cards”, which we
denote C. This corresponds to the set of cards that are lower
ranked than cards in T, but higher than cards in F.

Cmax = ♠x where x = max {y|♠y ∈ θE ∪ θW } ∧ ♠y > Fmax

C = {x|similar(x,Cmax, θE ∪ θW )}

Conceptually, these are the cards that the declarer is con-
cerned about when attempting to finesse one of the cards
in F. In the example above, C = {♠K}. As with the
classes of declarer’s cards, we also define CE = C ∩ θE

and CW = C ∩ θW . Note that declarer has full knowledge
of what cards are in C, but not of CE and CW in general.

Finally, we also have the class of ”low cards”, which we
denote L. This is simply the set of cards that do not belong
to T, F, or C.

L = (θN ∪ θS ∪ θE ∪ θW ) \ T \ F \ C

Notice that this set is not limited to spade cards. The set is
meant to represent the cards that are too low in rank to be
relevant to the finesse play (at least according to this model).
Therefore cards from other suits must be considered in this
set, as in some sense they are the lowest ranked cards, in the
context of a spade trick. Similar to before, we also define
LN = L∩ θN , LS = L∩ θS , LE = L∩ θE , LW = L∩ θW ,
and LEW = L ∩ (θE ∪ θW ).

6 Application
Let us first consider a game tree that could be used to rep-
resent the example finesse given above, depicted in Figure
2. This tree represents just the finesse strategy, as indicated
by the fact that there is only one branch at each of declarer’s
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Figure 2: The strategy tree for the example finesse in Section
4.2.

choice nodes. While this does not reflect the actual game be-
ing played (as some of the branches do not exist), it is a good
representation of the size of the strategy.

In general, the declarer is unaware of the set of actions
available to a defender, but is aware of a superset of actions
which are plausible. Therefore a given strategy for declarer
must condition on all possible actions the defenders may be
able to take. The branching factor of the strategy tree can
therefore be quite large, even for simple problems such as
the one presented above.

Instead, we can represent this tree using the equivalence
clases define above, shown in Figure 3. The action (or card)
corresponding to a branch is replaced with a equivalence
class, indicating that the card played could be any card from
that equivalence class. For example, if E plays from the class
L = {♠4,♠5,♠6}, then declarer will follow with a card
from FS = {♠Q}. This tree represents an equivalent strat-
egy to the one in Figure 2, but with a smaller branching factor
for opponent nodes.

In this example the reduction in the size of the tree is not
significant. In particular, if the number of spades remaining
in play was increased, then the branching factor of the full
strategy tree would be proportionally larger. However, the
tree in Figure 3 represents a strategy that can be used in more
general situations, as will be demonstrated below.

6.1 Types of Finesses

There are many different types of play that classify as a fi-
nesse. Here we will describe three types of finesse plays
and model them using the equivalence class representation
described above. Each of the finesses in modelled as the
dummy being on lead as the North player, but the represen-
tation for the finesse when the declarer is on lead is identi-
cal if we simply exchange the labels for each pair of players
(N ↔ S and E ↔ W ).

Figure 3: The same tree as in Figure 2 using the equivalence
class notation.

6.1.1 Simple Finesse

This is the type of finesse shown in the example in Section
4.2. It is a finesse in which a low card is lead toward the
hand with a finesse card. If the first opponent to act plays
a critical card, then declarer overtakes with a top card, oth-
erwise declarer plays a finesse card. Using the notation we
have defined, we can represent this finesse as follows.

• Preconditions:

– LN 6= ∅
– FS 6= ∅
– TS 6= ∅
– |C| = 1

• Strategy tree shown in Figure 3

• if C ⊂ θE (finesse successful):
S wins the trick

• otherwise:
W or S wins the trick, W has the choice

6.1.2 Indirect Finesse

The indirect finesse is very similar to the simple finesse ex-
cept that S does not require any top cards. The reason that
this small difference warrants a different category of finesse
is that in the indirect finesse, the opponents may win the trick
even if the finesse is successful. We define the indirect fi-
nesse here using the equivalence class notation.

• Preconditions:

– LN 6= ∅
– FS 6= ∅
– TS = ∅
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Figure 4: A strategy tree representing the indirect finesse.

– |θS | ≥ 2

– |C| = 1

• Strategy tree shown in Figure 4

• if C ⊂ θE (finesse successful):
E or S wins the trick, E has the choice

• otherwise:
W or S wins the trick, W has the choice

An example of when an indirect finesse could be used is
shown in Figure 6a.

Notice that in the event that E wins the trick using the
critical card, the finesse is still considered a success. This is
because declarer’s finesse card has now been ”promoted” to
a top card. While there is no guarantee that declarer will be
able to win at a later time using that promoted card, this is
an issue regarding whether the finesse should be attempted
at all.

The indirect finesse is often used when not just TS = ∅,
but TN = ∅ as well. It is then a method of attempting to
create top cards in a suit when declarer does not have any. It
is still a valid finesse when TN 6= ∅, but in this case there
may also be a high card finesse to attempt from the South
hand, if declarer can get it on lead by some other means.

6.1.3 High Card Finesse

A high card finesse is one in which a finesse card is led. This
type of play is different from other types of finesses because
even when it is successful, the finesse card may neither win
nor be promoted. However, it is guaranteed that when the fi-
nesse is successful, either the finesse card being played takes
the trick or all other finesse cards the declarer holds are pro-
moted to top cards. The opponent has the choice between
these two outcomes. As a result, for this to be of any real use
to the declarer, he must be in control of at least two finesse
cards.

Figure 5: A strategy tree representing the high card finesse.

(a) indirect (b) highcard

Figure 6: Simple examples where different types of finesses
can be used.

• Preconditions:

– |FN | ≥ 2

– TS 6= ∅
– LS 6= ∅
– |C| = 1

• Strategy tree shown in Figure ??

• if C ⊂ θE (finesse successful):
N or S takes the trick, choice by E

• otherwise:
W or S takes the trick, choice by W

An example of situation in which a high card finesse could
be used is shown in Figure 6b.

7 Discussion

7.1 Generalized Finesse

There are many other forms of play that can be considered
finesses, and many of them are obvious extensions or gener-
alizations to the ones presented above. This is supported by
the fact that the strategy tree representations for the differet
types of finesses are very similar. For example, one could
imagine a finesse where both N and S might play a finesse
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card. Then, depending on the relative ranks of these cards,
the finesse will either behave like a simple finesse or a high
card finesse.

Another example would be to relax the constraint that
|C| = 1. However, in the simple finesse case success be-
comes very unlikely, since we require C ⊂ θE . In this case,
we would usually reqire that |FS | >= |C| and that declarer
attempt multiple finesses, though this requires adapting the
model to accomodate more than one trick (which are not nec-
essarily consecutive).

It is evident that attempting to generalize the finesse strat-
egy could also involve other extensions to the underlying
model, including manipulating the equivalence class defini-
tions, or adding more classes. While a more general finesse
could have been used in the previous sections, the reasoning
behind them would have become less intuitive. This would
have resulted in requiring a deeper analysis into bridge strat-
egy without adding much to the overall purpose of this paper,
which is to explore the equivalence class approach.

Though the model becomes more complicated as it tries
to cover a more general range of situations, it is not diffi-
cult to see that the advantage of using equivalence classes is
still present. In any finesse play (and more generally, in any
bridge technique), there are always cards which are key to
the success of the play, and those that are not. By reducing
the number of apparent actions, and thus reducing the strat-
egy space, the task of finding the desired strategy is made
easier.

7.2 Perfect vs. Imperfect Information

It is difficult to cleanly classify bridge as being either a per-
fect or imperfect information game. The distinction is per-
fectly well defined for non-Bayesian games, and so the dif-
ficulty lies in deciding which conceptual features of the def-
inition should be carried over to the Bayesian setting.

However, a deterministic approximation of the game can
be considered instead, equivalent to the strategy trees from
the previous section. In this representation, opponent agents’
choice nodes have actions sets corresponding to cards that
they might be able to play, from the point of the declarer,
regardless of whethter it is actually possible or not. While
this is not an accurate representation of the game, it is useful
in expressing the full richness of the strategy space of the
declarer.

If the game is considered in this way, it is clear that the
resulting deterministic game is one of perfect information.
Each agent is always exactly aware of every action previ-
ously taken by every agent, specifying a unique location in
the tree.

With this representation in mind, we can interpret the idea
of using equivalence classes over cards in a new way. Group-
ing together cards (actions) into classes and conditioning
strategies only on those classes is very similar to the notion
of information sets.

Information sets generally are meant to represent an
agent’s inability to differentiate between nodes of a game
tree. However, they could instead be used to represent an
agent’s indifference between nodes. By imposing this lack
of information upon hiself, the declarer can greatly simplify
the strategy space that needs to be considered.

The strength of this interpretation is that because this in-
formation restriction is self-imposed, the agent has the abil-
ity to choose how and when this information is partitioned.
In the example finesse, the declarer knows exactly which
cards were played once the trick is over. This information
only needed to be ignored during the trick to simplify the
strategy.

7.3 Global Strategy

7.3.1 Hierarchical Methods

There are many ways to approach the problem of extending
the simple examples shown above into a method to simplify
larger subproblems or groups of subproblems. One promis-
ing direction that has been tested in bridge AI before is that
of a hierarchical structure [Smith et al. 1998].

The basis of the approach is that the full details do not
need to be known for every feature or subproblem we are
trying to describe. It is often the case that a number of low-
level, specific pieces of information can be grouped together
to form a higher level concept.

In the context of the equivalence class representation we
have presented, this corresponds to broadening the classes
as much as possible until refinement is necessary, in an at-
temptto keep the strategy tree as simple as possible at any
given time.

This was already done to some extent in the examples dis-
cussed above. It is not obvious (and often false) that the cards
in L are strategically equivalent for the rest of the game.
They are grouped into the same class only because they are
not relevant in the outcome of the current trick when the
technique in question is being attempted. Once the finesse
has been completed (either in theoretical extrapolation or in
practice), then situation would have to be reevaluated, and
the cards in some classes, such as L, may be refined into
new classes.

It is not only refinement that can occur, it is also the case
that as the game unfolds, classes may merge. For instance,
in a finesse, if the opponents play their critical card(s) then
F and T would merge into a new top cards class. The idea is
that the grouping of cards is done in a dynamic way so as to
keep the tree simplified optimally at all times.

7.3.2 Probability

It is unlikely that it is possible to reach a reasonable solu-
tion to a Bayesian game without speaking about probabilites.
Having chosen not to concretely define a utility function, it
is difficult to form any arguments based on expected utility.
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However, even with only the knowledge that maximizing the
number of tricks is our goal, some worthwhile observations
can still be made.

For instance, a decision often made by declarers is
whether to finesse or to “drop,” which is simply to play the
top cards hoping that the defenders will have no choice but
to play the critical cards due to lack of choice. In both cases,
a sucess means the promotion of at least a finesse card to a
winner. The declarer must compute the probability of suc-
cess of each technique, while considering the consequences
of failure, and come to a optimal answer on expectation.

Hierarchical type refinement can come into play here as
well, as these probabilities can change every time an obser-
vation is made. If a technique is defined is robustly enough
to allow for it to be aborted in favour of another technique,
then it may be found that the optimal play involves attempt-
ing a technique part way, and then reevaluating whether to
continue or try something different.

8 Conclusion
In this paper we presented a method of using strategic equiv-
alence to help simplify the analysis of contract bridge. This
approach takes advantage of the fact that in many situations
the choice between two different actions can be largely in-
consequential, at least in the specific context in which it is
presented. Such actions can be grouped together into equiv-
alence classes, potentially simplifying the strategy space of
a player.

The approach is analyzed from the point of view of the
declarer, where the combined set of cards that both defenders
hold is known, but the specific locations are unknown. As
this results in the defender’s action sets having uncertainty,
the actual game tree is not known. In this case, it is necessary
to instead consider the strategy tree, which accounts for all
the actions that a defender might be able to take.

By applying the equivalence class approach to the strat-
egy tree representation, we are able to significantly reduce
the branching factor of the tree, simplifying its analysis. The
method is shown explicitly for a common subproblem in
bridge, the finesse, and the benefits of the representation are
evident.

While we only present a very specific application of the
approach, there is much potential for generalization to larger
and more complex subproblems. The reduction and simpli-
fication of the effective strategy tree is an invaluable tool re-
gardless of the direction in which research of this field is
carried.
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